
ISPD 2013 Discrete Gate Sizing

Contest Details

Last Modified: November 19, 2012

Look for slides with yellow box in top right corner

(examples below) to see what was modified.

Changed Nov-19-2012

Changed Nov-19-2012 Added Nov-19-2012

2

Outline

 Contest Overview

 Submission Information

 Contest Evaluation

 Benchmark Files & Parsers

 Sizer/Timer Interaction

3

Contest Overview

 Discrete Gate Sizing Contest

 Simultaneous gate sizing and cell type assignment

to optimize power under performance constraints

 A standard cell library will be provided to define

discrete cell sizes and types.

 We reserve the right to make changes in the

contest rules or benchmarks in the future. It is

your responsibility to check the contest

announcements on the web page until the

submission deadline

Major Changes from 2012 Contest

 A new set of more realistic benchmarks and

constraints will be released

 The interconnect model for each net (except

clock) will be a realistic RC tree instead of one

lumped capacitance number

 We provide additional API calls for you to query

more detailed timing information such as effective

capacitance

 The contestants can choose to write their own

PrimeTime® script to use any PrimeTime® feature

4

Changed Nov-19-2012

Modified

Submission Information

6

System Specification
 Operation system: Linux, version is TBD

 Memory limit: TBD (likely to be at least 16GB)

 Number of cores: TBD (likely to be at least 4)

 Programming Language: You are free to use any, as long
as we can run your binary on our platform for evaluation
 C/C++ are officially supported, for others please contact us
 MATLAB will not be available

 Library: standard C/C++ library

 Parallel library: Check with the contest organizers first

 Public-domain third party library: check with the contest
organizers first to see whether it is allowed or not

 Binary size limits: Reasonable limits may apply especially
if you are statically linking external non-standard libraries
in your binary

7

Timing Engine
 You are allowed to implement your own timer, but

the final timing evaluation will be done using
Synopsys PrimeTime®*

 You also have the choice to use PrimeTime® as
your timer during sizing
 We will provide a blackbox API (application

programming interface) to send sizes to
PrimeTime® and receive back timing information.

 You may choose to write your own PrimeTime®
script to use any PrimeTime® feature
 We will not debug your scripts

* Other names and brands may be claimed as the property of others.

8

Submission Requirements

 Files to be submitted:

static binaries

 The submitted work can be either single threaded

or multi-threaded version

 An alpha (preliminary) binary submission is

required approximately two weeks before the final

submission deadline

 Optional PrimeTime® script file

Contest Evaluation

10

Contest Evaluation
 Two separate rankings:

 Primary ranking: Solution quality will be the main metric.

Runtime will be used for tie-breaking.

 Secondary ranking: Both solution quality and runtime will be

important. Multi-core implementations are encouraged!

 There will be a hard runtime limit for each benchmark

11

Quality Metrics
 Quality metrics in order of importance:

1. Timing, slew, and max-load violations
 Note: We expect each benchmark to have a solution with zero violations.

2. Cell leakage power

 In other words:
 A solution with no violations will always be better than another with

some violations

 If there are two solutions with zero violations, then the one with the
smaller total leakage will be ranked higher.

 If there are two solutions both of which have non-zero violations,
then the one with the smaller total violation will be ranked higher.
 The exact weights for different violation types will be published later.

 Definitions:

 Timing violation: A timing endpoint has negative slack

 Slew violation: A pin has transition time larger than the max limit

 Max-load violation: A cell drives load larger than the max capacitance limit specified in
the library for that cell.

Contest Benchmarks & Parsers

13

Overview of Benchmark Files and

Parsers
 Benchmark files

 Input files
 .v file

 .spef file

 .sdc file

 .lib file

 Intermediate files
 .int.sizes

 .timing file

 .ceff file

 Output file
 .sizes file

 C++ parser helpers will be provided.

Describes netlist, parasitics and constraints

for each test bench

Library file, shared by all the test benches

PrimeTime® output file to sizer

Cell sizes for the test bench

Updated cell sizes from sizer to timer

ceff is “effective” capacitance

PrimeTime® output file to sizer

Changed Nov-19-2012

Added

14

Benchmark Features
 The provided std cell library includes multiple

discrete choices of cell sizes and types

 Delay/slew values are defined as look up tables
in the library (.lib file)
 Delay/slew function of input slew and output cap

 Not necessarily a convex function

 Interconnect parasitics are given in .spef file and
modeled as distributed RC trees (without cross-
coupling capacitances)

 Timing model: please see next few slides

15

Sequential Timing Model
 All sequentials in the benchmarks will be rising edge

triggered flip-flops

 Sequential sizing is not allowed, the library has only one
size for sequential cells

 Ideal clock network is assumed
 Clock port at the top level is directly connected to all

sequential clock pins (i.e. no clock buffers)
 Zero skew

 Arrival time of clock at all sequentials is the same

 Sequential delay is independent of clock slew
 Sequential clock to output delay table in the library has the same delay

for all clock input transition times

 Clock input pin caps are zero for all sequential cells
 Clock net has zero parasitics (net will not be mentioned in

.spef file)

 Setup time is always 0. There are no hold constraints.

16

Timing Model
 Interconnect will be modeled as a distributed RC tree (one tree

per net)
 The RC tree will not have any cross-coupling capacitances

 Delay through interconnect is supposed to be non-zero (except
for clock nets which don’t have any RC)

 Cell timing arc delay is a function of input transition time and
output load cap
 Output load cap = “effective” capacitance seen by the driver

 Cell timing arc output transition time is a function of input
transition time and output load cap

 Delay and transition time functions are implemented as lookup
tables
 A simple 2-dimensional linear interpolation model is assumed

 We will assume worst slew propagation
 Since we are doing max timing (setup only), this is the largest

slew (see the slide titled ‘Max Delay and Slew Propagation’)

Notes on delay calculation
 Cell library models contain delay and transition time as functions of input

transition time and output load capacitance

 Since most nets (except clock) will be distributed RC, they must be mapped to

some “effective” capacitance to look up cell delays and output transition time

from cell model

 There are several techniques to do this (please see references on next page)

 You are free to implement whatever you want if you choose to implement your own timing

engine

 We will provide you API to query effective capacitance from PrimeTime®

 All submissions will be evaluated using PrimeTime®

 Since most nets will be modeled as distributed RC, there will be non-zero delay

through them

 There are several techniques to compute this delay

 You are free to implement whatever you want if you choose to implement your own timing

engine

 We provide you API to query arrival/transition time at all pins through PrimeTime® (which

you can then use to get interconnect delay)

 All submissions will be evaluated using PrimeTime®

17

Changed Nov-19-2012

Modified

Modified

Delay Calculation References

(This list is not comprehensive, you are free to choose

whatever you want)

1. Reducing arbitrary RC trees to driving point pi-model (useful step for several “effective”

capacitance algorithms)

a. Peter R. O’Brien and Thomas L. Savarino, Modeling the Driving-Point Characteristic of Resistive

Interconnect for Accurate Delay Estimation, ICCAD 1989, pages 512-519

2. Effective capacitance algorithms

a. Jessica Qian, Satyamurthy Pullela, and Lawrence Pillage, Modeling the “Effective Capacitance” for

the RC Intetrconnect of CMOS Gates, IEEE TCAD, vol. 13, no. 12, pages 1526-1535, December

1994

b. Florentin Dartu, Noel Menezes, and Lawrence T. Pileggi, Performance Computation for

Precharacterized CMOS Gates with RC Loads, IEEE TCAD, vol. 15, no. 5, pages 544-553, May

1996

3. Interconnect delay calculation (algorithms and metrics)

a. Lawrence T. Pillage and Ronald A. Rohrer, Asymptotic Waveform Evaluation for Timing Analysis,

IEEE TCAD, vol. 9, no. 4, pages 352-366, April 1990.

b. Chandramouli V. Kashyap, Charles J. Alpert, and Anirudh Devgan, An “Effective” Capacitance Based

Delay Metric for RC Interconnect, ICCAD 2009, pages 229-235

c. Charles J. Alpert, Anirudh Devgan, and Chandramouli Kashyap, A Two Moment RC Delay Metric for

Performance Optimization, ISPD 2000, pages 69-74

d. Tao Lin, Emrah Acar, and Larry Pileggi, h-gamma: an RC delay metric based on a gamma

distribution approximation of the homogenous response, ICCAD 1998, pages 19-25

18

19

2-D Interpolation for Library LUTs
 Let’s suppose we want to evaluate table value for

(x,y) where x2<x<x3 and y1<y<y2

 Then the relevant entries are f21, f31, f22, and f32

 Procedure:
 Compute weights along each dimension

 Perform a weighted sum

x1 x2 x3 x4

y1 f11 f21 f31 f41

y2 f12 f22 f32 f42

y3 f13 f23 f33 f43

Lookup Table Weights:

wx=(x-x2)/(x3-x2)

wy=(y-y1)/(y2-y1)

Value:

f(x,y) = (1-wx)(1-wy)f21 + wx(1-wy)f31 + (1-wx)wyf22 + wxwyf32

Example if x=x2 and y=y2:

 wx=0, wy=1, f(x,y) = 1*0*f21 + 0*0*f31 + 1*1*f22 + 0*1*f32 = f22

20

Max Delay and Slew Propagation

 Let’s suppose a↑ to o↓ arc has arrival time at o↓ equal to 10ps
and slew at o↓ equal to 20ps

 Let’s suppose b↑ to o↓ arc has arrival time at o↓ equal to 12ps
and slew at o↓ equal to 18ps

 Therefore arrival time for a↑ to o↓ is better than that of b↑ to
o↓ and slew of a↑ to o↓ is worse than that of b↑ to o↓

 For propagating an event to the next stage (i.e. inputs of cells
driven by ‘o’) we need to select the worst case event
 But which one is worse?

 For this contest, we will assume the worst for both:
 We will use arrival time at o↓ of 12ps (b↑ to o↓)
 We will use slew at o↓ of 20ps (a↑ to o↓)

o

u1

a

b

o

21

C++ Parser Helpers
 The organizers are providing C++ helper functions and classes

to extract the relevant data from the contest benchmarks.

 They are intended for parsing the contest benchmarks and

contest output files (.timing/.ceff) only.

 e.g. The provided Verilog parser will only work for the netlists

of the ISPD13 benchmarks. It is not intended to parse general

Verilog files.

 The contestants are free to use these parsers as is or make

modifications. In any case, it is the contestants’ responsibility to

make sure that the parsers work as expected.

 The code provided here is mostly for description purposes.

The organizers cannot guarantee that the provided code is

free of bugs or defects.

22

Verilog (.v) File
 Specifies cell instances and nets connecting

them

 Simplified subset of the structured Verilog
format
 No hierarchy, no buses, no behavioral keywords

 Single clock domain

 Cell pins are only connected with wires

 Inputs and outputs are implicitly connected to wires
with the same name

 No unconnected pins, no escape characters in names

 No power or ground nets

23

simple.v File Example
module simple (

inp1,

inp2,

ispd_clk,

out

);

// Start PIs

input inp1;

input inp2;

input ispd_clk;

// Start POs

output out;

// Start wires

wire n1;

wire n2;

wire inp1;

wire inp2;

wire ispd_clk;

wire out;

// Start cells

na02s01 u1 (.a(inp1), .b(inp2), .o(n1));

ms00f80 f1 (.d(n1), .ck(ispd_clk), .o(n2));

in01s01 u2 (.a(n2), .o(out));

endmodule

interfaces

(inputs/outputs)

inputs

outputs

intermediate

signals

cell instances and

connections between

cell pins and wires

verilog module name

end of module

inp1

inp2

ispd_clk

out n1 n2

u1 f1 u2

a

b

o d o

ck

a o

24

Verilog Parser Helpers

 Provided C++ parsers:

 VerilogParser class definition in parser_helper.h

 See test_verilog_parser() function in

parser_helper.cpp for an example on how to use

this class.

25

Parasitics (.spef) File
 Specifies the interconnect parasitics of each net

 We are using SPEF format as it is used by PrimeTime®

 Even if you are not using PrimeTime®, the format is simple

enough for you to parse

 We will provide API to parse the SPEF file

 File Format

 Described on next page

 Recall: There will not be any cross coupling

capacitances in the SPEF file and all nets (except

clock nets) will have distributed RC trees. Clock nets

will not have any parasitics and will not be mentioned

in the SPEF file.

Changed Nov-19-2012

Modified

1 inp2 inp2:1 1.4

2 inp2:1 inp2:2 1.5

3 inp2:2 u1:b 1.6

*END

*D_NET out 0.7

*CONN

*I u2:o O

*P out O

*CAP

1 u2:o 0.2

2 out 0.5

*RES

1 u2:o out 1.4

*END

*D_NET n1 1.0

*CONN

*I u1:o O

*I f1:d I

*CAP

1 u1:o 0.2

1 n1:1 0.3

2 f1:d 0.5

*RES

1 u1:o n1:1 1.1

2 n1:1 f1:d 1.0

*END

*D_NET n2 1.2

*CONN

*I f1:o O

*I u2:a I

*CAP

1 f1:o 0.7

2 u2:a 0.5

*RES

1 f1:o u2:a 2.1

*END
26

simple.spef File Format (by example)
*SPEF "IEEE 1481-1998"

*DESIGN "simple"

*DATE "Tue Sep 25 11:51:50 2012"

*VENDOR "ISPD 2013 Contest"

*PROGRAM "Benchmark Parasitic Generator"

*VERSION "0.0"

*DESIGN_FLOW "NETLIST_TYPE_VERILOG"

*DIVIDER /

*DELIMITER :

*BUS_DELIMITER []

*T_UNIT 1 PS

*C_UNIT 1 FF

*R_UNIT 1 KOHM

*L_UNIT 1 UH

*D_NET inp1 5.4

*CONN

*P inp1 I

*I u1:a I

*CAP

1 inp1 1.2

2 inp1:1 1.3

3 inp1:2 1.4

4 u1:a 1.5

*RES

1 inp1 inp1:1 3.4

2 inp1:1 inp1:2 3.5

3 inp1:2 u1:a 3.6

*END

*D_NET inp2 2.0

*CONN

*P inp2 I

*I u1:b I

*CAP

1 inp2 0.2

2 inp2:1 0.5

3 inp2:2 0.4

4 u1:b 0.9

*RES

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

50

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

Line #
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Ignore lines 1-14

RC data for net

‘inp1’

RC data for net

‘n1’

Note: All SPEF files will

have same units

C_UNIT = 1e-15 Farad

R_UNIT = 1000 Ohm

Changed Nov-19-2012

Changed direction from ‘O’ to ‘I’

Changed direction from ‘O’ to ‘I’

Changed direction from ‘I’ to ‘O’

27

Explanation of RC data for net inp1
Net name and total

capacitance: This means

net ‘inp1’ has total lumped

capacitance of

5.4*C_UNIT = 5.4*(1e-15)

= 5.4e-15 Farad

*D_NET inp1 5.4

*CONN

*P inp1 I

*I u1:a I

*CAP

1 inp1 1.2

2 inp1:1 1.3

3 inp1:2 1.4

4 u1:a 1.5

*RES

1 inp1 inp1:1 3.4

2 inp1:1 inp1:2 3.5

3 inp1:2 u1:a 3.6

*END

Line # 16

17

18

19

20

21

22

23

24

25

26

27

28

29

Connectivity section contains I/O pins of the

net:
<pin-type> <name> <cell-pin-direction>

<pin-type>: *P or *I

<cell-pin-direction>: I or O

For net inp1:

a) inp1 pin is of type port (*P) (i.e. port on

the top module), and it is an input (I) of

top module
b) u1:a pin is of type internal (*I) (i.e. pin

a of cell instance u1 inside the top

module), and it is an input (I) of a cell (i.e.

output of the net)

Capacitance section:
<cap-number> <node> <value>

<cap-number>: 1,2,3, ...

a) There is 1.2*C_UNIT = 1.2e-15 Farad
capacitance from node inp1 to ground

b) There is 1.3e-15 Farad cap from node inp1:1

(internal node 1 of net inp1) to ground

c) There is 1.5e-15 Farad cap from pin a of cell u1

to ground (note that this is in addition to input

pin cap coming from cell library)

Resistance section:
<res-number> <node1> <node2> <value>

<res-number>: 1,2,3, ...

a) There is 3.4*R_UNIT = 3400 Ohm resistance between
node inp1 and node 1 of net inp1

b) There is 3.6*R_UNIT = 3600 Ohm resistance between
node 2 of net inp1 and pin a of cell instance u1

Changed Nov-19-2012

Changed direction from ‘O’ to ‘I’

Notes on names of nets, nodes, pins

in SPEF file

 All net names will match wire names from Verilog file

 A net connected to primary input/output port on the top module

will have the same name as the primary input/output port

 Nodes on net can be named three different ways
1. <port_name> when the node is a port on the top module

2. <cell_name>:<pin_name> when the node is a pin on an

internal cell instance

3. <net_name>:<integer> when the node is internal to the

net

28

Visualization of RC data for net inp1

29

1.2e-15

Farad

1.3e-15

Farad
1.4e-15

Farad

1.5e-15

Farad

3400 Ohm 3500 Ohm 3600 Ohm

inp1

u1

a

b

o

1 2

30

Spef Parser Helpers

 Provided C++ parsers:

 SpefParser class definition in parser_helper.h

 See test_spef_parser() function in

parser_helper.cpp for an example on how to use

this class.

31

Constraint (.sdc) File
 Describes timing and interface constraints for a block, including:

 clock period and clock input name

 input delay* – load-independent arrival time of the input
relative to the rising edge of the clock

 output delay – combinational delay from the output port to the
next sequential (this sequential is external to the benchmark)

 driving cells for inputs* – cell and pin names driving the input
and transition time (slew rate) at the input of the driving cell
(only one input cell will be used as driving cell)

 load capacitance for outputs

 Timing and capacitance units are taken from the technology
library (these are fixed as picosecond and femtoFarad)

 Max capacitance and max slew constraints are given in the
library

 *see next 3 slides for details about input delay and driving cell

32

inp1

inp2

ispd_clk

out

output load

capacitance

in01f80

o

o

in01f80

simple.sdc File Example
clock definition

create_clock -name mclk -period 50.0 [get_ports ispd_clk]

input delays

set_input_delay 0.0 [get_ports {inp1}] -clock mclk

set_input_delay 0.0 [get_ports {inp2}] -clock mclk

input drivers

set_driving_cell -lib_cell in01f80 -pin o [get_ports {inp1}] -input_transition_fall 80.0 -input_transition_rise 80.0

set_driving_cell -lib_cell in01f80 -pin o [get_ports {inp2}] -input_transition_fall 80.0 -input_transition_rise 80.0

output delays

set_output_delay 0.0 [get_ports {out}] -clock mclk

output loads

set_load -pin_load 4.0 [get_ports {out}]

clock label (mclk), clock

period (900) and port

name (ispd_clk)

input delays w.r.t. clock

(referred by label)

output delay w.r.t. clock

(referred by label)

driving cell/pin name

and transition time at

the cell input

output load capacitance

input transition

time

33

Constraint file (.sdc):

Input delay and driving cell
 Let us consider arrival time calculation at input port inp1, for which the following

is given in sdc-file:
 set_input_delay 0.0 [get_ports {inp1}] -clock mclk

 set_driving_cell -lib_cell in01f80 -pin o [get_ports {inp1}] -input_transition_fall 80.0 -input_transition_rise 80.0

 The real arrival time at port inp1 (ArrTimeinp1) is computed as the sum of:

 Load independent arrival time: Specified by set_input_delay command in sdc

 Incremental delay due to capacitive load: Specified by set_driving_cell in sdc

 Detailed formulas:

 ArrTimeinp1 = Load_Independent_ArrTimeinp1 + Incremental_Driver_Delayinp1

 Load_Independent_ArrTimeinp1: The value specified by set_input_delay in sdc

 Incremental_Driver_Delayinp1 = Delayin01f80(Loadinp1,DriverInputTrans) - Delayin01f80(0.0, DriverInputTrans)

 Delayin01f80(L, T): Delay of cell in01f80 for output load L and input transition T (based on delay LUT of in01f80)

 Loadinp1: Load at inp1 (the effective capacitance for net inp1, calculated from RC data from .spef file and input

capacitance of pin a of instance u1)

 DriverInputTrans: The input transition specified in the set_driving_cell command in sdc

 In this example:

 ArrTimeinp1 = 0.0 + Delayin01f80(Loadinp1, 80.0) - Delayin01f80(0.0, 80.0)

inp1

inp2

ispd_clk

in01f80

o

u1
a

b

o

input transition

time

34

Constraint file (.sdc):

Input slew and driving cell
 Transition times (corresponding to slew rates) at the input ports are load

dependent, and should be computed based on the driving cell

specifications in sdc:
 set_driving_cell -lib_cell in01f80 -pin o [get_ports {inp1}] -input_transition_fall 80.0 -input_transition_rise 80.0

 Detailed formulas:
 TransitionTimeinp1 = TTin01f80 (Loadinp1, DriverInputTrans)

 TTin01f80 (L, T): The transition time at the output pin of in01f80 for output load L and input transition T

(based on the slew LUT of in01f80)

 Loadinp1: Load at inp1 (the effective capacitance for net inp1, calculated from RC data from .spef file and

input capacitance of pin a of instance u1)

 DriverInputTrans: The input transition specified in the set_driving_cell command in sdc

 In this example:

 TransitionTimeinp1 = TTin01f80 (Loadinp1, 80.0)

inp1

inp2

ispd_clk

in01f80

o

u1

a

b

o

input transition

time

35

Sdc Parser Helpers

 Provided C++ parsers:

 SdcParser class definition in parser_helper.h

 See test_sdc_parser() function in parser_helper.cpp

for an example on how to use this class.

.lib File

 We use a single .lib file to describe the timing and

(leakage) power properties of all the standard

cells in the library.

 Much of the information is boilerplate needed for

Synopsys PrimeTime® to perform its timing

analysis.

 The .lib file consists of a header (which for sizing

purposes can be ignored), a specification of each

cell, and then a footer (which can also be

ignored.)

36

contest.lib File Example (header)

 wire_load(10X10) {

 resistance : 0.00 ;

 capacitance : 0.00 ;

 area : 0.00 ;

 slope : 0.00 ;

 fanout_length(1, 1.0000);

 fanout_length(2, 1.0000);

 fanout_length(3, 1.0000);

 fanout_length(4, 1.0000);

 fanout_length(5, 1.0000);

 fanout_length(6, 1.0000);

 fanout_length(7, 1.0000);

 fanout_length(8, 1.0000);

 fanout_length(9, 1.0000);

 }

 default_wire_load_mode : enclosed ;

 default_max_transition : 300.00 ;

 scaling_factors("synop_lib_average_factors") {

 k_process_cell_rise : 1.0000 ; /* default */

 k_process_cell_fall : 1.0000 ; /* default */

 k_process_rise_transition : 1.0000 ; /* default */

 k_process_fall_transition : 1.0000 ; /* default */

 k_process_setup_rise : 0.0000 ; /* default */

 k_process_setup_fall : 0.0000 ; /* default */

 k_process_hold_rise : 0.0000 ; /* default */

 k_process_hold_fall : 0.0000 ; /* default */

 k_process_recovery_rise : 0.0000 ; /* default */

 k_process_recovery_fall : 0.0000 ; /* default */

 k_process_removal_rise : 0.0000 ; /* default */

 k_process_removal_fall : 0.0000 ; /* default */

 k_process_min_pulse_width_low : 0.0000 ; /* default */

 k_process_min_pulse_width_high : 0.0000 ; /* default */

 }

 lu_table_template (delay_outputslew_template_7X8) {

 variable_1 : total_output_net_capacitance ;

 variable_2 : input_net_transition ;

 index_1 ("1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6");

 index_2 ("2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7");

 }

 lu_table_template (relational_table_template_2X2X2) {

 variable_1 : related_pin_transition ;

 variable_2 : constrained_pin_transition ;

 variable_3 : related_out_total_output_net_capacitance ;

 index_1 ("1.0, 1.1");

 index_2 ("2.0, 2.1");

 index_3 ("3.0, 3.1");

 }

The green fields might

be important: the slope

(transition time) limit,

and the order of the

variables for the timing

tables.

37

/*

* Library File Format

* Copyright © 2011, Synopsys, Inc. and others. All Rights reserved.

*/

library ("contest") {

 revision : 3.0.0 ;

 delay_model : table_lookup ;

 comment : "ISPD Contest Mock Library" ;

 library_features(report_delay_calculation, report_power_calculation);

 time_unit : "1ps" ;

 voltage_unit : "1V" ;

 current_unit : "1mA" ;

 leakage_power_unit : 1uW ;

 capacitive_load_unit(1,ff);

 pulling_resistance_unit : "1kohm" ;

 default_fanout_load : 1.0 ;

 default_inout_pin_cap : 0.0 ;

 default_input_pin_cap : 0.0 ;

 default_output_pin_cap : 0.0 ;

 slew_lower_threshold_pct_rise : 20.0 ;

 slew_lower_threshold_pct_fall : 20.0 ;

 slew_upper_threshold_pct_rise : 80.0 ;

 slew_upper_threshold_pct_fall : 80.0 ;

 input_threshold_pct_rise : 50.0 ;

 input_threshold_pct_fall : 50.0 ;

 output_threshold_pct_rise : 50.0 ;

 output_threshold_pct_fall : 50.0 ;

 nom_voltage : 0.7 ;

 nom_temperature : 70.0 ;

 nom_process : 1.0 ;

 in_place_swap_mode : match_footprint ;

 slew_derate_from_library : 1 ;

 default_cell_leakage_power : 0.0 ;

 default_leakage_power_density : 0.0 ;

 operating_conditions("typical_1.00") {

 process : 1.00 ;

 temperature : 70.0 ;

 voltage : 0.7 ;

 tree_type : "balanced_tree" ;

 }

 default_operating_conditions : "typical_1.00" ;

contest.lib File Example (sizeable

cell)
/* Begin cell: na02s01 */

 cell ("na02s01") {

 cell_leakage_power : 2.00;

 area : 2.00 ;

 cell_footprint : na02 ;

 pin ("o") {

 direction : output ;

 capacitance : 0.0 ;

 function : "!a+!b" ;

 max_capacitance : 6.40 ;

 min_capacitance : 0.00 ;

 timing() {

 cell_fall ("delay_outputslew_template_7X8") {

 index_1 ("0.00,0.40,0.80,1.60,3.20,6.40,12.80") ;

 index_2 ("5.00,30.00,50.00,80.00,140.00,200.00,300.00,500.00") ;

 values (\

 "51.00, 56.00, 60.00, 66.00, 78.00, 90.00, 110.00, 150.00",\

 "55.00, 60.00, 64.00, 70.00, 82.00, 94.00, 114.00, 154.00",\

 "59.00, 64.00, 68.00, 74.00, 86.00, 98.00, 118.00, 158.00",\

 "67.00, 72.00, 76.00, 82.00, 94.00, 106.00, 126.00, 166.00",\

 "83.00, 88.00, 92.00, 98.00, 110.00, 122.00, 142.00, 182.00",\

 "115.00, 120.00, 124.00, 130.00, 142.00, 154.00, 174.00, 214.00",\

 "179.00, 184.00, 188.00, 194.00, 206.00, 218.00, 238.00, 278.00"\

);

 }

 cell_rise ("delay_outputslew_template_7X8") {

<table syntax removed>

 }

 fall_transition ("delay_outputslew_template_7X8") {

<table syntax removed>

 }

 rise_transition("delay_outputslew_template_7X8") {

<table syntax removed>

 }

 timing_sense : negative_unate ;

 related_pin : "a" ;

 }

/* End timing */

 timing() {

 cell_fall ("delay_outputslew_template_7X8") {

<table syntax removed>

 }

 cell_rise ("delay_outputslew_template_7X8") {

<table syntax removed>

 }

 fall_transition ("delay_outputslew_template_7X8") {

<table syntax removed>

 }

 rise_transition ("delay_outputslew_template_7X8") {

<table syntax removed>

 }

 timing_sense : negative_unate ;

 related_pin : "b" ;

 }

/* End timing */

 }

/* End pin */

 pin ("a") {

 capacitance : 1.00 ;

 direction : input ;

 }

/* End pin */

 pin ("b") {

 capacitance : 1.00 ;

 direction : input ;

 }

/* End pin */

 }

/* End cell: na02s01 */

Leakage value for cell

Swapping

group
Output cap (always 0.0;

contribution to delay

included in delay tables)

Cap limit

The library contains only

inverting gates
Timing arcs

from pin “a”

to pin “o”

Input capacitance

Cell name

The rows

(index_1)

correspond

to different

caps; the

columns

(index_2)

to different

slopes

38

contest.lib File Example (fixed

sequential)
/* Begin cell: ms00f80 */

 cell ("ms00f80") {

 ff (iq,iqn) {

 next_state : "d" ;

 clocked_on : "ck" ;

 }

 cell_leakage_power : 0.0;

 area : 0.0 ;

 cell_footprint : ms00 ;

 pin ("o") {

 direction : output ;

 capacitance : 0.0 ;

 function : "iq" ;

 max_capacitance : 2048.00 ;

 min_capacitance : 0.00 ;

 timing() {

 cell_fall ("delay_outputslew_template_7X8") {

 index_1 ("0.00,128.00,256.00,512.00,1024.00,2048.00,4096.00") ;

 index_2 ("5.00,30.00,50.00,80.00,140.00,200.00,300.00,500.00") ;

 values (\

 "16.00, 16.00, 16.00, 16.00, 16.00, 16.00, 16.00, 16.00",\

 "21.00, 21.00, 21.00, 21.00, 21.00, 21.00, 21.00, 21.00",\

 "26.00, 26.00, 26.00, 26.00, 26.00, 26.00, 26.00, 26.00",\

 "36.00, 36.00, 36.00, 36.00, 36.00, 36.00, 36.00, 36.00",\

 "56.00, 56.00, 56.00, 56.00, 56.00, 56.00, 56.00, 56.00",\

 "96.00, 96.00, 96.00, 96.00, 96.00, 96.00, 96.00, 96.00",\

 "176.00, 176.00, 176.00, 176.00, 176.00, 176.00, 176.00, 176.00"\

);

 }

 cell_rise ("delay_outputslew_template_7X8") {

<table syntax removed>

 }

 fall_transition ("delay_outputslew_template_7X8") {

<table syntax removed>

 }

 rise_transition ("delay_outputslew_template_7X8") {

<table syntax removed>

 }

 timing_sense : non_unate ;

 timing_type : rising_edge ;

 related_pin : "ck" ;

 }

/* End timing */

}

/* End pin */

pin ("ck") {

 clock : true ;

 capacitance : 0.0 ;

 direction : input ;

 }

/* End pin */

 pin ("d") {

 capacitance : 1.00 ;

 nextstate_type : data ;

 direction : input ;

 timing() {

 timing_type : setup_rising ;

 related_pin : ck ;

 related_output_pin : o ;

 rise_constraint ("relational_table_template_2X2X2") {

 index_1 ("5.00,500.00") ;

 index_2 ("5.00,500.00") ;

 index_3 ("5.00,500.00") ;

 values (\

 "0.00, 0.00",\

 "0.00, 0.00",\

 "0.00, 0.00",\

 "0.00, 0.00"\

);

 }

 fall_constraint ("relational_table_template_2X2X2") {

<table syntax removed>

 }

 }

/* End timing */

 timing() {

 timing_type : hold_rising ;

 related_pin : ck ;

 related_output_pin : o ;

 rise_constraint ("relational_table_template_2X2X2") {

<table syntax removed>

 }

 fall_constraint ("relational_table_template_2X2X2") {

<table syntax removed>

 }

 }

/* End timing */

 }

/* End pin */

 }

/* End cell: ms00f80 */

Swapping

group (only

one cell in

group)
Output cap (always 0.0;

contribution to delay

included in delay tables)

Cap limit

Appropriate annotations

for a rising-edge triggered

flip flop

Setup time is always 0

(complex 3D tables can

be ignored.)

Cell name

The hold time is also zero.

Clock cap is always 0.

Data pin cap

. Clock to

output delay

and slope are

independent

of clock slope.

39

Timing arcs

from pin

“ck” to pin

“o”

contest.lib File Example (footer)
/* Begin cell: vcc */

/* Description : vcc */

 cell ("vcc") {

 dont_use : true ;

 dont_touch : true ;

 area : 0.00 ;

 cell_footprint : vcc ;

 pin(y) {

 direction : output ;

 function : " 1 " ;

 max_capacitance : 100000000.000 ;

 }

/* End pin */

 }

/* End cell: vcc */

/* Begin cell: vss */

/* Description : vss */

 cell ("vss") {

 dont_use : true ;

 dont_touch : true ;

 area : 0.00 ;

 cell_footprint : vss ;

 pin(y) {

 direction : output ;

 function : " 0 " ;

 max_capacitance : 100000000.000 ;

 }

/* End pin */

 }

/* End cell: vss */

}

Define cells to produce

constant values. Should

be able to ignore these.

40

Lib Parser Helpers
 Provided C++ parsers:

 LibParser class definition in parser_helper.h

 See test_lib_parser() function in parser_helper.cpp for an
example on how to use this class.

 Additional class definitions in parser_helper.h to store the
extracted data:

 LibParserLUT: Delay or slew look up table

 LibParserTimingInfo: Timing arc data

 LibParserPinInfo: Pin data

 LibParserCellInfo: Cell data

41

42

Sizer Output (.sizes) File
 Optimization engine output file that includes the

size/type for each cell

 File format:
 Must contain n lines where n is the number of cell

instances in the benchmark, one line per instance
 Each line must have two strings that are separated by a

space in the middle
 <full-instance-name> <library-cell-name>

 Each line must end with end-of-line (\n) character
 This includes the last line in the file

 There must not be any empty lines in the file
 Example output for the given Verilog example simple.v:

u1 na02s20

f1 ms00f80

u2 in01s20

1

2

3

4

Line #

PrimeTime® output (.timing file)
 This applies only if you are using our blackbox API (see Option 2

in Sizer/Timer Interaction section) to call PrimeTime®

 Contains timing information (slacks, transition times, and arrival

times) for pins (inputs/outputs of internal cells) and ports

(inputs/outputs of top module)

 There is no particular order in which the pins/ports will be listed

 Timing information will only be printed for requested pins/ports

(see Option 2 in Sizer/Timer interaction section)

 Each line will have this format:
<pin or port name> <riseSlack> <fallSlack> <riseTT> <fallTT> <riseAT> <fallAT>

<pin or port name>: <cell-name>/<pin-name> for inputs/outputs of internal cells

 <port-name> for inputs/outputs of top module

TT: transition time, AT: arrival time

 You may use the provided C++ parser to parse the .timing file (or

you can write your own parser) 43

Changed Nov-19-2012

PrimeTime® output (.ceff file)
 This applies only if you are using our blackbox API (see Option 2

in Sizer/Timer Interaction section) to call PrimeTime®

 Contains effective capacitance for pins (outputs of internal cells)

and ports (inputs of top module)

 There is no particular order in which the pins/ports will be listed

 Effective capacitance will only be printed for requested pins/ports

(see Option 2 in Sizer/Timer interaction section)

 Each line will have this format:
<pin or port name> <riseCeff> <fallCeff>

<pin or port name>: <cell-name>/<pin-name> for inputs/outputs of internal cells

 <port-name> for inputs/outputs of top module

 You may use the provided C++ parser to parse the .ceff file (or

you can write your own parser)

44

Added Nov-19-2012

45

.timing/.ceff Parser Helpers

 Provided C++ parsers:

 TimingParser class definition in parser_helper.h

 See test_timing_parser() function in parser_helper.cpp for

an example on how to use this class.

 CeffParser class definition in parser_helper.h

 See test_ceff_parser() function in parser_helper.cpp for an

example on how to use this class.

Added Nov-19-2012

46

Sizer Executable
 Must be called sizer

 Must take exactly two arguments as input, the contest root directory and

benchmark name

 We will invoke the sizer by calling this:

sizer <ispd_contest_root> <benchmark>

 Example:

sizer ./ simple

 Before calling the timer, you must write out .int.sizes file (same format

as .sizes file) containing the cell sizes of all cell instances (timer reads

this file)

 simple/simple.int.sizes for our example

 You must output the final sizes for all cell instances in .sizes file

 simple/simple.sizes for our example

Sizer/Timer Interaction

48

Sizer/Timer Interaction

 If you chose to implement your own timer, go to

Option 1 (see following slides)

 If you chose to use Synopsys PrimeTime® as

your timer using the API we provide you, go to

Option 2 (see following slides)

 If you choose to use Synopsys PrimeTime® as

your timer using your own scripts and API, go to

Option 3 (see following slides)

49

Option 1: Sizer/Timer Flow if you are

using your own timer

Sizer

<benchmark>.sizes

* Other names and brands may be claimed as the property of others.

Start sizer:
sizer

$ISPD_CONTEST_ROOT

<benchmark>

Main entry

point

Step 1

Sizer must output

<benchmark>.sizes at

the end

Design information

.v, .spef, .lib, .sdc files

Notes:

1. Your sizer must look in the directory $ISPD_CONTEST_ROOT/<benchmark>, simple in our

case, for design information (simple.v, simple.spef, and simple.sdc)

2. Your sizer must look in the $ISPD_CONTEST_ROOT/lib directory for cell library file

contest.lib

3. Your sizer must output $ISPD_CONTEST_ROOT/<benchmark>/<benchmark>.sizes,

simple.sizes in our example

50

Using Option 1
 Directory organization

1. Make a directory (let’s call it ‘ispd2013’). You can pick whatever name you

like. setenv ISPD_CONTEST_ROOT ispd2013

2. Save your sizer under the same directory

3. Save all design benchmark files (.v, spef, .sdc) provided by organizers in a

directory whose name is the benchmark name (e.g., the “simple”

benchmark in the earlier slide). Save this directory under

$ISPD_CONTEST_ROOT.

4. Save library file contest.lib provided by organizers under the lib directory

under $ISPD_CONTEST_ROOT.

5. cd to $ISPD_CONTEST_ROOT.

 Running the benchmark

1. Call the sizer:
sizer $ISPD_CONTEST_ROOT simple

 At the end of final sizing

1. Write out $ISPD_CONTEST_ROOT/simple/simple.sizes file for the

benchmark

51

Option1: Directory hierarchy example for

‘simple’ benchmark

 ispd2013/sizer

 ispd2013/lib/contest.lib

 ispd2013/simple/simple.v

 ispd2013/simple/simple.spef

 ispd2013/simple/simple.sdc

 ispd2013/simple/simple.sizes (to be written by

sizer)

Example Invocation:
sizer $ISPD_CONTEST_ROOT simple

52

Option 2: Sizer/Timer Flow if you are using

PrimeTime® for timing using API we provide you

 We will provide all the utility scripts and helper functions to make
this easy for you

 You may call PrimeTime® directly from your code, but then it is
your responsibility to make sure it works properly.

 At the high level, we will provide you a C++ API to interact with
PrimeTime® using file I/O
 You must compile this C++ file into your final static binary

 You are free to use the C++ API as is or make modifications
 If you make modifications, you must ensure proper interaction

 The high level C++ API will interact with a timer process (running
in parallel) using file I/O
 For contest evaluation, the process will be invoked using the

same TCL files we provide you

 You must not modify any TCL files we provide you. You will not be
submitting TCL files (we will use our versions, which we have
already provided to you).

53

timer.tcl

 Synopsys

 PrimeTime®

Option 2: Flow diagram

* Other names and brands may be claimed as the property of others.

Sizer

Sizer Timer

C
+

+

A
P

I

Provided by

organizers

TCL

Script

Start timer and pass it benchmark name and

path to PrimeTime® executable:
tcl timer.tcl pt_shell

Step 1

Start sizer and pass it

benchmark name:
sizer

$ISPD_CONTEST_ROOT

simple

Step 2

Sizer must output

<benchmark>.sizes at

the end

<benchmark>.sizes

Design information

.v, .spef, .lib, .sdc files

Provided by

contestants

Note: You are not allowed to make any

changes on this side

Sizer must output

<benchmark>.sizes at the end

Start sizer and pass it

benchmark name:
sizer

$ISPD_CONTEST_ROOT

simple

54

timer.tcl

 Synopsys

 PrimeTime®

Option 2: Flow diagram (details)

* Other names and brands may be claimed as the property of others.

Sizer

Sizer Timer

C
+

+

A
P

I TCL

Script

Start timer and pass it benchmark name and

path to PrimeTime® executable:
tcl timer.tcl pt_shell

Step 1

<benchmark>.sizes

Design information

.v, .spef, .lib, .sdc files

Note: You are not allowed to make any

changes on this side

Notes:

1. Your sizer must look in the directory $ISPD_CONTEST_ROOT/<benchmark>, simple in our case, for design

information (simple.v, simple.spef, and simple.sdc)

2. Your sizer must look in the $ISPD_CONTEST_ROOT/lib directory for cell library file contest.lib

3. Your sizer must output $ISPD_CONTEST_ROOT/<benchmark>/<benchmark>.int.sizes,

simple/simple.int.sizes in our example, before each call to run timing through C++ API and write out

.timing_pins and .ceff_pins files to request timing/ceff data from timer

4. At the end of each timing run, timer will output

$ISPD_CONTEST_ROOT/<benchmark>/<benchmark>.timing, simple/simple.timing in our example and

$ISPD_CONTEST_ROOT/<benchmark>/<benchmark>.ceff, simple/simple.ceff in our example

5. At the end of your sizer execution, you must output the final sizes in

$ISPD_CONTEST_ROOT/<benchmark>/<benchmark>.sizes file

updated cell sizes

(.int.sizes file), ports/pins

for timing (.timing_pins)

and ceff (.ceff_pins)

requests

Timing (.timing) and

 Ceff (.ceff) information

Step 2

Changed Nov-19-2012

55

Procedure for Timer/Sizer Interaction
 After timer.tcl and sizer are both invoked,

 Step 1. timer.tcl will run and start Synopsys PrimeTime®, which will keep running

 Step 2. The provided TCL script (running inside PrimeTime® TCL shell) will monitor if the

file __TCMD_RUNTIMER_ exists in <benchmark> directory

 Step 3. If __TCMD_RUNTIMER_ exists, the TCL script will read cell sizes from

$ISPD_CONTEST_ROOT/<benchmark>/<benchmark>.int.sizes and run timing analysis

with the new sizes

 Step 4. At the end of the timing run inside PrimeTime®

 TCL script will read $ISPD_CONTEST_ROOT/<benchmark>/<benchmark>.timing_pins and

$ISPD_CONTEST_ROOT/<benchmark>/<benchmark>.ceff_pins files (both written by sizer) to

identify where timing/ceff information is requested by the sizer

 a file named __SIZERCMD_TIMERDONE_ , the timing information in the

$ISPD_CONTEST_ROOT/<benchmark>/<benchmark>.timing file (e.g., simple/simple.timing), and

the effective capacitance in $ISPD_CONTEST_ROOT/<benchmark>/<benchmark>.timing file (e.g.,

simple/simple.ceff) will be written out.

 At any moment during the entire above process, if there is an error, an empty file called

__SIZERCMD_TIMERERROR_ will be written out in

$ISPD_CONTEST_ROOT/<benchmark> directory

 At all moments, timer.tcl will keep monitoring __TCMD_SHUTDOWN_ in the benchmark

directory. If the file exists then the timer process exits.

 For easy interaction, use high level functions in the C++ API that

we have provided (timer_interface.h)

Changed Nov-19-2012

Format of .timing_pins and .ceff_pins

files to be written by sizer
 These files are to be used by sizer to request timing/ceff information for specific

ports/pins from PrimeTime®

 We have done this to give you freedom to request timing and effective capacitance at

some or all ports/pins

 Sometimes, PrimeTime® may not report timing/ceff at the port/pin you have

requested. In this case, no information will be printed for that port/pin in the

output .timing/.ceff files.

 Example: effective capacitance only exists for outputs of cells (top module inputs are

driven by cell mentioned in .sdc file so effective capacitance exists for top module input

ports also)

 Format of .timing_pins and .ceff_pins files:

 Each line must contain the port/pin name for which you want the information:

 <pin or port name 1>

 <pin or port name 2>

 ...

 where
 <pin or port name>: <cell-name>/<pin-name> for inputs/outputs of

 internal cells

 <port-name> for inputs/outputs of top module

56

Added Nov-19-2012

57

Using Option 2
 Directory organization

1. Make a directory (let’s call it ‘ispd2013’). You can pick whatever name you like.

setenv ISPD_CONTEST_ROOT ispd2013

2. Save all .tcl files (timing.tcl and pt_scripts.tcl) provided by organizers under the

directory ($ISPD_CONTEST_ROOT) that you created above

3. Save your sizer under the same directory

4. Save all design benchmark files (.v, .spef, .sdc) provided by organizers in a directory

whose name is the benchmark name (e.g., the “simple” benchmark in the earlier slide).

Save this directory under $ISPD_CONTEST_ROOT.

5. Save library file (contest.lib) provided by organizers under

$ISPD_CONTEST_ROOT/lib.

6. cd to $ISPD_CONTEST_ROOT.

 Running the benchmark

1. Alias path to your TCL interpreter

Example:
alias tcl /usr/bin/tcl

2. Call the timer by passing it the benchmark name and the path to PrimeTime®

executable and the benchmark name

 Example:
tcl timer.tcl /usr/install/primetime/pt_shell &

3. PrimeTime® log will be saved in the current directory (pt.log file)

58

Option 2: Directory hierarchy example for

‘simple’ benchmark if using PrimeTime®
 ispd2013/sizer

 ispd2013/pt_scripts.tcl

 ispd2013/timer.tcl

 ispd2013/lib/contest.lib

 ispd2013/simple/simple.v

 ispd2013/simple/simple.spef

 ispd2013/simple/simple.sdc

 ispd2013/simple/simple.timing (written by PrimeTime®)

 ispd2013/simple/simple.ceff (written by PrimeTime®)

 ispd2013/simple/simple.int.sizes (to be written by sizer)

 ispd2013/simple/simple.timing_pins (to be written by sizer)

 ispd2013/simple/simple.ceff_pins (to be written by sizer)

 ispd2013/simple/simple.sizes (to be written finally by sizer, will be used for
evaluation)

Example Invocation:
alias tcl /usr/bin/tcl

cd ispd2013

tcl timer.tcl <full-path-to-pt_shell>

Changed Nov-19-2012

Added

Added

Added

Added

59

Option 3: Sizer/Timer Flow if you want to

use your own scripts/PrimeTime® calls

Sizer

<benchmark>.sizes

* Other names and brands may be claimed as the property of others.

Start sizer:
sizer

$ISPD_CONTEST_ROOT

<benchmark>

Main entry

point

Step 1

Sizer must output

<benchmark>.sizes at

the end

Design information

.v, .spef, .lib, .sdc files

Notes:

1. Your sizer must look in the directory $ISPD_CONTEST_ROOT/<benchmark>, simple in our

case, for design information (simple.v, simple.spef, and simple.sdc)

2. Your sizer must look in the $ISPD_CONTEST_ROOT/lib directory for cell library file

contest.lib

3. Your sizer must output $ISPD_CONTEST_ROOT/<benchmark>/<benchmark>.sizes,

simple.sizes in our example

4. Use $PRIMETIME_EXECUTABLE environment variable to access PrimeTime® executable

from within your binary

60

Using Option 3
 Directory organization

1. Make a directory (let’s call it ‘ispd2013’). You can pick whatever name you

like. setenv ISPD_CONTEST_ROOT ispd2013

2. Save your sizer under the same directory

3. Save all design benchmark files (.v, spef, .sdc) provided by organizers in a

directory whose name is the benchmark name (e.g., the “simple”

benchmark in the earlier slide). Save this directory under

$ISPD_CONTEST_ROOT.

4. Save library file contest.lib provided by organizers under the lib directory

under $ISPD_CONTEST_ROOT.

5. cd to $ISPD_CONTEST_ROOT.

 Running the benchmark

1. Call the sizer:
sizer $ISPD_CONTEST_ROOT simple

 At the end of final sizing

1. Write out $ISPD_CONTEST_ROOT/simple/simple.sizes file for the

benchmark

61

Option3: Directory hierarchy example for

‘simple’ benchmark

 ispd2013/sizer

 ispd2013/lib/contest.lib

 ispd2013/simple/simple.v

 ispd2013/simple/simple.spef

 ispd2013/simple/simple.sdc

 ispd2013/simple/simple.sizes (to be written by

sizer)

Example Invocation:
sizer $ISPD_CONTEST_ROOT simple

62

Contest Organizers

Chirayu Amin (Timing) chirayu.s.amin _at_ intel com

Andrey Ayupov (Benchmarks) andrey.ayupov _at_ intel com

Steven Burns (Cell Library) steven.m.burns _at_ intel com

Mustafa Ozdal (Contest chair) mustafa.ozdal _at_ intel com

Gustavo Wilke (Evaluations) gustavo.r.wilke _at_ intel com

Cheng Zhuo (Communications) cheng.zhuo _at_ intel com

