ISPD 2009 Clock Network Synthesis Contest

Cliff Sze and Phillip Restle IBM Research

Overview

- Open contest primarily for academic community
- Totally 27 teams registered initially
 - Mostly academic teams and other from Intel, Cadence
 - 15.5 teams from US, 11.5 teams from overseas
 - □ 1 from Brazil
 - 2 from Canada
 - 1 from India
 - □ 5.5 from Taiwan
 - □ 2 from Hong Kong
- □ 16 alpha executables received by Feb 23
- □ 11 final entries by Mar 11 (1 team sent me just algorithm descriptions)

3

- 9 of them actually work
- Total 7 benchmarks
 - 1 derived from ISPD 2006 placement benchmark solutions
- Quality metrics
 - Minimize clock "skew" considering voltage variation
 - Constrained by total power

Те	ams a	round the world JAN FEB 23	MAR 11
id I	Name	Affiliation	Contact Author
1	team1	Georgia Institute of Technology	Xin Zhao
2	team2	University of Texas at Austin	Anurag Kumar
3	EKSS	NCKU CSIE, Taiwan	Chun-Hsien Lin
4	team4	National Taiwan University	Xin-Wei Shih
5	team5 🟠	UFRGS	Gustavo Wilke
6	team6 🛣	University of Michigan	Dongjin Lee
7	team7	University of California at Santa Cruz	Matthew Guthaus
8	team8	University of California at San Diego	Neelmani Kumar
10	team10	University of Texas at Dallas	Elizabeth Kiefer
11	Qian-Li-Ma	Purdue University and National Tsing Hua University	Yu-Ting Lee
12	UCSDCTS	Dept of Computer Science & Eng. University of California at San Diego	Renshen Wang
13	team13	IT Bombay (Cadence)	Hari
14	team14	University of California at San Diego	Benjamin Cichy
15	team15	University of Texas at Austin	Ashutosh Chakrabor
16	Quartz	National Chiao Tung University, Hsinchu, Taiwan	Lee-Chung Hsu
17	NCTUgogogo	National Chiao Tung University, Hsinchu, Taiwan	Wen-Hao Liu
18	team18	Chinese University of Hong Kong	Xiao Linfu
19	team19	Dept of Electronic & Information Eng, Polytechnic University of Hong Kong	Jingwei Lu
20	team20	University of Texas at Austin	Yilin Zhang
21	team21	University of Calgary	Logan Rakai
22	CNS	Intel Corporation	Rupesh S. Shelar
23	team23	Iowa State University VLSI CAD LAB	Yanheng Zhang
24	NCKUF4	National Cheng Kung University	Sheng Chou
25	team25	University of Illinois, Urbana-Champaign	Ying-Yu Chen
	toom26	Divorsity of Michigan	Vinconfills Pobby

A Thank the two teams who gave me preliminary binaries during late January/early February which facilitates my testing to the infra-structure.

Evolution of the contest

- □ Mid 2008, discussion on a new contest after placement and routing
 - 8 possible topics
 - Briefly agree on "Clock Tree Synthesis"
- □ November 2008, discussion with clocking experts in IBM
 - William Migatz (ASIC clocking)
 - Mehmet Yildiz (Clock routing)
 - Phillip Restle (uP clocking)
- Phillip contributed a lot on the contest format
 - Power limited
 - Real clock skew considering PVT variation
 - Non-tree is allowed
 - Uses SPICE timing
- December 24 January 8
 - Finalize the contest rules, file formats
 - collect 45nm IBM technology information
 - Look for a public available SPICE simulation tool, SPICE model
 - A script such that SPICE simulation is (kind of) invisible to participants

5

Contest formulations

- □ Realistic data for newer technology node
- Accurate delay calculation by SPICE
- Power limit
- Real clock skew considering variations
- Let's experience the contest with me from the beginning... Watch out!! the road would be bumpy
- □ Are you ready?

SPICE simulator

Try to simulate a sample clock tree

4 sinks, same load

Located just off the centers of the 2x2 grid over 5mm x 5mm chip area

Two inverters are connected in parallel at the center of the layout

Benchmarks - Type 2 (ispd09f21, ispd09f22)

- Sinks are evenly distributed
- Different sink capacitance
- Clock buffers with different sizes tuned based on latch distributions

					te	otal cap			max		
id	CLR	CAP	%	sink	inverter	wire	w/inv(%)	CPU	nom skew	rank	
4	30.536	100987.823	80.79	3587	50485	46915.823	92.93	14978	5.266	2	
6	34.314	92880.351	74.30	3587	50602.6	38690.751	76.46	4587	6.077	3	
7	92.053	80807.163	64.65	3587	36865.4	40354.763	109.47	846.5	48.111	7	
11	84.128	81641.024	65.31	3587	37835	40219.024	106.30	0.18	38.833	6	
17	19.61	108314.313	86.65	3587	71103.4	33623.913	47.29	26420	3.199	1	
18	19.365	106723.687	85.38	3587	63250	39886.687	63.06	1056.29	7.183	9	slew V
19	42.26	83666.255	66.93	3587	45921	34158.255	74.38	696.24	8.347	4	
21	113.669	91080.474	72.86	3587	44390	43103.474	97.10	1391.43	43.285	8	
24	83.611	75160.217	60.13	3587	26220	45353.217	172.97	0.99	18.732	5	21

					te	otal cap			max		
id	CLR	CAP	%	sink	inverter	wire	w/inv(%)	CPU	nom skew	rank	
4	24.505	65457.948	81.82	3427	33925	28105.948	82.85	7189	3.359	3	
6	30.448	56006.581	70.01	3427	30355.4	22224.181	73.21	2005.37	7.099	4	
7	59.541	47965.346	59.96	3427	21868.6	22669.746	103.66	406.15	26.189	6	
11	53.733	48400.754	60.50	3427	21735	23238.754	106.92	0.12	21.597	5	
17	16.376	68011.242	85.01	3427	45101.1	19483.142	43.20	9432	2.965	1	
18	21.979	62218.067	77.77	3427	34155	24636.067	72.13	571.41	6	2	
19	33.316	49341.435	61.68	3427	26499	19415.435	73.27	230.29	7.773	9	slew V
21	98.444	48751.091	60.94	3427	20010	25314.091	126.51	595.74	48.454	8	
24	64.794	45193.32	56.49	3427	15525	26241.32	169.03	0.39	20.494	7	2

6	40.315	147037.936	77.39	6650	81776.6	58611.336	71.67	10599	6.44	3
7	190.416	130373.487	68.62	6650	60926.2	62797.287	103.07	1597.57	135.807	8
11	139.317	133421.194	70.22	6650	63365	63406.194	100.07	1.03	74.081	6
17	NA	NA	NA	NA	NA	NA	NA	NA	NA	9
18	18.418	170803.737	89.90	6650	101545	62608.737	61.66	2888.24	7.678	1
19	53.362	127771.814	67.25	6650	69881	51240.814	73.33	1384.23	8.501	4
21	162.879	156461.447	82.35	6650	69690	80121.447	114.97	3841	65.09	7
24	120.693	121866.339	64.14	6650	41630	73586.339	176.76	3.16	42.048	5

Type 4: Derive from real IBM ASIC design

- From the placement results of newblue1 (ispd09nb1)
- Randomly pick the latch locations

Cluster latches and insert clock buffers as clock sinks of the contest benchmark

No clock sink are inside any blockage

	spdC)9fnb1 0 limit 42000	250.0 200.0 150.0 0.0 50.0 0.0		10 20	30 40 CLR	50	160.00 140.00 120.00 100.00 60.00 40.00 20.00 0.00 0	• • • 10 20 30		• • • • • • • • • • • • • • • • • • •
					to	otal cap			max		
id	CLR	САР	%	sink	inverter	wire	w/inv(%)	CPU	nom skew	rank	
4	NA	NA		NA	NA	NA	NA	NA	NA	5	
6	19.835	26501.154	63.10	5919	13340	7242.154	54.29	477.37	7.228	1	
7	40.455	27256.62	64.90	5919	13134.2	8203.42	19.53	895.33	25.977	5	block V
11	39.291	22753.295	54.17	5919	8625	8209.295	19.55	0.31	23.733	4	
17	NA	NA	NA	NA	NA	NA	NA	NA	NA	5	
18	22.839	37793.715	89.99	5919	15295	16579.715	108.40	745.36	4.219	2	
19	25.531	28055.333	66.80	5919	14406	/730.333	18.41	255.24	5.765	3	
21	44.099	71017.083	169.09	5919	54510	10588.083	25.21	1506.65	23.634	5	cap V
24	58.367	90207.444	229.21	5919	29670	00078.444	144.47	0.71	30.272	5	cap V

Final Results

To W	Top three stands out pretty clear from the others We are not going to distinguish 1 st ,2 nd or 3 rd because they are too close														
					be	enchma	arks						avg		
name	affiliation	id	11	12	21	22	31	32	nb1	rank	CLR	%cap	w/inv(%)	CPU(s)	nom skew
team4	National Taiwan University	4	2	2	2	3	1	2	5	2.43	31.57	81.08	87.82	13570.85	5.17
team6	University of Michigan	6	3	3	3	4	2	3	1	2.71	34.39	73.38	69.70	6119.68	6.97
team7	University of California at Santa Cruz	7	6	8	7	6	6	8	5	6.57	122.68	65.89	91.18	1110.17	83.01
Qian-Li-Ma	Purdue Univ & National Tsing Hua Univ	11	4	6	6	5	4	6	4	5.00	85.38	64.12	91.65	0.47	42.30
NCTUgogo	go National Chiao Tung University	17	1	1	1	1	5	9	5	3.29	58.49	88.36	44.69	14840.66	41.17
team18	Chinese University of Hong Kong	18	8	9	9	2	7	1	2	5.43	21.42	87.07	70.63	1577.91	7.91
team19	Polytechnic University of Hong Kong	19	8	4	4	9	3	4	3	5.00	41.79	66.39	65.77	854.29	8.19
team21	University of Calgary	21	7	7	8	8	7	7	5	7.00	99.94	88.87	93.98	1639.34	37.59
NCKUF4	National Cheng Kung University	24	5	5	5	7	7	5	5	5.57	83.54	85.69	176.95	2.18	23.83

□ Winners are (in the order of team id)

- Team4 National Taiwan University
 - Xin-Wei Shih, Chung-Chun Cheng, Yuan-Kai Ho, Prof. Yao-Wen Chang
- Team6 University of Michigan
 - Dongjin Lee, Prof. Igor Markov
- NCTUgogogo National Chiao Tung University
 - Wen-Hao Liu, Hui-Chi Chen, Prof. Yih-Lang Li

Remarks on the Results

			benchmarks								avg						
name	affiliation	id	11	12	21	22	31	32	nb1	rank	CLR	%cap	w/inv(%)	CPU(s)	nom skew		
team4	National Taiwan University	4	2	2	2	3	1	2	5	2.43	31.57	81.08	87.82	13570.85	5.17		
team6	University of Michigan	6	3	3	3	4	2	3	1	2.71	34.39	73.38	69.70	6119.68	6.97		
team7	University of California at Santa Cruz	7	6	8	7	6	6	8	5	6.57	122.68	65.89	91.18	1110.17	83.01		
Qian-Li-Ma	Purdue Univ & National Tsing Hua Univ	11	4	6	6	5	4	6	4	5.00	85.38	64.12	91.65	0.47	42.30		
NCTUgogogo	National Chiao Tung University	17	1	1	1	1	5	9	5	3.29	58.49	88.36	44.69	14840.66	41.17		
team18	Chinese University of Hong Kong	18	8	9	9	2	7	1	2	5.43	21.42	87.07	70.63	1577.91	7.91		
team19	Polytechnic University of Hong Kong	19	8	4	4	9	3	4	3	5.00	41.79	66.39	65.77	854.29	8.19		
team21	University of Calgary	21	7	7	8	8	7	7	5	7.00	99.94	88.87	93.98	1639.34	37.59		
NCKUF4	National Cheng Kung University	24	5	5	5	7	7	5	5	5.57	83.54	85.69	176.95	2.18	23.83		

Team18 - Chinese University of Hong Kong

- Failed 3 benchmarks because slew is slightly (<1ps) over 100ps</p>
- Would have won the contest if they had set a guard band for slew Robust tools

Robust tools

- I created another 10 difficult benchmarks while these two teams never fail any of them
 - Team6 University of Michigan
 - Team24 NCKUF4 National Cheng Kung University

29

What did we learn?

- Most teams still focus on nominal clock skew
- □ Where is the non-tree structures (mesh, crosslinks)?
 - I intentionally change the contest name from "Clock Tree Synthesis (CTS)" to "Clock Network Synthesis (CNS)"
 - Maybe ~2x power budget is too low
 - I talked to the teams and found that non-tree is not widely used
 - □ Their experiments show little benefit
 - □ We need to dig deeper into this
- □ Inverter sizing to minimize gate delay
 - In turn, to minimize gate delay variations
 - Is it related to the observation of "smaller wire cap" leading to "smaller CLR"?
- □ This is just the first step
 - Feel free to study the results and I am sure there will be more findings
 - www.ispd.cc/contests