ISPD 2013 Discrete Gate Sizing Contest

Speakers: Mustafa Ozdal, Gustavo Wilke

Organizers: Chirayu Amin, Andrey Ayupov, Steve Burns, Cheng Zhuo

Intel Corporation, Hillsboro OR

People

Contest Organizers

Cheng Zhuo

Gustavo Wilke

Steve Burns

Andrey Ayupov

Chirayu Amin

Mustafa Ozdal

Responsibilities

Communications + timing scripts

Evaluations

Cell library

Benchmarks

Timing models

Contest organization + parsers

Special Thanks To:

- Troy Wood, Robert Hoogenstryd (Synopsys);
- □ Ted Schroeder, Jack Ho, Dan McMullen, Jack Erickson (Cadence);
- Noel Menezes, Jason Xu, Alaena Young, Chris Forn, Kabiru Ahmed, Rohit Vachher, Shishpal Rawat (Intel);

Participation Statistics

25 initial registrations

Asia: 14 teams

North America: 9 teams

South America: 1 team

Europe: 1 team

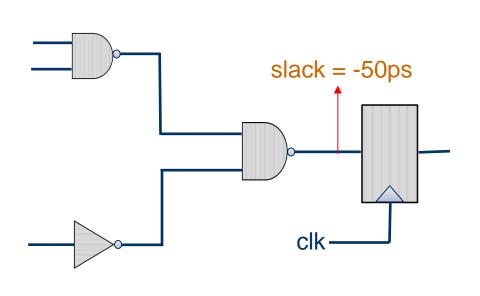
Overall 8 different countries

12 alpha binary submissions

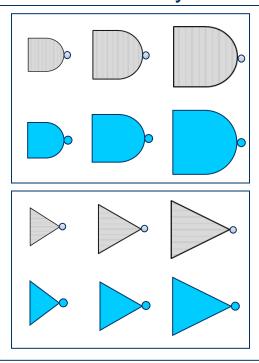
9 final submissions

ISPD 2013 Contest Overview

Discrete Gate Sizing Contest: Background

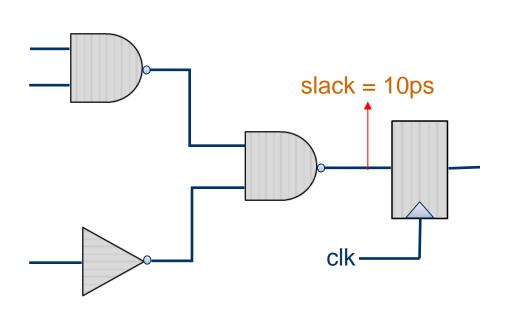

- Gate sizing contests in ISPD 2012 & 2013
 - ISPD contests are traditionally organized 2 years in a row.

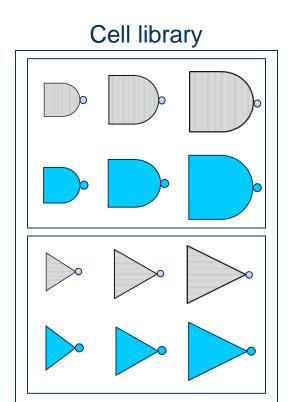
- Major changes compared to the ISPD 2012 Contest:
 - A realistic distributed RC model for interconnect
 - More challenging benchmarks
 - More emphasis on runtime in the evaluation metrics


Discrete Gate Sizing Contest: An Overview

- Simultaneous gate sizing and Vt assignment to optimize power under performance constraints
- Problem formulation
 - Inputs:
 - Standard cell library
 - Netlist
 - Timing constraints
 - Interconnect parasitics
 - Outputs:
 - Cell sizes and types
 - Objective:
 - Satisfy all performance constraints
 - Minimize total leakage power
- An industrial timing engine used as the reference timer

Gate Sizing and Threshold Voltage Selection





- Choose the cell sizes and device types from the library such that:
 - All timing constraints are satisfied
 - Total power is minimized

Gate Sizing and Threshold Voltage Selection

- Choose the cell sizes and device types from the library such that:
 - All timing constraints are satisfied
 - Total power is minimized

Contest Objectives

- Main objective: Expose industrial challenges in the gate sizing problem to academia
- Common industrial challenges:
 - Discrete cell sizes
 - Continuous optimization + rounding: typically suboptimal
 - Non-convex cell timing models
 - Due to transistor folding in the layout, etc.
 - Slew dependencies and constraints
 - Realistic interconnect models
 - Scalability for large design sizes
 - Complex timing constraints
 - Multiple clock domains, false paths

captured in the contest

not captured in the contest

Benchmark Features

- Each benchmark circuit consists of:
 - A netlist
 - Structured verilog format
 - Sanitized (no hierarchy, no buses, no unconnected pins, etc.)
 - Interconnect parasitics
 - **IEEE SPEF format**
 - Distributed RC model
- Timing constraints
 Synopsys Design Constraints (SDC) format
 - Single clock period, no false paths, no latches
 - Circuit interface (driving cells at PIs, loads at POs, etc.)
- Standard industrial formats
- C++ parser helpers provided by the organizers

Benchmark Creation: Netlists

- 4 netlists from the ISPD 2012 Contest
 - usb_phy
 - pci_bridge32
 - des_perf
 - netcard

(derived from IWLS-2005)

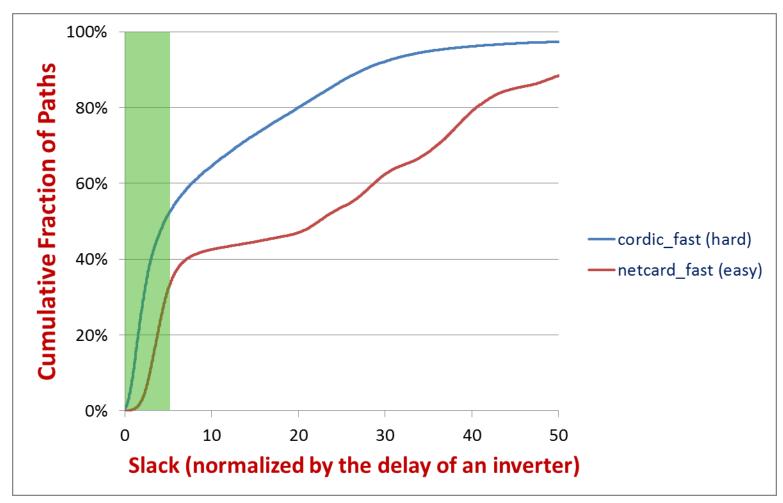
- 4 netlists created using high level and logic synthesis tools
 - We implemented 4 algorithms in SystemC
 - cordic: CORDIC sine/cosine functions
 - fft: Fast-Fourier transform
 - matrix_mult: Matrix multiplication
 - edit_dist: Dynamic-programming based edit distance algorithm
 - Cadence® C-to-Silicon Compiler to generate the RTL
 - Cadence® RTL Compiler to generate the netlists

Benchmark Creation: Parasitics

All netlists were placed and routed to generate realistic parasitics.

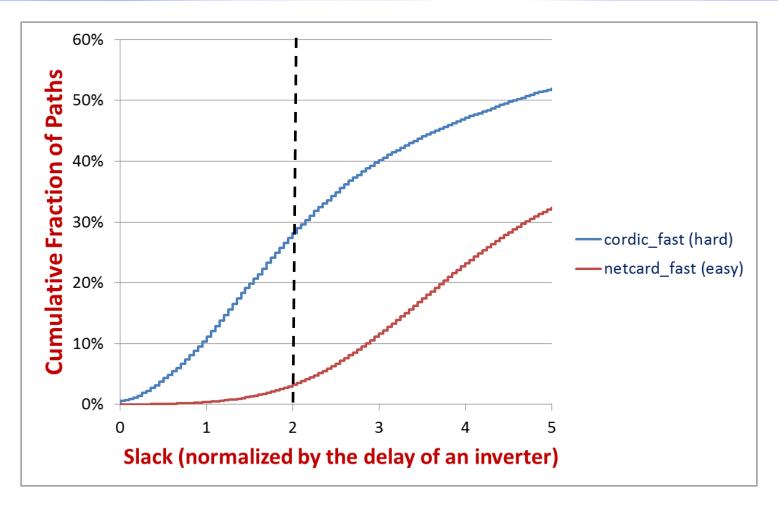
Cadence® Encounter Digital Implementation System used.

Special thanks to Ted Schroeder, Jack Ho, Dan McMullen, and Jack Erickson for enabling Cadence® tool use and valuable support!


Benchmark Creation: Timing Constraints

All netlists were sized with varying clock frequencies.

- Two clock frequencies with feasible results were chosen:
 - Fast corner. for high-performance designs
 - Slow corner. for low-power designs


- Overall, 16 different benchmarks generated.
 - 8 designs with 2 corners each

Example: Path Distribution after Sizing

More near-critical paths in the new benchmarks

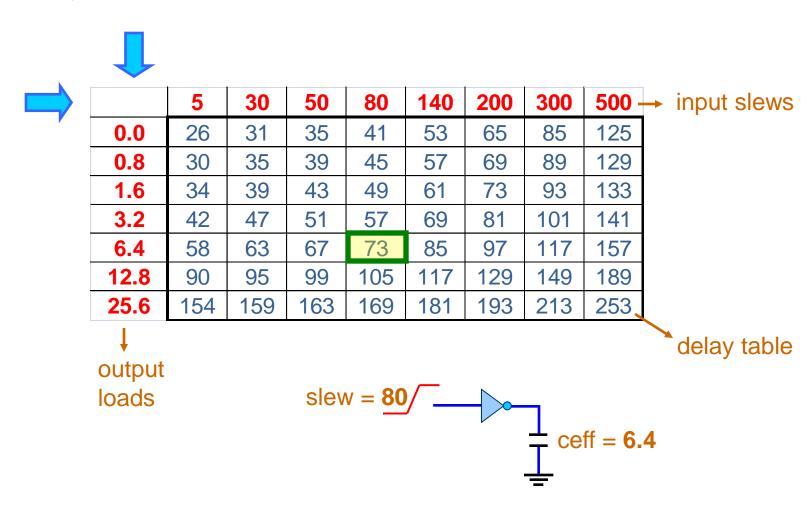
Example (cont'd): Zoom-In to Critical Paths

Many more near-critical paths for cordic_fast

Statistics for Evaluation Benchmarks

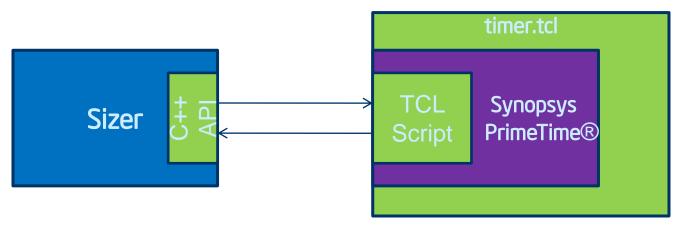
	Р	ins	Cells			
Benchmark	In	Out	Comb	Seq	Total	
usb_phy	15	19	510	98	608	
pci_bridge32	160	201	28K	3K	31K	
des_perf	234	140	104K	9К	113K	
netcard	1836	10	884K	98K	982K	
cordic	34	64	42K	1K	43K	
fft	1026	1026	31K	2K	33K	
matrix_mult	3202	1600	153K	3K	156K	
edit_dist	2562	12	121K	6K	127K	

Each netlist has 2 different clock periods (fast and slow)


Standard Cell Library

- Cell library created specifically for the gate sizing contest
 - Realistic non-convex timing models
 - Realistic discrete levels
 - The same library used for both ISPD'12 and ISPD'13 contests
- 11 combinational functions + 1 flip flop

- For each combinational cell family:
 - 30 different cell types/sizes:
 - 3 threshold voltages (Vt)
 - 10 sizes for each Vt
- Synopsys Liberty™ format with lookup tables for delay and slew


Cell Library: Delay and Slew Tables

Delay and output slew defined as a function of input slew and output loads

Timing Infrastructure

- Synopsys PrimeTime® used for final evaluations
- Contestants had 3 choices:
 - 1. Implement own STA
 - 2. Call Synopsys PrimeTime® using the infrastructure we provided:

3. Implement own scripts for Synopsys PrimeTime®

Special thanks to Troy Wood and Robert Hoogenstryd from Synopsys for providing academic licenses to Synopsys PrimeTime[®] and valuable support!

ISPD 2013 Contest Evaluation

Contest Evaluation

- Basic evaluation metrics
 - Violations
 - Power
 - Runtime

- Two separate rankings
 - Primary: Quality
 - Secondary: Tradeoff between quality and run time

Evaluation Metrics: Violations

- Violations are divided into three different types
 - Negative slack (ps)
 - Sum of violations at PO and sequential inputs
 - Slew (ps)
 - Sum of violations at PO and cell input pins
 - Maximum capacitance (fF)
 - Sum of violations at cell output pin
- All benchmarks can be sized without any violations

Evaluation Metrics: Power

- Only leakage power is considered
- Total leakage power value is given by the sum of the leakage power for each cell

Evaluation Metrics: Runtime

- Runtime is the wall clock time from the beginning to the end of the execution of the submitted binary
- All jobs running after the runtime limit is reached were killed

Runtime limit =
$$3h + 1h \times Roundup\left(\frac{\# gates}{40K}\right)$$

benchmark	runtime (h)
usb_phy	4
pci_bridge32	4
des_perf	6
netcard	28
cordic	5
fft	4
matrix_mult	7
edit_dist	7

- Machine specification
 - 16 cores available for parallel execution
 - 49152Mb RAM

Primary Metric: Quality

- The ranking metric for a benchmark is defined in lexicographic order as:
 - First: ∑violations
 - Second: ∑power (when violations are tied)
 - Third: Runtime (when violations and power are tied)
- Sum of the ranks for each benchmark defines the final score for each team
 - The lowest rank sum wins the contest!

Secondary Metric: Quality/Runtime

- Encourage multi-threading and optimization efficiency
- Runtime limits are reduced to 1/5 of the original limits
- All the solutions with the same number of violations are ranked by:

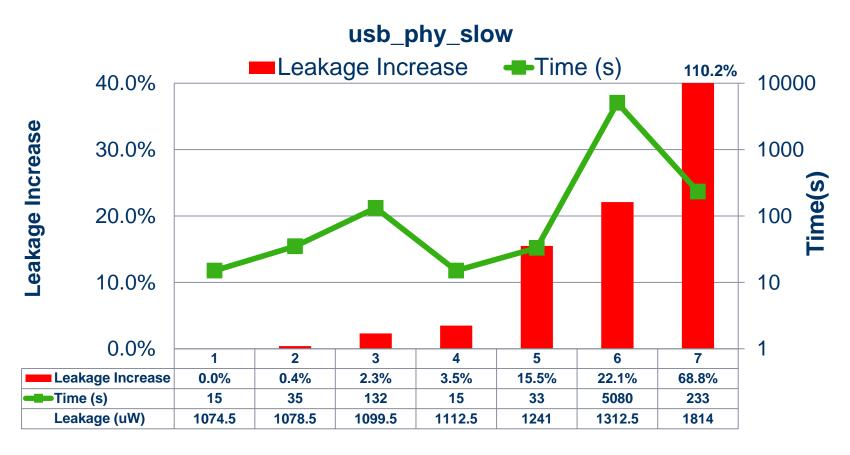
$$cost = Power \times \left(0.95 + 0.05 \frac{Runtime}{Runtime_{REF}}\right)$$

- 20% runtime reduction can compensate 1% power degradation
- Runtime_{REF} value is half of the runtime limit for each benchmark
- Maximum benefit of a fast program is 10%

ISPD 2013 Contest Results

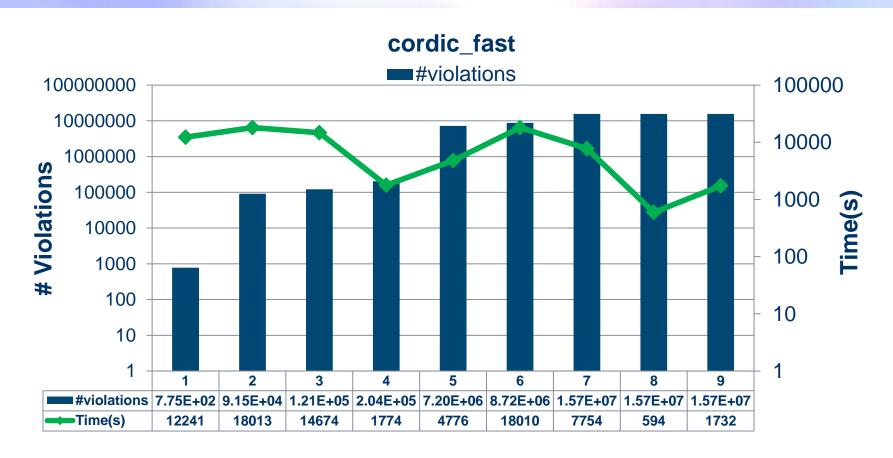
Contest Awards

- Recognition and cash prizes for:
 - Primary metric:

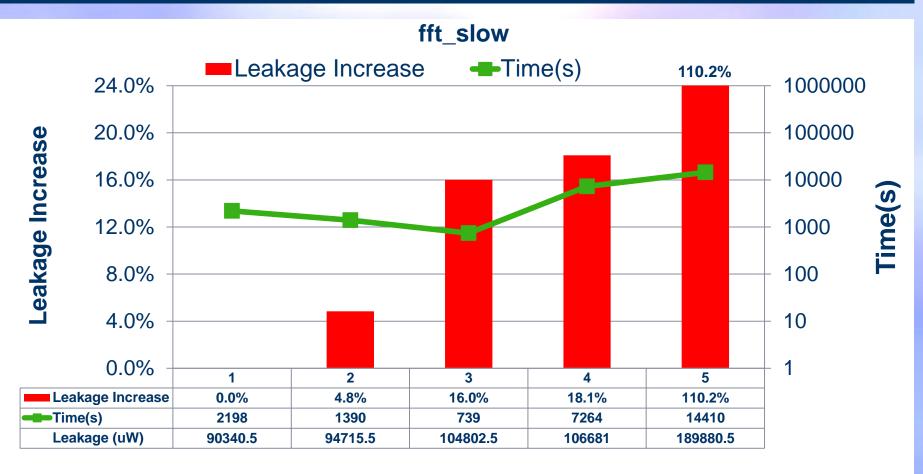

1st place: \$1000 2nd place: \$500 3rd place: \$300

Secondary metric:

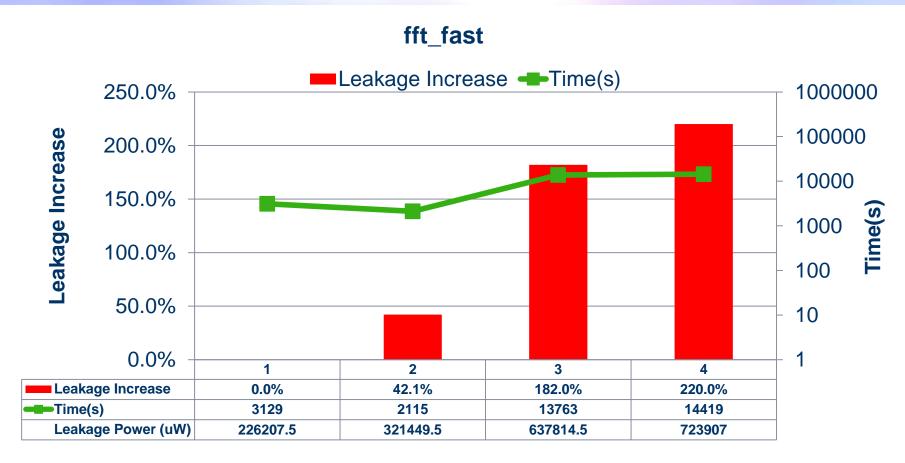
1st place: \$700


Note: Cash awards for the future ISPD contests will depend on the availability of funding.

Results Comparison: Small and Easy

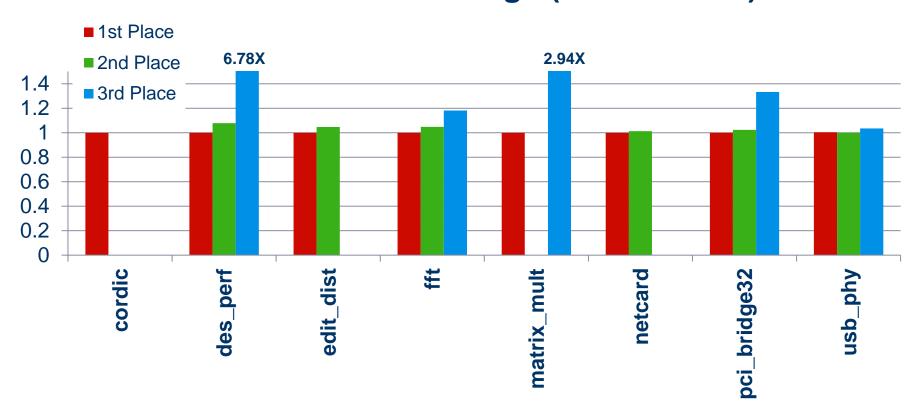

7 out of 9 teams completed without violations

Results Comparison: Small and Hard


No teams were able to complete without violations

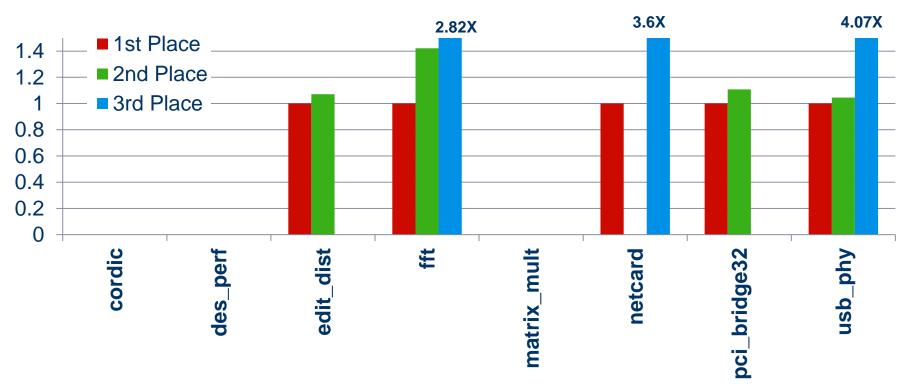
Results Comparison: Fast vs Slow

5 out of 9 teams completed without violations


Results Comparison: Fast vs Slow

4 out of 9 teams completed without violations

Primary Ranking: Winner Teams (Slow)


Normalized Leakage (Slow Corner)

Missing data points are runs that completed with violations

Primary Ranking: Winner Teams (Fast)

Normalized Leakage (Fast Corner)

Missing data points are runs that completed with violations

Primary Metric: Detailed Ranking

Ranks of the top 3 teams for each benchmark								
Benchmark	First team	Second team	Third team					
cordic_fast	1	2	3					
cordic_slow	1	3	4					
des_perf_fast	1	2	5					
des_perf_slow	1	2	4					
edit_dist_fast	1	2	4					
edit_dist_slow	1	2	4					
fft_fast	1	2	3					
fft_slow	1	2	4					
matrix_mult_fast	9	2	3					
matrix_mult_slow	1	4	2					
netcard_fast	1	3	2					
netcard_slow	1	2	3					
pci_bridge32_fast	1	2	5					
pci_bridge32_slow	1	2	4					
usb_phy_fast	1	2	6					
usb_phy_slow	2	1	4					
Sum	25	35	60					

Primary Metric: 3rd Place Winner

2013 ACM International Symposium on Physical Design

Discrete Gate Sizing Contest

Primary Metric

Third Place

Team GoodTime

Li-Chung Hsu and Simon Yi-Hung Chen

Cheng-Kok Koh General Chair

Chyn Com

Cliff C. N. Sze
Technical Program Chair

Mustafa Ozdal Contest Chair

Muste

Primary Metric: 2nd Place Winner

2013 ACM International Symposium on Physical Design

Discrete Gate Sizing Contest

Primary Metric

Second Place

Team Trident
SeokHyeong Kang, Pankit Thapar, Hyein Lee,
Benjamin Vandersloot, Igor Markov

Cheng-Kok Koh General Chair

Chyr la

Cliff C. N. Sze Technical Program Chair

Mustafa Ozdal Contest Chair

Musto

Primary Metric: 1st Place Winner

2013 ACM International Symposium on Physical Design

Discrete Gate Sizing Contest

Primary Metric

First Place

Team South Brazil

Guilherme Flach, Tiago Reimann, Gracieli Posser, Marcelo Johann, Ricardo Reis, Vinicius Livramento, Chrystian Guth, Renan Oliveira Netto, José Luís Güntzel

Cheng-Kok Koh General Chair

Chyn la

Cliff C. N. Sze Technical Program Chair Mustafa Ozdal Contest Chair

Huste

Secondary Metric: 1st Place Winner

2013 ACM International Symposium on Physical Design

Discrete Gate Sizing Contest

Secondary Metric

First Place

Team Trident

SeokHyeong Kang, Pankit Thapar, Hyein Lee, Benjamin Vandersloot, Igor Markov

Cheng-Kok Koh General Chair

Chyn Com

Cliff C. N. Sze

Technical Program Chair

Mustafa Ozda

Mustafa Ozdal Contest Chair

Primary Metric: Top 5

Team	Affiliation	Members	Score
South Brazil	UFRGS & UFSC, Brazil	Guilherme Flach, Tiago Reimann, Gracieli Posser, Marcelo Johann, Ricardo Reis, Vinicius Livramento, Chrystian Guth, Renan Oliveira Netto, José Luís Güntzel	25
	University of California San Diego, University of Michigan	Seokhyeong Kang, Pankit Thapar, Hyein Lee, Benjamin VanderSloot, Igor L. Markov	35
GoodTime	Keio University, National Chiao- Tung University	Li-Chung Hsu, Simon Yi-Hung Chen	60 (-5.71E5) *
Team_8	The Chinese University of Hong Kong	Wing-Kai Chow, Xu He, Jian Kuang, Ka- Chun Lam, Wenzan Cai, Evangeline F. Y. Young	60 (-6.07E7) *
Team_14	Northwestern University	Peng Kang, Li Li, Yuankai Chen	75

^{*} The tie was broken based on the total sum of violations across all benchmarks

Secondary Metric: Top 5

Name	Affiliation	Members	Score
Trident	University of California San Diego, University of Michigan	Seokhyeong Kang, Pankit Thapar, Hyein Lee, Benjamin VanderSloot , Igor L. Markov	22
Team_8	The Chinese University of Hong Kong	Wing-Kai Chow, Xu He, Jian Kuang, Ka-Chun Lam, Wenzan Cai, Evangeline F. Y. Young	54
South Brazil	UFRGS & UFSC, Brazil	Guilherme Flach, Tiago Reimann, Gracieli Posser, Marcelo Johann, Ricardo Reis, Vinicius Livramento, Chrystian Guth, Renan Oliveira Netto, José Luís Güntzel	65
_	Northwestern University	Peng Kang, Li Li, Yuankai Chen	67
	Keio University, National Chiao-Tung University	Li-Chung Hsu, Simon Yi-Hung Chen	85

Thank you!

BACKUP SLIDES

Results Summary for top 4 teams

Primary Ranking

Benchmark	1 st Place (South Brazil)		2 nd Place (Trident)		3 rd Place (GoodTime)		4 th Place (Team_8)	
	Power (uW)	Runtime (s)	Power (uW)	Runtime (s)	Power (uW)	Runtime (s)	Power (uW)	Runtime (s)
cordic_fast								
cordic_slow	323791	5682	443612.5*	5545*	1077730.5*	14684*	1629373	18015
des_perf_fast								
des_perf_slow	353005.5	5763	380437.5	4150	2391830	21012	2382234	21611
edit_dist_fast	596322.5	11130	639013.5	9964			4915710	8108
edit_dist_slow	447402.5	6974	468454	6476			2517290	25219
fft_fast	226207.5	3129	321449.5	2115	637814.5	13763	723907	14419
fft_slow	90340.5	2198	94715.5	1390	106681	7264	189880.5	14410
matrix_mult_fast								
matrix_mult_slow	469732.5	14604	512847.5*	12947*	1381369	24977	3578623	25217
netcard_fast	5317839.5	36795			19152003	99302		
netcard_slow	5302372.5	32964	5371103	100816	5245666*	99325*		
pci_bridge32_fast	96511	5222	106929.5	697			337526.5	14418
pci_bridge32_slow	57894.5	857	59265.5	396	77184.5	13522	111570	14408
usb_phy_fast	1608	35	1680.5	25	6550	405	2374	383
usb_phy_slow	1078.5	35	1074.5	15	1112.5	15	1099.5	132

- * solutions had very small violations (< 0.1)</p>
- Empty cells are benchmarks that were not sized without violations

Results Summary for top 4 teams

Secondary Ranking

Benchmark	1 st Place (Trident)		2 nd Place (Team_8)		3 rd Place (South Brazil)		4 th Place (Team_14)	
	Power (uW)	Runtime (s)	Power (uW)	Runtime (s)	Power (uW)	Runtime (s)	Power (uW)	Runtime (s)
cordic_fast								
cordic_slow	563093	1570	1961092	3604	323707*	2979*		
des_perf_fast								
des_perf_slow	395868	1229	2823880	4336	353807*	4071*		
edit_dist_fast	704822.5	2655	9769384	5051				
edit_dist_slow	489476	1993	7485664	5051	448158.5	4741		
fft_fast	361299.5	416	974608	2882	224530	1827		
fft_slow	98149.5	246	418988	2882	90316	1367	104802.5	739
matrix_mult_fast								
matrix_mult_slow	570741.5	3910	7540344	5053				
netcard_fast								
netcard_slow	5371103	20178						
pci_bridge32_fast	112641.5	175	504979	2882	96511	1417	198791	758
pci_bridge32_slow	60171.5	135	136955.5	2881	57894.5	575	62013	438
usb_phy_fast	1644	15	2628.5	173	1608	35	2644.5	72
usb_phy_slow	1075.5	15	1095.5	42	1078.5	25	1241	33

- * means that the solution presented very small violations (< 0.1)</p>
- Empty cells are benchmarks that were not sized without violations