ISPD 2013 Contest Evaluation

Last modified: February 8, 2013

Changed Feb-8-2013

Disclaimer

- The information published in this presentation is subject to change.
- It is the contestants responsibility to check the website frequently to check for any updates until the submission deadline.

Benchmarks

- For the final evaluations, we are planning to use a subset of the released benchmarks with some modifications (e.g. different timing constraints and/or parasitics, modifications in the netlists). We may also use additional benchmarks that are not released.
- The final cell library file (.lib) that we plan to use in evaluations is available on the contest website.

Output file

- When your sizer is run, it is expected to produce a <benchmark>.sizes file
 - The .sizes file format is defined in "ISPD_2013_Contest_Details.pdf" presentation on "Sizer Output (.sizes) File" slide
 - Each line is defined as:

<full-instance-name> <library-cell-name>

Logic transformations are not allowed

- WARNING: Only cells with the same cell_footprint name can be swapped. For more details about swapping group, refer to slide "contest.lib File Example" in "ISPD_2013_Contest_Details.pdf"
- WARNING: You must NOT use the function field in .lib file to determine which cells can be swapped.

Contest Evaluation

- Two separate rankings:
 - <u>Primary ranking</u>: Solution quality will be the main metric. Runtime will be used for tie-breaking.
 - <u>Secondary ranking</u>: Both solution quality and runtime will be important. Multi-core implementations are encouraged!
- Each submission will be run once for each ranking.
 - For the secondary ranking the submissions will be run with the "-fast" option after the mandatory arguments.
 - Submissions have to support "-fast" command line option, otherwise they will not be considered for the secondary ranking.
- There will be a hard runtime limit for each benchmark
 - The runtime limit will be smaller for the secondary ranking runs.

- Violations are the primary evaluation criteria for both rankings
- Violations are divided into three different types
 - Negative slack (ps)
 - Maximum capacitance (fF)
 - Slew (ps)
- All violations are added together into a single number
- All benchmarks can be sized without any violations

- Negative slack violations:
 - Measured for both rising and falling transitions at the primary outputs and sequential inputs
 - See contest details slides for slack computation
 - In the simple.v example the slack variables that have to be observed are:

- Slew violation:
 - Measured on input pins for all cell instance and primary outputs (for both rise and fall transitions)
 - Slew limit is defined by the default_max_transition field in the .lib file

Total slew violation = 16ps

- Output capacitance per cell:
 - Will be measured once per cell instance output and for each circuit input
 - Includes driving cells for primary inputs as defined in the .sdc file
 - The capacitance at the output of a gate is given by the effective capacitance (Ceff) seen at that pin. Ceff is computed by PrimeTime®, please check "ISPD_2013_Contest_Details.pdf" for information on how to compute it.
 - Violation = max(0, (ceff(cell.output_pin) maxcap(cell.output_pin))

Ceff per output pin

cap(inp1)=27fF cap(inp2)=20fF cap(f1.o)=126fF cap(u1.o)=151fF cap(u2.o)=53fFMaximum capacitance allowed per cell: Max cap(inp1)=60fF Max cap(inp2)=60fF Max cap(f1.o)=100fF Max_cap(u1.o)=150fF Max_cap(u2.o)=150fF Maximum Capacitance violations: violation(inp1) = max(0,(27fF-60fF) = 0violation(inp2) = max(0,(20fF-60fF) = 0violation(f1.o) = max(0,(126fF-100fF) = 26fFviolation(u1.o) = max(0,(151fF-150fF) = 1fFviolation(u2.o) = max(0,(53fF-150fF) = 0Total max cap violation = 27fF

Simple.v circuit

Power

- Only leakage power is considered
- The leakage power value for each cell is given in the .lib file
- Total leakage power value is given by the sum of the leakage power for each cell

Total Power computation Power(u1)=143uW Power(f1)=313uW Power(u2)=50uW Total Power = 134uW + 313uW + 50uW Total Power = 497uW

Sizer/Timer Interaction

- The teams must communicate the organizer what model option Sizer/Timer communicatino they are going to use
- If the organizers are not informed that PrimeTime® is needed it will not be started prior to the sizer execution.
- Teams who choose to use "Options 3" are responsible for starting/closing PrimeTime® and loading their own scripts.
 - The runtime will be measured from the time sizer execution starts to the time the last process started by the user is terminated.
 - Failure to terminate user process will increase measured runtime.

Runtime

- The runtime is computed for each benchmark
- Time to load the design in PrimeTime® in the beginning will be included in the runtime measurement.
 - Runtime is the wall clock time from the beginning to the end of the execution of the submitted executable
 - Runtime includes not only the submission execution time but the time taken to load the design in PrimeTime® as well as the time to complete any PrimeTime® calls.
 - For the teams who select "Option 2" for sizer/timer interaction, the circuit will be loaded in PrimeTime® prior to the binary execution. The runtime measurement will include this time.
 - If no calls are made to PrimeTime®, runtime will include only the submission execution time
- All jobs running after the runtime limit is reached will be killed

Runtime Limit

- The runtime limit will be defined per benchmark
 - Runtime limit is defined based on the number of cells for each benchmark according to the equation:

$$Runtime_{PRIMARY} = 3h + 1h \times Roundup \left(\frac{\# gates}{40K}\right)$$

- Runtime limit is determined by 3 hours plus 1 hour per each 40K gates for each design
- The number of gates divided by 40K will be rounded up to the next integer number
 - i.e., 2.6 is rounded up to 3, 4.1 is rounded up to 5
- Runtimes are given in hours

Runtime Limit: Secondary Metric

• The runtimes for the secondary metric runs will be equal to 1/5 of the runtime used in the primary metric:

$$Runtime_{SECONDARY} = Roundup \left(\frac{Runtime_{PRIMARY}}{5}\right)$$

- Runtime for the secondary metric will be rounded up to the nearest **minute**.
 - For example, if runtime primary is equal to 7 hours the runtime secondary will be 84 minutes.

Primary ranking: Quality

- The ranking metric for a benchmark is defined in lexicographic order as:
 - First: ∑violations
 - Second: ∑power (when violations are tied)
 - Third: Runtime (when violations and power are tied)
- Sum of the ranks for each benchmark will define the final score for each team
 - If there is a tie at the end, it is broken using the sum of violations, power and runtime over all benchmarks in the same lexicographic order (example in next slides)

Primary ranking: Quality

- Example: 3 teams, 2 hypothetical benchmarks
- Execution summary for each team on each benchmark
 - benchmark01:

Team		V	iolations	Total Power	Runtime	
	Max Cap	Slew	Negative Slack	Sum		
Team01	0	0	0	0	12.6 mW	31m 42s
Team02	0	0	0	0	11.1 mW	1h 12m 21s
Team03	12fF	130ps	10ps	152	7 mW	10s

• benchmark02:

Team		V	iolations	Total Power	Runtime	
	Max Cap	Slew	Negative Slack	Sum		
Team01	10fF	0	0	10	5.4 mW	13m 14s
Team02	0	0	0	0	7 mW	15m 55s
Team03	0	10ps	0	10	5.4 mW	1m 49s

Primary ranking: Quality

- Below are the ranking for each benchmark and final ranking, the criteria used to decide on the ranking is highlighted on each case
 - Rankings for each benchmark

benchmark01								
Team	Violations	Power	Runtime	Rank				
Team01	0	12.6 mW	31m 42s	#2				
Team02	0	11.1 mW	1h 12m 21s	#1				
Team03	152	7 mW	10s	#3				

benchmark02								
Team	Violations	Power	Runtime	Rank				
Team01	10	5.4 mW	13m 14s	#3				
Team02	0	7 mW	15m 55s	#1				
Team03	10	5.4 mW	1m 49s	#2				

Final ranking

	Final								
Team	benchmark01	benchmark02	Rank Sum	Total Violations	Total Power	Total Runtime	Final Rank		
Team01	#2	#3	5	10	18 mW	44m 56s	#2		
Team02	#1	#1	2	0	18.1 mW	1h 28m 16s	#1		
Team03	#3	#2	5	162	12.4 mW	1m 59s	#3		

Secondary ranking: Quality/Runtime

- The secondary ranking evaluates the solution that presents the best quality/runtime trade-off
- Violations are still the primary metric, all the solutions with the same number of violations are ranked by:

$$cost = Power \times \left((1 - \gamma) + \gamma \frac{Runtime}{Runtime_{REF}} \right)$$

- This metric trades quality by runtime improvement with respect to a reference runtime value
- If there are ties those will be broken using the same criterion applying to the Primary metric (Violations, Power, Runtime)

Change

Secondary ranking: Quality/Runtime

 Runtime_{REF} is fixed and defined by half of the runtime limit.

 $Runtime_{REF} = \frac{Runtime_{SECONDARY}}{2}$ Changed Jan-30-2013

- Gamma (γ) is 0.05
 - e.g., Using the full runtime limit will represent an increase in 5% in the solution cost. A runtime close to 0 represents a reduction of close to 5% in the final cost.

Secondary ranking: Quality/Runtime

 Rankings for each benchmark. Orange cells indicate reference values used for trade-off computation. Yellow cells are the values used to decide ranking positions.

Changed Jan-30-2013					Changed	Jan-30-2013	3				
Benchmark01 – 1h Runtime _{REF}					Benchmark02 – 10min Runtime _{REF}						
Team	Violations	Power	Runtime	Cost	Rank	Team	Violations	Power	Runtime	Cost	Rank
Team01	0	12.6 mW	31m 42s	12.30285	#2	Team01	10	5.4 mW	13m 14s	5.4873	#3
Team02	0	11.1 mW	1h 12m 21s	11.21285	#1	Team02	0	7 mW	15m 55s	7.207	#1
Team03	152	7 mW	10s	6.650972	#3	Team03	10	5.4 mW	1m 49s	5.17905	#2

	Final								
Team	benchmark01	benchmark02	Rank Sum	Total Violations	Total Power	Total Runtime	Final Rank		
Team01	#2	#3	5	10	18 mW	44m 56s	#2		
Team02	#1	#1	2	0	18.1 mW	1h 28m 16s	#1		
Team03	#3	#2	5	162	12.4 mW	1m 59s	#3		

Evaluation rounds

- The organizers reserve the right to do evaluations in rounds.
 - Evaluations may be run for all teams on small benchmarks
 - For top qualifying teams, evaluations will be run on large benchmarks.
- Evaluation rounds will only be performed if there is not enough time to run all benchmarks for every team.

Same ranking

• If 2 teams have the same ranking:

- Both will have the rank equal to the number of teams that have a better ranking + 1
- The teams following those will also be ranked according to the number of teams that have a better ranking

Example: TeamB and TeamC are tied TeamE, TeamF and TeamG are also tied

All tied teams have the same ranking The ranking of a team is always equal to the number of teams in front of it in the ranking

Rank	Team
1	TeamA
2	TeamB
2	TeamC
4	TeamD
5	TeamE
5	TeamF
5	TeamG

Error handling

- During timing iterations when using PrimeTime®, any invalid cell swapping will be ignored by PrimeTime® (i.e. cell size from previous iteration will continue to be used)
- If the .sizes files is missing, the final evaluation will be done using the original cell sizes from verilog file
 - Any missing cell in the .sizes file will have its size unaltered
 - If cell C is not included in the final .sizes file, then the original size of C in the verilog file will be assumed
- For final evaluation, any invalid cell swapping will be ignored and the original cell size from the verilog file will be used
 - Some examples of invalid cell swapping are:
 - An invalid cell size in the .sizes file
 - Swapping cells with different cell_footprint names

Scripts

- Evaluation scripts will be provided.
- Scripts will:
 - Compute #violations
 - Compute power
 - Check solution correctness

Submission Files

- Each team is allowed to submit at most 3 files based on the timer/sizer interaction model.
 - 1 binary executable
 - 1 shell script (bash, csh, sh or tcsh)
 - 1 tcl command file
- No data files are allowed
- The shell script can be user as a wrapper to load the tcl command file on PrimeTime® and to start the sizer
 - In this case the shell script has to be named sizer and it has to be able to be run as specified on the "ISPD_2013_Contest_Details.pdf" slides.
 - It will also be required to handle the –fast option for the Secondary metric evaluation

Submission Files

- The required names for each file depends on the timer/sizer communication options:
 - Option 1 & Option 2
 - 1 binary executable: file name must be "sizer".
 - The shell script and the TCL script are not allowed.
 - Option 3
 - 1 binary executable: file name must be "sizer" if no shell script is submitted.
 - (Optional) 1 shell script (bash, csh, sh or tcsh): file name must be "sizer" and the binary should be renamed to "sizerbin".
 - (Optional) 1 tcl command file: file name must be "sizer.tcl".
- In spite of the option you choose your submission will be run as:

sizer \$ISPD_CONTEST_ROOT <benchmark>

sizer \$ISPD_CONTEST_ROOT <benchmark> -fast (for fast mode)

PrimeTime[®] Licenses

- 5 PrimeTime[®] licenses will be available for the teams choosing Option 3.
 - 5 PrimeTime[®] runs can be launched in parallel
- Teams choosing Option 2 will use a single PrimeTime[®] license.

Alpha submissions

- It is the contestant responsibility to guarantee that the submission works in the contest evaluation environment.
 - We will allow alpha executable submissions for that purpose
- Alpha binaries will be run by the contest organizers on a single benchmark
 - The teams may request a specific benchmark on which the executable will be run
 - Alpha runs will not be performed on benchmarks with a runtime limit larger than 7 hours

Alpha submissions

- No debugging will be done by contest organizers.
- Execution log files will be sent to the contestants.
 - We are unable to send the log files to the teams that did not sign the Synopsis NDA.
- Each alpha submission period comprises a single run.
 - Each team can submit at most one alpha executable in a submission period.
 - Contest organizers will do their best to send back the alpha executable results within 3 business days

Alpha submission calendar

February

S	Μ	Т	W	Т	F	S
27	28	29 Alpha su	30 Ibmissior	31 n round 1	1	2
3	4	5 Alpha su	6 Ibmissior	7 n round 2	8	9
10	11	12 Alpha su	13 Ibmissior	14 n round 3	15	16
17	18	19	20	21	22	23
24 ★	25	26	27	28	1	2

Changed Feb-8-2013

* Final submission deadline

Mandatory alpha submission

- All teams must submit at least 1 alpha executable
- Teams that do not submit any alpha executable by February 16th will be removed from the contest.

Final submission deadline

- Final submission deadline is February 24th.
- Final submissions will be accepted until February 24th, 11:59pm (PST) Changed Feb-8-2013
- Teams that do not submit the final executable will be removed from the contest.
 - Alpha submissions will not be considered as the final submission.

Machine Specification

- Evaluations will be run on a machine with the following configuration:
 - 64 bits machine
 - #cores: 16
 - Memory: 49152Mb
 - Processor speed: 2.93GHz

Intel Legal Agreement

- Contestants should have received the Intel Legal Agreement by now.
- To run your binaries we need your agreement to the terms in the Legal Agreement.
- The first time you send an executable to us, please attach the legal form and explicitly state that you agree to the terms in the attached document.