
LEF/DEF Language Reference

Product Version 5.7
November 2009

© 1990-2008 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in
this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s
trademarks, contact the corporate legal department at the address shown above or call 800.862.4522.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or
registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are used
with permission.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission
statement, this publication may not be copied, reproduced, modified, published, uploaded, posted,
transmitted, or distributed in any way, without prior written permission from Cadence. This statement grants
you permission to print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s
customer in accordance with, a written agreement between Cadence and its customer. Except as may be
explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any
representations or warranties as to the completeness, accuracy or usefulness of the information contained
in this document. Cadence does not warrant that use of such information will not infringe any third party
rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of
such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

LEF/DEF 5.7 Language Reference

November 2009 3 Product Version 5.7

Preface . 7

What’s New . 7
Typographic and Syntax Conventions . 7
Character Information . 8

1
LEF Syntax . 11

About Library Exchange Format Files . 12
General Rules . 12
Name Escaping Semantics for LEF/DEF Files . 12
Managing LEF Files . 13
Order of LEF Statements . 14

LEF Statement Definitions . 14
Bus Bit Characters . 14
Clearance Measure . 15
Divider Character . 15
Extensions . 15
Layer (Cut) . 16
Layer (Implant) . 74
Layer (Masterslice or Overlap) . 76
Layer (Routing) . 79
Macro . 172
Manufacturing Grid . 202
Maximum Via Stack . 202
Nondefault Rule . 203
Property Definitions . 207
Site . 209
Units . 211
Use Min Spacing . 214
Version . 214
Via . 215

Contents

LEF/DEF 5.7 Language Reference

November 2009 4 Product Version 5.7

Via Rule . 220
Via Rule Generate . 221

2
ALIAS Statements . 227

ALIAS Statements . 227
ALIAS Definition . 228
ALIAS Examples . 228
ALIAS Expansion . 229

3
Working with LEF . 231

Incremental LEF . 231
Error Checking . 232

Message Facility . 233
Error-Checking Facility . 235

4
DEF Syntax. 237

About Design Exchange Format Files . 238
General Rules . 239
Name Escaping Semantics for LEF/DEF Files . 239
Order of DEF Statements . 241

DEF Statement Definitions . 242
Blockages . 242
Bus Bit Characters . 246
Components . 246
Design . 251
Die Area . 251
Divider Character . 252
Extensions . 252
Fills . 252
GCell Grid . 254
Groups . 256

LEF/DEF 5.7 Language Reference

November 2009 5 Product Version 5.7

History . 256
Nets . 257
Nondefault Rules . 268
Pins . 271
Pin Properties . 286
Property Definitions . 287
Regions . 288
Rows . 289
Scan Chains . 290
Slots . 296
Special Nets . 298
Styles . 310
Technology . 322
Tracks . 322
Units . 323
Version . 324
Vias . 325

A
Examples . 333

LEF . 333
DEF . 344
Scan Chain Synthesis Example . 349

B
Optimizing LEF Technology for Place and Route. 351

Overview . 351
Guidelines for Routing Pitch . 352
Guidelines for Wide Metal Spacing . 354
Guidelines for Wire Extension at Vias . 355
Guidelines for Default Vias . 357
Guidelines for Stack Vias (MAR Vias) and Samenet Spacing . 359
Example of an Optimized LEF Technology File . 363

LEF/DEF 5.7 Language Reference

November 2009 6 Product Version 5.7

C
Calculating and Fixing Process Antenna Violations 369

Overview . 370
What Are Process Antennas? . 371
What Is the Process Antenna Effect (PAE)? . 372
What Is the Antenna Ratio? . 373
What Can Be Done to Improve the Antenna Ratio? . 373

Using Process Antenna Keywords in the LEF and DEF Files . 374
Calculating Antenna Ratios . 375

Calculating the Antenna Area . 375
Calculating a PAR . 376
Calculating a CAR . 381
Calculating Ratios for a Cut Layer . 389

Checking for Antenna Violations . 392
Area Ratio Check . 393
Side Area Ratio Check . 393
Cumulative Area Ratio Check . 394
Cumulative Side Area Ratio Check . 395
Cut Layer Process Antenna Model Examples . 395
Routing Layer Process Antenna Model Examples . 396
Example Using the Antenna Keywords . 402

Using Antenna Diode Cells . 403
Changing the Routing . 404
Inserting Antenna Diode Cells . 404

Using DiffUseOnly . 404
Calculations for Hierarchical Designs . 405

LEF and DEF Keywords for Hierarchical Designs . 406
Design Example . 406
Top-Down Hierarchical Design Example . 409

Index. 411

LEF/DEF 5.7 Language Reference

November 2009 7 Product Version 5.7

Preface

This manual is a language reference for users of the Cadence® Library Exchange Format
(LEF) and Design Exchange Format (DEF) integrated circuit (IC) description languages.

LEF defines the elements of an IC process technology and associated library of cell models.
DEF defines the elements of an IC design relevant to physical layout, including the netlist and
design constraints. LEF and DEF inputs are in ASCII form.

This manual assumes that you are familiar with the development and design of integrated
circuits.

This preface provides the following information:

■ What’s New on page 7

■ Typographic and Syntax Conventions on page 7

■ Character Information on page 8

What’s New

For information on what is new or changed in LEF and DEF for version 5.7 see What’s New
in LEF/DEF.

Typographic and Syntax Conventions

This list describes the conventions used in this manual.

text Words in monospace type indicate keywords that you must
enter literally. These keywords represent language tokens.

variable Words in italics indicate user-defined information for which
you must substitute a name or a value.

objRegExpr An object name with the identifier objRegExpr represents a
regular expression for the object name.

LEF/DEF 5.7 Language Reference
Preface

November 2009 8 Product Version 5.7

pt Represents a point in the design. This value corresponds to a
coordinate pair, such as x y. You must enclose a point within
parentheses, with space between the parentheses and the
coordinates. For example,

RECT (1000 2000) (1500 400).

| Vertical bars separate possible choices for a single argument.
They take precedence over any other character.

[] Brackets denote optional arguments. When used with vertical
bars, they enclose a list of choices from which you can choose
one.

{ } ... Braces followed by three dots indicate that you must specify the
argument at least once, but you can specify it multiple times.

{ } Braces used with vertical bars enclose a list of choices from
which you must choose one.

... Three dots indicate that you can repeat the previous argument.
If they are used with brackets, you can specify zero or more
arguments. If they are used with braces, you must specify at
least one argument, but you can specify more.

,... A comma and three dots together indicate that if you specify
more than one argument, you must separate those arguments
with commas.

" " Quotation marks enclose string values. Write quotation marks
within a string as \". Write a backslash within a string as \\.

Any characters not included in the list above are required by the language and must be
entered literally.

Character Information

LEF and DEF support the following characters:

! < and >

$. (period)

LEF/DEF 5.7 Language Reference
Preface

November 2009 9 Product Version 5.7

DEF reserves the following characters for special functions:

LEF and DEF names cannot contain the following ASCII characters:

Note: LEF and DEF names also cannot contain the ASCII character used by the place-and-
route tool for comments. For example, if the tool uses the pound sign (#) for comments, it
cannot be used in a LEF or DEF name.

LEF and DEF interpret the following characters as regular expressions. Use these characters
in LEF and DEF names only when you intend a regular expression.

& ?

| { }

: ’ (single quotation mark)

‘ “ (double quotation mark)

@ _ (underbar)

~ ^

= , (comma)

Uppercase and lowercase alphabet
characters

 Numbers

() Coordinates

+ Start of new keyword

- Coordinates and start of new keyword

[] Default special characters for bus bits unless overridden by BUSBITCHARS

/ Default special character for hierarchy unless overridden by DIVIDERCHAR

\n Newline

 Space

; Semicolon

* Asterisk Matches any sequence of characters

% Percent Matches any single character

LEF/DEF 5.7 Language Reference
Preface

November 2009 10 Product Version 5.7

Note: Pattern matching only works in a few areas of the DEF file, such as component name
matching in the SPECIALNET section, and component name matching in GROUP definitions.

LEF/DEF 5.7 Language Reference

November 2009 11 Product Version 5.7

1
LEF Syntax

This chapter contains information about the following topics:

■ About Library Exchange Format Files on page 12

❑ General Rules on page 12

❑ Name Escaping Semantics for LEF/DEF Files on page 12

❑ Managing LEF Files on page 13

❑ Order of LEF Statements on page 14

■ LEF Statement Definitions on page 14

❑ Bus Bit Characters on page 14

❑ Clearance Measure on page 15

❑ Divider Character on page 15

❑ Extensions on page 15

❑ Layer (Cut) on page 16

❑ Layer (Implant) on page 74

❑ Layer (Masterslice or Overlap) on page 76

❑ Layer (Routing) on page 79

❑ Macro on page 172

❍ Layer Geometries on page 187

❍ Macro Obstruction Statement on page 190

❍ Macro Pin Statement on page 193

❑ Manufacturing Grid on page 202

❑ Maximum Via Stack on page 202

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 12 Product Version 5.7

❑ Nondefault Rule on page 203

❑ Property Definitions on page 207

❑ Site on page 209

❑ Units on page 211

❑ Use Min Spacing on page 214

❑ Version on page 214

❑ Via on page 215

❑ Via Rule on page 220

❑ Via Rule Generate on page 221

About Library Exchange Format Files

A Library Exchange Format (LEF) file contains library information for a class of designs.
Library data includes layer, via, placement site type, and macro cell definitions. The LEF file
is an ASCII representation using the syntax conventions described in “Typographic and
Syntax Conventions” on page 7.

General Rules

Note the following information about creating LEF files:

■ Indentifiers like net names and cell names are limited to 2,048 characters.

■ Distance is specified in microns.

■ Distance precision is controlled by the UNITS statement.

■ LEF statements end with a semicolon (;). You must leave a space between the last
character in the statement and the semicolon.

Name Escaping Semantics for LEF/DEF Files

For information, see Name Escaping Semantics for LEF/DEF Files on page 239.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 13 Product Version 5.7

Managing LEF Files

You can define all of your library information in a single LEF file; however this creates a large
file that can be complex and hard to manage. Instead, you can divide the information into two
files, a “technology” LEF file and a “cell library” LEF file.

A technology LEF file contains all of the LEF technology information for a design, such as
placement and routing design rules, and process information for layers. A technology LEF file
can include any of the following LEF statements:

 [VERSION statement]
[BUSBITCHARS statement]
[DIVIDERCHAR statement]
[UNITS statement]
[MANUFACTURINGGRID statement]
[USEMINSPACING statement]
[CLEARANCEMEASURE statement ;]
[PROPERTYDEFINITIONS statement]
[LAYER (Nonrouting) statement
 | LAYER (Routing) statement] ...
[MAXVIASTACK statement]
[VIA statement] ...
[VIARULE statement] ...
[VIARULE GENERATE statement] ...
[NONDEFAULTRULE statement] ...
[SITE statement] ...
[BEGINEXT statement] ...
[END LIBRARY]

A cell library LEF file contains the macro and standard cell information for a design. A library
LEF file can include any of the following statements:

 [VERSION statement]
[BUSBITCHARS statement]
[DIVIDERCHAR statement]
[VIA statement] ...
[SITE statement]
[MACRO statement
 [PIN statement] ...
 [OBS statement ...]] ...
[BEGINEXT statement] ...
[END LIBRARY]

When reading in LEF files, always read in the technology LEF file first.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 14 Product Version 5.7

Order of LEF Statements

LEF files can contain the following statements. You can specify statements in any order;
however, data must be defined before it is used. For example, the UNITS statement must be
defined before any statements that use values that are dependent on UNITS values, LAYER
statements must be defined before statements that use the layer names, and VIA statements
must be defined before referencing them in other statements. If you specify statements in the
following order, all data is defined before being used.

 [VERSION statement]
[BUSBITCHARS statement]
[DIVIDERCHAR statement]
[UNITS statement]
[MANUFACTURINGGRID statement]
[USEMINSPACING statement]
[CLEARANCEMEASURE statement ;]
[PROPERTYDEFINITIONS statement]
[LAYER (Nonrouting) statement
 | LAYER (Routing) statement] ...
[MAXVIASTACK statement]
[VIA statement] ... #Fixed vias that can be used inside VIARULE
[VIARULE statement] ...
[VIARULE GENERATE statement] ...
[VIA statement] ... #Generated vias that can reference VIARULE name
[NONDEFAULTRULE statement] ...
[SITE statement] ...
[MACRO statement
 [PIN statement] ...
 [OBS statement ...]] ...
[BEGINEXT statement] ...
[END LIBRARY]

LEF Statement Definitions

The following definitions describe the syntax arguments for the statements that make up a
LEF file. Statements are listed in alphabetical order, not in the order they should appear in a
LEF file. For the correct order, see “Order of LEF Statements” on page 14.

Bus Bit Characters
[BUSBITCHARS "delimiterPair" ;]

Specifies the pair of characters used to specify bus bits when LEF names are mapped to or
from other databases. The characters must be enclosed in double quotation marks. For
example:

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 15 Product Version 5.7

BUSBITCHARS "[]" ;

If one of the bus bit characters appears in a LEF name as a regular character, you must use
a backslash (\) before the character to prevent the LEF reader from interpreting the character
as a bus bit delimiter.

If you do not specify the BUSBITCHARS statement in your LEF file, the default value is “[]”.

Clearance Measure
[CLEARANCEMEASURE {MAXXY | EUCLIDEAN} ;]

Defines the clearance spacing requirement that will be applied to all object spacing in the
SPACING and SPACINGTABLE statements. If you do not specify a CLEARANCEMEASURE
statement, euclidean distance is used by default.

Divider Character
[DIVIDERCHAR "character" ;]

Specifies the character used to express hierarchy when LEF names are mapped to or from
other databases. The character must be enclosed in double quotation marks. For example:

DIVIDERCHAR "/" ;

If the divider character appears in a LEF name as a regular character, you must use a
backslash (\) before the character to prevent the LEF reader from interpreting the character
as a hierarchy delimiter.

If you do not specify the DIVIDERCHAR statement in your LEF file, the default value is “/”.

Extensions
[BEGINEXT "tag"

extension

ENDEXT]

MAXXY Uses the largest x or y distances for spacing between objects.

EUCLIDEAN Uses the euclidean distance for spacing between objects. That is,
the square root of x2 + y2.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 16 Product Version 5.7

Adds customized syntax to the LEF file that can be ignored by tools that do not use that
syntax. You can also use extensions to add new syntax not yet supported by your version of
LEF/DEF, if you are using version 5.1 or later.

extension Specifies the contents of the extension.

"tag" Identifies the extension block. You must enclose tag in double
quotation marks.

Example 1-1 Extension Statement
BEGINEXT "1VSI Signature 1.0"

CREATOR "company name"

DATE "timestamp"

REVISION "revision number"

ENDEXT

Layer (Cut)
LAYER layerName

TYPE CUT ;
[PROPERTY LEF58_TYPE
 “TYPE [TSV | PASSIVATION] ;” ;]
[PROPERTY LEF58_BACKSIDE
 “BACKSIDE ;” ;]
[PROPERTY LEF58_CUTCLASS
 "CUTCLASS className WIDTH viaWidth [LENGTH viaLength] [CUTS numCut]
 ;...” ;]
[SPACING cutSpacing
 [CENTERTOCENTER]
 [SAMENET]
 [LAYER secondLayerName [STACK]
 | ADJACENTCUTS {2 | 3 | 4} WITHIN cutWithin [EXCEPTSAMEPGNET]
 | PARALLELOVERLAP
 | AREA cutArea
]
;] ...
[PROPERTY LEF58_SPACING
 "SPACING cutSpacing
 [MAXXY
 |[CENTERTOCENTER]
 [SAMENET | SAMEMETAL | SAMEVIA]
 [LAYER secondLayerName [STACK]
 | ADJACENTCUTS {2 | 3 | 4} [EXACTALIGNED exactAlignedCut]
 WITHIN cutWithin [EXCEPTSAMEPGNET][CUTCLASS className]
 [SIDEPARALLELOVERLAP]
 | PARALLELOVERLAP [EXCEPTSAMENET | EXCEPTSAMEMETAL | EXCEPTSAMEVIA]

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 17 Product Version 5.7

 | PARALLELWITHIN within [EXCEPTSAMENET]
 | SAMEMETALSHAREDEDGE parwithin [ABOVE][CUTCLASS className]
 [EXCEPTTWOEDGES] [EXCEPTSAMEVIA numCut]
 | AREA cutArea]
 ;..." ;]
[SPACINGTABLE ORTHOGONAL
 {WITHIN cutWithin SPACING orthoSpacing} ... ;]
[PROPERTY LEF58_SPACINGTABLE
 “SPACINGTABLE
 [ORTHOGONAL
 {WITHIN cutWithin SPACING orthoSpacing} ... ;
 |[DEFAULT defaultCutSpacing]
 [SAMENET | SAMEMETAL]
 [LAYER secondLayerName]
 [CENTERTOCENTER { {className1 | ALL}| TO {className2 | ALL}
 }...]
 CUTCLASS { {className1 | ALL} [SIDE | END]}...
 {{className2 | ALL} [SIDE | END] {-|cutSpacing}
 {-|cutSpacing}...}...;
]
;...” ;
[ARRAYSPACING [LONGARRAY] [WIDTH viaWidth] CUTSPACING cutSpacing
 {ARRAYCUTS arrayCuts SPACING arraySpacing} ... ;]
[PROPERTY LEF58_ARRAYSPACING
 "ARRAYSPACING [CUTCLASS className] [PARALLELOVERLAP]
 [LONGARRAY] [WIDTH viaWidth] CUTSPACING cutSpacing
 {ARRAYCUTS arrayCuts SPACING arraySpacing} ... ;
];” ;
[WIDTH minWidth ;]
[ENCLOSURE [ABOVE | BELOW] overhang1 overhang2
 [WIDTH minWidth [EXCEPTEXTRACUT cutWithin]
 | LENGTH minLength]
;] ...
[PREFERENCLOSURE [ABOVE | BELOW] overhang1 overhang2 [WIDTH minWidth] ;] ...
[PROPERTY LEF58_ENCLOSURE
 “ENCLOSURE [CUTCLASS className][ABOVE | BELOW]
{overhang1 overhang2 | END overhang1 SIDE overhang2}
 [WIDTH minWidth
 [EXCEPTEXTRACUT cutWithin [PRL | NOSHAREDEDGE]]
 | LENGTH minLength
 | EXTRACUT
 | REDUNDANTCUT cutWithin
];...” ;]
[PROPERTY LEF58_ENCLOSUREEDGE
 "ENCLOSUREEDGE [CUTCLASS className][ABOVE | BELOW] overhang
 WIDTH minWidth PARALLEL parLength WITHIN parWithin
 [EXCEPTEXTRACUT [cutWithin]]
 [EXCEPTTWOEDGES]
 ;..." ;]
[RESISTANCE resistancePerCut ;]
[PROPERTY propName propVal ;] ...

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 18 Product Version 5.7

[ACCURRENTDENSITY {PEAK | AVERAGE | RMS}
 { value
 | FREQUENCY freq_1 freq_2 ... ;
 [CUTAREA cutArea_1 cutArea_2 ... ;]
 TABLEENTRIES
 v_freq_1_cutArea_1 v_freq_1_cutArea_2 ...
 v_freq_2_cutArea_1 v_freq_2_cutArea_2 ...
 ...
 } ;]
[DCCURRENTDENSITY AVERAGE
 { value
 | CUTAREA cutArea_1 cutArea_2 ... ;
 TABLEENTRIES value_1 value_2 ...
 } ;]
[ANTENNAMODEL {OXIDE1 | OXIDE2 | OXIDE3 | OXIDE4} ;] ...
[ANTENNAAREARATIO value ;] ...
[ANTENNADIFFAREARATIO {value | PWL ((d1 r1) (d2 r2) ...)} ;] ...
[ANTENNACUMAREARATIO value ;] ...
[ANTENNACUMDIFFAREARATIO {value | PWL ((d1 r1) (d2 r2) ...)} ;] ...
[ANTENNAAREAFACTOR value [DIFFUSEONLY] ;] ...
[ANTENNACUMROUTINGPLUSCUT ;]
[ANTENNAGATEPLUSDIFF plusDiffFactor ;]
[ANTENNAAREAMINUSDIFF minusDiffFactor ;]
[ANTENNAAREADIFFREDUCEPWL
 ((diffArea1 diffAreaFactor1) (diffArea2 diffAreaFactor2) ...) ;]

END layerName

Defines cut layers in the design. Each cut layer is defined by assigning it a name and design
rules. You must define cut layers separately, with their own layer statements.

You must define layers in process order from bottom to top. For example:
poly masterslice

cut01 cut

metal1 routing

cut12 cut

metal2 routing

cut23 cut

metal3 routing

ACCURRENTDENSITY

Specifies how much AC current a cut of a certain area can handle at a certain frequency.
For an example using the ACCURRENTDENSITY syntax, see Example 1-2 on page 83.
The ACCURRENTDENSITY syntax is defined as follows:
{PEAK | AVERAGE | RMS}
{ value
| FREQUENCY freq_1 freq_2 ... ;

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 19 Product Version 5.7

 [CUTAREA cutArea_1 cutArea_2 ... ;]
 TABLEENTRIES
 v_freq_1_cutArea_1 v_freq_1_cutArea_2 ...
 v_freq_2_cutArea_1 v_freq_2_cutArea_2 ...
 ...
} ;

 PEAK Specifies the peak limit of the layer.

 AVERAGE Specifies the average limit of the layer.

 RMS Specifies the root mean square limit of the layer.

 value Specifies a maximum current limit for the layer in milliamps per
square micron (mA/µm2).
Type: Float

 FREQUENCY Specifies frequency values, in megahertz. You can specify more
than one frequency. If you specify multiple frequency values, the
values must be specified in ascending order.

If you specify only one frequency value, there is no frequency
dependency, and the table entries are assumed to apply to all
frequencies.
Type: Float

 CUTAREA Specifies cut area values, in square microns (µm2). You can
specify more than one cut area. If you specify multiple cut area
values, the values must be specified in ascending order.

If you specify only one cut area value, there is no cut area
dependency, and the table entries are assumed to apply to all cut
areas.
Type: Float

 TABLEENTRIES Defines the maximum current for each frequency and cut area
pair specified in the FREQUENCY and CUTAREA statements, in
mA/µm2.

The pairings define each cut area for the first frequency in the
FREQUENCY statement, then the cut areas for the second
frequency, and so on. The final value for a given cut area and
frequency is computed from a linear interpolation of the table
values.
Type: Float

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 20 Product Version 5.7

ANTENNAAREADIFFREDUCEPWL ((diffArea1 diffAreaFactor1)
(diffArea2 diffAreaFactor2) ...)

Indicates that the cut_area is multiplied by a diffAreaFactor computed from a
piece-wise linear interpolation, based on the diffusion area attached to the cut.
The diffArea values are floats, specified in microns squared. The diffArea values
should start with 0 and monotonically increase in value to the maximum size diffArea
possible. The diffAreaFactor values are floats with no units. The
diffAreaFactor values are normally between 0.0 and 1.0. If no statement rule is
defined, the diffMetalReduceFactor value in the PAR(mi) equation defaults to
1.0.
For more information on the PAR(mi) equation and process antenna models, see
Calculating Ratios for a Cut Layer, in Appendix C, “Calculating and Fixing Process
Antenna Violations.”

ANTENNAAREAFACTOR value [DIFFUSEONLY]

Specifies the multiply factor for the antenna metal area calculation. DIFFUSEONLY
specifies that the current antenna factor should only be used when the corresponding
layer is connected to the diffusion.
Default: 1.0
Type: Float
For more information on process antenna calculation, see Appendix C, “Calculating and
Fixing Process Antenna Violations.”
Note: If you specify a value that is greater than 1.0, the computed areas will be larger,
and violations will occur more frequently.

ANTENNAAREAMINUSDIFF minusDiffFactor
Indicates that the antenna ratio cut_area should subtract the diffusion area connected to
it. This means that the ratio is calculated as:
ratio = (cutFactor x cut_area - minusDiffFactor x diff_area)/gate_area
If the resulting value is less than 0, it should be truncated to 0. For example, if a via2
shape has a final ratio that is less than 0 because it connects to a diffusion shape, then
the cumulative check for metal3 (or via3) above the via2 shape adds a cumulative value
of 0 from the via2 layer. (See Example 1 in Cut Layer Process Antenna Models, in
Appendix C, “Calculating and Fixing Process Antenna Violations.”.)
Type: Float
Default: 0.0

ANTENNAAREARATIO value
Specifies the maximum legal antenna ratio, using the area of the metal wire that is not
connected to the diffusion diode. For more information on process antenna calculation,
see Appendix C, “Calculating and Fixing Process Antenna Violations.”
Type: Integer

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 21 Product Version 5.7

ANTENNACUMAREARATIO value
Specifies the cumulative antenna ratio, using the area of the metal wire that is not
connected to the diffusion diode. For more information on process antenna calculation,
see Appendix C, “Calculating and Fixing Process Antenna Violations.”
Type: Integer

ANTENNACUMDIFFAREARATIO {value | PWL ((d1 r1) (d2 r2)...)}
Specifies the cumulative antenna ratio, using the area of the metal wire that is connected
to the diffusion diode. You can supply an explicit ratio value or specify piece-wise linear
format (PWL), in which case the cumulative ratio is calculated using linear interpolation of
the diffusion area and ratio input values. The diffusion input values must be specified in
ascending order.
Type: Integer
For more information on process antenna calculation, see Appendix C, “Calculating and
Fixing Process Antenna Violations.”

ANTENNACUMROUTINGPLUSCUT

Indicates that cumulative ratio rules (that is, ANTENNACUMAREARATIO, and
ANTENNACUMDIFFAREARATIO) accumulate with the previous routing layer instead of
the previous cut layer. Use this to combine metal and cut area ratios into one rule.
For more information on process antenna models, see Calculating Ratios for a Cut
Layer, in Appendix C, “Calculating and Fixing Process Antenna Violations.”

ANTENNADIFFAREARATIO {value | PWL ((d1 r1) (d2 r2)...)}
Specifies the antenna ratio, using the area of the metal wire connected to the diffusion
diode. You can supply an explicit ratio value or specify piece-wise linear format (PWL),
in which case the ratio is calculated using linear interpolation of the diffusion area and
ratio input values. The diffusion input values must be specified in ascending order.
Type: Integer
For more information on process antenna calculation, see Appendix C, “Calculating and
Fixing Process Antenna Violations.”

ANTENNAGATEPLUSDIFF plusDiffFactor

Indicates the antenna ratio gate area includes the diffusion area multiplied by
plusDiffFactor. This means that the ratio is calculated as:
ratio = cut_area / (gate_area + plusDiffFactor x diff_area)
The ratio rules without “DIFF” (the ANTENNAAREARATIO, ANTENNACUMAREARATIO,
ANTENNASIDEAREARATIO, and ANTENNACUMSIDEAREARATIO statements), are
unnecessary for this layer if ANTENNAGATEPLUSDIFF is defined because a zero
diffusion area is already accounted for by the ANTENNADIFF*RATIO statements.
Type: Float
Default: 0.0

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 22 Product Version 5.7

For more information on process antenna models, see Calculating Ratios for a Cut
Layer, in Appendix C, “Calculating and Fixing Process Antenna Violations.”

ANTENNAMODEL {OXIDE1 | OXIDE2 | OXIDE3 | OXIDE4}

Specifies the oxide model for the layer. If you specify an ANTENNAMODEL statement, that
value affects all ANTENNA* statements for the layer that follow it until you specify another
ANTENNAMODEL statement.
Default: OXIDE1, for a new LAYER statement
Because LEF is sometimes used incrementally, if an ANTENNA statement occurs twice
for the same oxide model, the last value specified is used. For any given ANTENNA
keyword, only one value or PWL table is stored for each oxide metal on a given layer.
For an example using the ANTENNAMODEL syntax, see Example 1-3 on page 88.

ARRAYSPACING

Specifies array spacing rules to use on the cut layer. An array spacing rule is intended
for large vias of size 3x3 or larger.
The ARRAYSPACING syntax is defined as follows:
[ARRAYSPACING [LONGARRAY]
 [WIDTH viaWidth] CUTSPACING cutSpacing
 {ARRAYCUTS arrayCuts
 SPACING arraySpacing} ... ;
]

 CUTSPACING cutSpacing

Specifies the edge-of-cut to edge-of-cut spacing inside one cut
array.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 23 Product Version 5.7

Example 1-2 Array Spacing Rules

■ Array Spacing Rule Example 1

Assume the following array spacing rule exists:
ARRAYSPACING WIDTH 2.0 CUTSPACING 0.2 ARRAYCUTS 3 SPACING 1.0 ;

Any via with a metal width greater than or equal to 2.0 µm should use the cut spacing of
0.2 µm between cuts inside 3x3 cut arrays, and the cut arrays should be spaced apart by

ARRAYCUTS arrayCuts SPACING arraySpacing

 Indicates that a large via array with a size greater than or equal
to arrayCuts x arrayCuts in both dimensions must use N x
N cut arrays (where N = arrayCuts) separated from other cut
arrays by a distance of greater than or equal to
arraySpacing.

For example, if arrayCuts = 4, then 2x3 and 2x4 arrays do not
need to follow the array spacing rule. However, 3x3 and 3x4
arrays must follow the rule (3x4 is legal, if the LONGARRAY
keyword is specified), while 4x4 or 4x5 arrays are violations,
unless an arrayCuts = 4 rule is specified. (See Array
Spacing Rule Example 1).

If you specify multiple {ARRAYCUTS ...} statements, the
arrayCuts values must be specified in increasing order. (See
Array Spacing Rule Example 3.)

Specifying more than one ARRAYCUTS statement creates
multiple choices for via array generation.

For example, you can define an arrayCuts = 4 rule with
arraySpacing = 1.0, and an arrayCuts = 5 rule with
arraySpacing = 1.5. Either rule is legal, and the application
should choose which rule to use (presumably based on which
rule produces the most via cuts in the given via area).

 LONGARRAY Indicates that the via can use N x M cut arrays, where N =
arrayCuts, and M can be any value, including one that is
larger than N. (See Array Spacing Rule Example 2.)

 WIDTH viaWidth

 Indicates that the array spacing rules only apply if the via metal
width is greater than or equal to viaWidth. (See Array Spacing
Rule Example 1.)

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 24 Product Version 5.7

a distance of greater than or equal to 1.0 µm from other cut arrays. This creates the via
shown in Figure 1-1 on page 24.

An array of 3x4 or 3x5 cuts spaced 0.2 µm apart is a violation, unless the LONGARRAY
keyword is specified. This is because the 3x3 sub-array, inside 3x4 or 3x5 cut array, does
not meet 1.0 µm spacing from other cut arrays. Also, any larger array, such as 4x4 or 4x5
cuts, is a violation because the 3x3 sub-array inside 4x4 or 4x5 cut array requires 1.0 µm
spacing from other cut arrays.

Figure 1-1 Via Created With Array Spacing Width Rule

■ Array Spacing Rule Example 2

The following array spacing rule is the same as Example 1, except the LONGARRAY
keyword is present and the WIDTH keyword is not specified, so it creates the via shown
in Figure 1-2 on page 25:
ARRAYSPACING LONGARRAY CUTSPACING 0.2 ARRAYCUTS 3 SPACING 1.0 ;

An array of 2x2, 2x3, or 2xM cuts ignores this rule.

An array of 3x3 or 3xM must have 1.0 µm spacing from other cut arrays and 0.2 µm
spacing between the cuts.

An array of 4x4 or 4xM is a violation because the array does not have 1.0 µm space from
the 3xM sub-array inside the 4xM array.

arraySpacing = 1.0,
therefore 1.0 µm is needed
between cut arrays.

viaWidth >= 2.0 µm;
therefore cut arrays
should be used in this
via.

arrayCuts = 3;
therefore 3x3 cut
arrays are used with
spacing = 0.2 µm
between the cuts
inside the cut array.

{

Large via that uses cut
arrays.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 25 Product Version 5.7

Figure 1-2 Via Created With Array Spacing Long Array Rule

■ Array Spacing Rule Example 3

Assume the following multiple array spacing rules exist:
ARRAYSPACING LONGARRAY CUTSPACING 0.2

 ARRAYCUTS 3 SPACING 1.0

 ARRAYCUTS 4 SPACING 1.5

 ARRAYCUTS 5 SPACING 2.0 ;

The application can choose between 3xM cut arrays with 1.0 µm spacing, 4xM cut arrays
with 1.5 µm spacing, or 5xM cut arrays with 2.0 µm spacing, using 0.2 cut-to-cut spacing
inside each cut array. No WIDTH value indicates that any via with more than three via cuts
in both dimensions (that is, 3x3 and 3x4, but not 2x4) must follow these rules.

DCCURRENTDENSITY

Specifies how much DC current a via cut of a certain area can handle in units of milliamps
per square micron (mA/µm2). For an example using the DCCURRENTDENSITY syntax,
see Example 1-4 on page 90.
The DCCURRENTDENSITY syntax is defined as follows:
AVERAGE
{ value
| CUTAREA cutArea_1 cutArea_2 ... ;

arraySpacing = 1.0,
therefore 1.0 µm is needed
between cut arrays.

arrayCuts = 3;
therefore 3xM cut
arrays are used with
spacing = 0.2 µm
between the cuts
inside the cut array.

{

Large via that uses cut
arrays.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 26 Product Version 5.7

 TABLEENTRIES value_1 value_2 ...
} ;

ENCLOSURE

Specifies an enclosure rule for the cut layer.
The ENCLOSURE syntax is described as follows:
[ENCLOSURE
 [ABOVE | BELOW] overhang1 overhang2
 [WIDTH minWidth [EXCEPTEXTRACUT cutWithin]
 | LENGTH minLength]
;]

 AVERAGE Specifies the average limit for the layer.

 value Specifies a current limit for the layer in mA/µm2.
Type: Float

 CUTAREA Specifies cut area values, in square microns. You can specify
more than one cut area value. If you specify multiple cut area
values, the values must be specified in ascending order.
Type: Float

 TABLEENTRIES Specifies the maximum current density for each specified cut area,
in mA/µm2. The final value for a specific cut area is computed from
a linear interpolation of the table values.
Type: Float

 ENCLOSURE [ABOVE | BELOW] overhang1 overhang2

 Indicates that any rectangle from this cut layer requires the routing
layers to overhang by overhang1 on two opposite sides, and by
overhang2 on the other two opposite sides. (See Figure 1-3 on
page 28.)
Type: Float, specified in microns

If you specify BELOW, the overhang is required on the routing layers
below this cut layer. If you specify ABOVE, the overhang is required
on the routing layers above this cut layer. If you specify neither, the
rule applies to both adjacent routing layers.

 WIDTH minWidth

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 27 Product Version 5.7

 Indicates that the enclosure rule only applies when the width of the
routing layer is greater than or equal to minWidth. If you do not
specify a minimum width, the enclosure rule applies to all widths
(as if minWidth equaled 0).
Type: Float, specified in microns

If you specify multiple enclosure rules with the same width (or with
no width), then there are several legal enclosure rules for this
width, and the application only needs to meet one of the rules. If
you specify multiple enclosure rules with different minWidth
values, the largest minWidth rule that is still less than or equal to
the wire width applies.

For example, if you specify enclosure rules for 0.0 µm, 1.0 µm, and
2.0 µm widths, then a 0.5 µm wire must meet a 0.0 rule, a 1.5 µm
wire must meet a 1.0 rule, and a 2.0 µm wire must meet a 2.0 rule.
(See Example 1-3 on page 28.)

EXCEPTEXTRACUT cutWithin

Indicates that if there is another via cut having same metal shapes
on both metal layers less than or equal to cutWithin distance
away, this ENCLOSURE with WIDTH rule is ignored and the
ENCLOSURE rules for minimum width wires (that is, no WIDTH
keyword) are applied to the via cuts instead. (See Example 1-4 on
page 29.)
Type: Float, specified in microns

LENGTH minLength

Indicates that the enclosure rule only applies if the total length of
the longest opposite-side overhangs is greater than or equal to
minLength. The total length of the overhang is measured at the
via cut center (see illustration F in Figure 1-5 on page 32).
Type: Float, specified in microns

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 28 Product Version 5.7

Figure 1-3 Enclosure Rule

Example 1-3 Enclosure Rules

■ The following definition describes a cut layer that has different enclosure rules for m1
below than for m2 above.
LAYER via12

TYPE CUT ;

WIDTH 0.20 ; #cuts .20 x .20 squares

ENCLOSURE BELOW .03 .01 ; #m1: 0.03 on two opposite sides, 0.01 on other

ENCLOSURE ABOVE .05 .01 ; #m2: 0.05 on two opposite sides, 0.01 on other

RESISTANCE 10.0 ; #10.0 ohms per cut

...

END via12

■ The following definition describes a cut layer that requires extra enclosure if the metal
width is wider:
LAYER via23

TYPE CUT ;

WIDTH 0.20 ; #cuts .20 x .20 squares

SPACING 0.15 #via23 edge-to-edge spacing is 0.15

ENCLOSURE .05 .01 ; #m2, m3: 0.05 on two opposite sides, 0.01 on

 #other sides

ENCLOSURE .02 .02 WIDTH 1.0 ; #m2 needs 0.02 on all sides if m2 width >=1.0

 #m3 needs 0.02 on all sides if m3 width >=1.0

ENCLOSURE .05 .05 WIDTH 2.0 ; #m2 needs 0.05 on all sides if m2 width >=2.0

 #m3 needs 0.05 on all sides if m3 width >=2.0

...

END via23

overhang2

overhang2

overhang1 overhang1

width of metallongest total overhang

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 29 Product Version 5.7

■ The following definition describes a cut layer that requires an overhang of .07 µm on all
sides of metal3, and an overhang of .09 µm on all sides of metal4, if the widths of
metal3 and metal4 are greater than or equal to 1.0 µm:
LAYER via34

TYPE CUT ;

WIDTH 0.25 ; #cuts .25 x .25 squares

ENCLOSURE .05 .01 ; #minimum width enclosure rule

ENCLOSURE BELOW .07 .07 WIDTH 1.0 ; #m3 needs .07 on all sides if m3 width >=1.0

ENCLOSURE ABOVE .09 .09 WIDTH 1.0 ; #m4 needs .09 on all sides if m4 width >=1.0

...

END via34

Example 1-4 Enclosure Rule With Width and ExceptExtraCut

The following definition describes a cut layer that requires an enclosure of either .05 µm on
opposite sides and 0.0 µm on the other two sides, or 0.04 µm on opposites sides and 0.01 µm
on the other two sides. It also requires an enclosure of 0.03 µm in all directions if the wire
width is greater than or equal to 0.03 µm, unless there is an extra cut (redundant cut) within
0.2 µm.
LAYER via34

TYPE CUT ;

WIDTH 0.10 #cuts .10 x .10 squares

SPACING 0.10 ; #minimum edge-to-edge spacing is 0.10

ENCLOSURE 0.0 0.05 ; #overhang 0.0 0.05

ENCLOSURE 0.01 0.04 ; #or, overhang 0.01 0.04

#if width >= 0.3, need 0.03 0.03, unless extra cut across wire within 0.2µm
ENCLOSURE 0.03 0.03 WIDTH 0.3 EXCEPTEXTRACUT 0.2 ;

...

END via34

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 30 Product Version 5.7

Figure 1-4 Illustrations of Enclosure Rule With Width and ExceptExtraCut

0.050.05

0.10

a) Okay; has 0.0 and 0.05 overhang.

0.01

0.040.04

b) Okay; has 0.01 and 0.04 overhang.

0.03

0.03
0.3

c) Okay; meets wide-wire
enclosure rule of 0.03 0.03.

0.10 0.05

d) Okay; extra cut is <= 0.2 away;
therefore, use min-width rule, and
both cuts meet min-width enclosure
rule of 0.0 and 0.5.

0.3

0.1

e) Violation. Extra cut is <= 0.2 away;
therefore, use min-width rule, but
cannot meet either 0.0 0.05 or 0.01
0.04 enclosure rules.

0.3

0.05

0.1

f) Okay. Extra cut is <= 0.2 away;
therefore use min-width rule, and both
cuts meet the min-width enclosure rule
of 0.0 0.05.

0.3

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 31 Product Version 5.7

Example 1-5 Enclosure Rule With Length and Width

The following definition describes a cut layer that requires an enclosure of .05 µm on opposite
sides and 0.0 µm on the other two sides, as long as the total length enclosure on any two
opposite sides is greater than or equal to 0.7 µm. Otherwise, it requires 0.05 µm on all sides
if the total enclosure length is less than or equal to 0.7 µm. It also requires 0.10 µm on all sides
if the metal layer has a width that is greater than or equal to 1.0 µm. (Figure 1-5 on page 32
illustrates examples of violations and acceptable vias for the three ENCLOSURE rules.)
LAYER via34

TYPE CUT ;

WIDTH 0.20 #cuts .20 x .20 squares

SPACING 0.20 ; #via34 edge-to-edge spacing is 0.20

ENCLOSURE 0.05 0.0 LENGTH 0.7 ; #overhang 0.05 0.0 if total overhang >= 0.7

ENCLOSURE 0.05 0.05 ; #or, overhang 0.05 on all sides

ENCLOSURE 0.10 0.10 WIDTH 1.0 ; #if width >= 1.0, always need 0.10

...

END via34

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 32 Product Version 5.7

Figure 1-5 Illustrations of Enclosure Rule With Length and Width

0.20 0.05

0.45

Longest overhang length = 0.70

b) Okay. Longest overhang length >=
0.70, and has 0.05 on opposite sides,
and 0.0 on other sides.

0.20 0.04

0.50

Longest overhang length = 0.74

c) Violation. Longest overhang length >=
0.70, but does not have 0.05 on opposite
sides, and did not meet second rule of
0.05 on all sides.

0.20

0.05

0.50

Longest overhang length = 0.70

d) Okay. Longest overhang length >=
0.70, and has 0.05 on opposite sides,
and 0.0 on other sides.

0.05

0.20 0.05

0.40

Longest overhang length = 0.65

a) Violation. Longest overhang
length < 0.70, and did not meet
second rule of 0.05 on all sides.

0.05 0.05

Longest overhang length = 0.40

e) Okay. Total length < 0.7; therefore
first rule fails, but second rule for 0.05
on all sides is met.

0.05

0.05

0.20

Longest overhang length = 0.85

f) Okay. Overhang length >= 0.70. (The
center of the via cut is where the total
overhang length is measured.)

0.05

0.40
0.20

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 33 Product Version 5.7

LAYER LayerName
Specifies the name for the layer. This name is used in later references to the layer.

PREFERENCLOSURE [ABOVE | BELOW] overhang1 overhang2 [WIDTH
minWidth]

Specifies preferred enclosure rules that can improve manufacturing yield, instead of
enclosure rules that absolutely must be met (see the ENCLOSURE keyword). Applications
should use the PREFERENCLOSURE rule when it has little or no impact on density and
routability.

PROPERTY propName propVal

Specifies a numerical or string value for a layer property defined in the
PROPERTYDEFINITIONS statement. The propName you specify must match the
propName listed in the PROPERTYDEFINITIONS statement.

RESISTANCE resistancePerCut

Specifies the resistance per cut on this layer. LEF vias without their own specific
resistance value, or DEF vias from a VIARULE without a resistance per cut value, can
use this resistance value.
Via resistance is computed using resistancePerCut and Kirchoff’s law for typical
parallel resistance calculation. For example, if R =10 ohms per cut, and the via has one
cut, then R =10 ohms. If the via has two cuts, then R = (1/2) * 10 = 5 ohms.

SPACING

Specifies the minimum spacing allowed between via cuts on the same net or different
nets. For via cuts on the same net, this value can be overridden by a spacing with the
SAMENET keyword. (See Example 1-6 on page 35.)
The SPACING syntax is defined as follows:

0.05

g) Violation. Meets first rule, but width >= 1.0;
therefore must meet third rule: 0.10 on all
sides.

1.0

1.2

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 34 Product Version 5.7

[SPACING cutSpacing
 [CENTERTOCENTER]
 [SAMENET]
 [LAYER secondLayerName [STACK]
 | ADJACENTCUTS {2 | 3 | 4} WITHIN cutWithin
 [EXCEPTSAMEPGNET]
 | PARALLELOVERLAP
 | AREA cutArea]
;] ...

 cutSpacing Specifies the default minimum spacing between via cuts, in
microns.
Type: Float

 CENTERTOCENTER

 Computes the cutSpacing or cutWithin distances from cut-
center to cut-center, instead of from cut-edge to cut-edge (the
default behavior). (See Spacing Rule Example 4.)

 SAMENET Indicates that the cutSpacing value only applies to same-net
cuts. The SAMENET cutSpacing value should be smaller than the
normal SPACING cutSpacing value that applies to different-net
cuts.

 LAYER secondLayerName

 Applies the spacing rule between objects on the cut layer and
objects on 2ndLayerName. The second layer must be a cut or
routing layer already defined in the LEF file, or the next routing layer
declared in the LEF file. This allows “one layer look ahead,” which is
needed in some technologies. (See Spacing Rule Example 1.)

 STACK Indicates that same-net cuts on two different layers can be stacked
if they are aligned. If the cuts are not the same size, the smaller cut
must be completely covered by the larger cut, to be considered
legal. If both cuts are the same size, the centers of the cuts must
be aligned, to be legal; otherwise, the cuts must have
cutSpacing between them. If cutSpacing is 0.0, the same-
net cut vias can be placed anywhere legally, including slightly
overlap case. (See Spacing Rule Example 7.)

Most applications only allow spacing checks and STACK checking if
secondLayerName is the cut layer below the current cut layer.

ADJACENTCUTS {2 |3 | 4} WITHIN cutWithin

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 35 Product Version 5.7

Example 1-6 Spacing Rule Examples

■ Spacing Rule Example 1

The following spacing rule defines the cut spacing required between a cut and the routing
immediately above the cut. The spacing only applies to “outside edges” of the routing
shape, and does not apply to a routing shape already overlapping the cut shape.
LAYER cut12

 Applies the spacing rule only when the cut has two, three, or four
via cuts that are less than cutWithin distance, in microns, from
each other. You can specify only one ADJACENTCUTS statement
per cut layer. For more information, see "Adjacent Via Cuts."
Type: Float (distance)

EXCEPTSAMEPGNET

Indicates that the ADJACENTCUTS rule does not apply between
cuts, if they are on the same net, and are on a power or ground net.
(See Spacing Rule Example 5.)

PARALLELOVERLAP

Indicates that cuts on different metal shapes that have a parallel
edge overlap greater than 0 require cutSpacing distance
between them.

Only one PARALLELOVERLAP spacing value is allowed per cut
layer. The rule does not apply to cuts that share the same metal
shapes above or below that cover the overlap area between the
cuts. (See Spacing Rule Example 8.)

AREA cutArea

Indicates that any cut with an area greater than or equal to
cutArea requires edge-to-edge spacing greater than or equal to
cutSpacing to all other cuts. (See Spacing Rule Example 6.)

A SPACING statement should already exist that applies to all cuts.
Only cuts that have area greater than or equal to cutArea require
extra spacing; therefore, cutSpacing for this keyword must be
greater than the default spacing.

If you include CENTERTOCENTER, the cutSpacing values are
computed from cut-center to cut-center, instead of from cut-edge to
cut-edge.
Type: Float, specified in microns squared

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 36 Product Version 5.7

SPACING 0.10 ; #normal min cut-to-cut spacing

SPACING 0.15 LAYER metal2 ; #spacing from cut to routing edge above

...

END cut12

LAYER metal2

...

END metal2

■ Spacing Rule Example 2

The following spacing rule specifies that extra space is needed for any via with more than
three adjacent cuts, which happens if one via has more than 2x2 cuts (see Figure 1-6 on
page 37). A cut that is within .25 µm of three other cuts requires spacing that is greater
than or equal to 0.22 µm.
LAYER CUT12

SPACING 0.20 ; #default cut spacing

SPACING 0.22 ADJACENTCUTS 3 WITHIN 0.25 ;

...

END CUT12

Adjacent Via Cuts

A cut is considered adjacent if it is within distance of another cut in any direction
(including a 45-degree angle). Figure 1-6 on page 37 illustrates adjacent via cuts for 2x2,
2x3, and 3x3 vias, for typical spacing values (that is, the diagonal spacing is greater than

cut12 to metal2 spacing

metal1

cut12

metal2

The "SPACING 0.15 LAYER metal2 ;" rule only applies to outside edges;
therefore, no violations between cut12 and the top metal2 shape will occur.
Only the spacing to the bottom metal2 shape is checked.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 37 Product Version 5.7

the ADJACENTCUTS distance value). For three adjacent cuts, the ADJACENTCUTS rule
allows tight cut spacing on 1xn vias and 2x2 vias, but requires larger cut spacing on 2x3,
2x4 and 3xn vias. For four adjacent cuts, the rule allows tight cut spacing on 2xn vias,
but it requires larger cut spacing on 3xn vias.

The ADJACENTCUTS rule overrides the cut-to-cut spacing used in VIARULE GENERATE
statements for large vias if the ADJACENTCUTS spacing value is larger than the VIARULE
spacing value.

Figure 1-6

■ Spacing Rule Example 3

The following spacing rule specifies that extra space is required for any via with 3x3 cuts
or more (that is, a cut with four or more adjacent cuts – see Figure 1-6 on page 37). A
cut that is within .25 µm of four other cuts requires spacing that is greater than or equal
to 0.22 µm.
LAYER CUT12

SPACING 0.20 ; #default cut spacing

SPACING 0.22 ADJACENTCUTS 4 WITHIN 0.25 ;

...

END CUT12

■ Spacing Rule Example 4

The following spacing rule indicates that center-to-center spacing of greater than or
equal to 0.30 µm is required if the center-to-center spacing to three or more cuts is less

All vias have two
adjacent vias.

Both vias have three
adjacent vias.

Center via has four
adjacent vias.

2x2 via 2x3 via 3x3 via

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 38 Product Version 5.7

than 0.30 µm. This is equivalent to saying a cut can have only two other cuts with center-
to-center spacing that is less than 0.30 µm.
SPACING 0.30 CENTERTOCENTER ADJACENTCUTS 3 WITHIN 0.30 ;

■ Spacing Rule Example 5

Figure 1-7 on page 38 illustrates the following spacing rule:
SPACING 1.0 ;

SPACING 1.2 ADJACENTCUTS 2 WITHIN 1.5 EXCEPTSAMEPGNET ;

Figure 1-7 Except Same PG Net Rule

■ Spacing Rule Example 6

The following spacing rule indicates that normal cuts require 0.10 µm edge-to-edge
spacing, and cuts with an area greater than or equal to 0.02 µm2 require 0.12 µm edge-
to-edge spacing to all other cuts:

1.0

1.0

a) Allowed if cuts are on power or
ground nets. Violation if cuts are
on signal net.

1.0

1.0

b) Allowed if cuts are on the same
power or ground nets. Violation if cuts
are on signal nets.

1.0

1.0

c) Allowed if cuts are on the same power
or ground nets. Violation if cuts are on
signal nets, or different nets.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 39 Product Version 5.7

SPACING 1.0 ;

SPACING 0.12 AREA 0.02 ;

■ Spacing Rule Example 7

The following spacing rule indicates cut23 cuts must be 0.20 µm from cut12 cuts unless
they are exactly aligned:
LAYER cut23 ;

SPACING 0.20 SAMENET LAYER cut12 STACK ;

■ Spacing Rule Example 8

Figure 1-8 on page 40 illustrates the following spacing rule:
SPACING 1.0 ;

SPACING 1.5 PARALLELOVERLAP ;

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 40 Product Version 5.7

Figure 1-8 Parallel Overlap Rule

SPACINGTABLE

 Specifies spacing tables to use on the cut layer.
The SPACINGTABLE syntax is defined as follows:

1.5

1.5

1.0

1.0

1.0

1.0

a) Okay. Cuts have parallel
overlap > 0; therefore
PARALLELOVERLAP rule
of 1.5 applies.

b) Okay. Cuts have parallel
overlap = 0; therefore
PARALLELOVERLAP rule
does not apply, and only 1.0
spacing is needed.

d) Okay. Cuts overlap, but share
the same metal above or below;
therefore PARALLELOVERLAP
rule does not apply, and only 1.0
spacing is needed.

1.0

1.0

c) Okay. Cuts have no parallel
overlap; therefore
PARALLELOVERLAP rule
does not apply, and only 1.0
spacing is needed.

1.0

e) Okay. Cuts share same metal above
or below, and the shared metal does not
necessarily need to cover the projected
area between the cuts.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 41 Product Version 5.7

SPACINGTABLE ORTHOGONAL
 {WITHIN cutWithin SPACING orthoSpacing}...
;]

Example 1-7 Spacing Table Orthogonal Rule

The following example shows how a spacing table orthogonal rule is defined:
SPACING 0.10 #min spacing for all cuts

SPACINGTABLE ORTHOGONAL

 WITHIN 0.15 SPACING 0.11

 WITHIN 0.13 SPACING 0.13

 WITHIN 0.11 SPACING 0.15 ;

WITHIN cutWithin SPACING orthoSpacing

Indicates that if two cuts have parallel overlap that is greater than
0, and they are less than cutWithin distance from each other,
any other cuts in an orthogonal direction must have greater than or
equal to orthoSpacing. (See Example 1-6 on page 41., and
Figure 1-9 on page 42.)
Type: Float, specified in microns (for both values)

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 42 Product Version 5.7

Figure 1-9 Spacing Table Orthogonal Overlap Regions

TYPE CUT

Specifies that the layer is for contact-cuts. The layer is later referenced in vias, and in
rules for generating vias.

WIDTH minWidth

Specifies the minimum width of a cut. In most technologies, this is also the only legal size
of a cut.
Type: Float, specified in microns

cutWithin

Okay

a) If two cuts < cutWithin apart
and overlap, then no other cut is
allowed inside the orthogonal
overlap region.

orthoSpacing

Orthogonal
overlap
region

cutWithin

Okay

b) Orthogonal overlap region is
computed from the cutWithin overlap
region and cuts extended out
orthogonally by orthoSpacing.

orthoSpacing

Orthogonal
overlap
region

A
B

C

B A

C

cutWithin
overlap
region

cutWithin

c) Zero overlap of A and B;
therefore no orthogonal
overlap region exists.

B

A C

A

B

cutWithi

Violatio
orthoSpacin

d) The rule applies in both the X and
Y directions. In this case, the
horizontal overlap of A and C makes
B a violation.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 43 Product Version 5.7

Defining Cut Layer Properties to Create 32nm and 45nm Rules

You can include cut layer properties in your LEF file to create 32nm and 45nm rules that
currently are not supported by existing LEF syntax. The properties are specified inside the
LAYER CUT statements where they can be seen with other rules.

Before you can reference them, properties must be defined at the beginning of the LEF file in
the PROPERTYDEFINITIONS statement, immediately before the first LAYER statement.

■ Properties belong to the LAYER object and have a type of STRING.

■ Property strings cannot have new lines or carriage returns inside the string definitions
(that is, between the double quotation marks). This means that the entire string definition
for a property must be on the same line.

■ The property names used for these rules all start with LEF58_.

All properties use the following syntax within the LEF PROPERTYDEFINITIONS statement:

PROPERTYDEFINITIONS
LAYER propName STRING ["stringValue"] ;

END PROPERTYDEFINITIONS

The property definitions for the cut layer properties are as follows:
PROPERTYDEFINITIONS

 LAYER LEF58_ARRAYSPACING STRING ;

 LAYER LEF58_CUTCLASS STRING ;

 LAYER LEF58_TYPE STRING ;

 LAYER LEF58_BACKSIDE STRING ;

 LAYER LEF58_ENCLOSURE STRING ;

 LAYER LEF58_ENCLOSUREEDGE STRING ;

 LAYER LEF58_SPACING STRING ;

 LAYER LEF58_SPACINGTABLE STRING ;

END PROPERTYDEFINITIONS

Array Spacing Rule

You can use array spacing rules to require extra space between cut arrays, and between each
cut array inside one large via. This rule only applies to large vias with many cuts; it does not
apply to cuts for smaller vias.

You can create an array spacing rule using the following property definition:

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 44 Product Version 5.7

PROPERTY LEF58_ARRAYSPACING
“ARRAYSPACING [CUTCLASS className] [PARALLELOVERLAP]
 [LONGARRAY] [WIDTH viaWidth] CUTSPACING cutSpacing
 {ARRAYCUTS arrayCuts SPACING arraySpacing} ...
 ;” ;

All other keywords are the same as the existing LEF cut layer ARRAYSPACING syntax.

Where:

CUTCLASS className
Defines the array spacing rule for a specific cut class (className). If a cut layer has
more than one cut class, CUTCLASS must be specified. Specify individual rules with the
CUTCLASS keyword for each cut class, if needed.

PARALLELOVERLAP

Indicates that the array spacing rule applies only when there is a parallel edge overlap
greater than 0.

Array Spacing Rule Examples

■ The following array spacing rule indicates that any AY_array via with a metal width
greater than or equal to 1.0 µm should use cut spacing of 0.10 µm between cuts inside
3x3 cut arrays. The cut arrays should be at a distance greater than 0.30 µm from other
cut arrays with a parallel edge overlap greater than 0.
PROPERTY LEF58_ARRAYSPACING

"ARRAYSPACING CUTCLASS AY_array PARALLELOVERLAP WIDTH 1.0 CUTSPACING 0.10
ARRAYCUTS 3 SPACING 0.30 ;" ;

Cut Class Rule

Cut class rules can be used to define the cut classes to which different types of vias can
belong.

You can create a cut class rule using the following property definition:

PROPERTY LEF58_CUTCLASS
"CUTCLASS className WIDTH viaWidth [LENGTH viaLength] [CUTS numCut];..." ;

Where:

CUTCLASS className
Specifies the name of the cut class. This name is used in later references to the cut class.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 45 Product Version 5.7

WIDTH viaWidth
Specifies the cut width for this cut class. Any vias with cut widths of viaWidth belong
to this class.
Type: Float, specified in microns

LENGTH viaLength
Specifies the cut length for this cut class. Any vias with cut lengths of viaLength belong
to this class. If you do not specify LENGTH, cuts belonging to this cut class have a square
dimension of viaWidth.
Type: Float, specified in microns

CUTS numCut
Specifies the number of cuts of this cut class type that is equivalent to a given minimum
cut rule requirement. Also defines the resistance value for the cut class.
Type: Integer
Default: 1
The cut number is determined using the following equation. Assuming a minimum cut
rule requires n number of cuts, then:
n/numCut = equivalent number of cut class type cuts
Figure 1-10 on page 45 illustrates three via sizes. Via Vx1 contains one cut, via Vx2
contains 2 cuts, and via Vx4 contains four cuts. Using the above equation, Figure 1-11
on page 45 shows how many cuts of each cut type are required to meet the listed
minimum cut rule.
The resistance value is determined using the following equation:
cut layer resistance / numCut

Figure 1-10 Ilustration of Via Sizes

Figure 1-11 Cut Number Equivalent to Minimum Cut Rule Requirement

Vx1
(cut class
type = VA)

Vx2
(cut class
type = VB)

Vx4
(cut class
type = VC)

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 46 Product Version 5.7

Note: Numbers are always rounded up.

Cut Class Rule Examples

■ The following cut class rule indicates that any cut vias with a square dimension of 0.15
µm belong to cut class VA:
PROPERTY LEF58_CUTCLASS "CUTCLASS VA WIDTH 0.15 ;" ;

■ The following cut class rule indicates that any cut vias with a rectangular dimension of
0.15 µm and 0.35 µm belong to cut class VB. This cut class uses 2 cuts; therefore, for
a minimum cut rule requirement of two cuts, one via of this cut class is required to meet
the rule. If the resistance value of a cut layer is 10 ohms, the resistance value of vias of
this cut class is 1/2 x 10 = 5 ohms.
PROPERTY LEF58_CUTCLASS "CUTCLASS VB WIDTH 0.15 LENGTH 0.35 CUTS 2 ;" ;

■ The following cut class rule indicates that any cut vias with a square dimension of 0.20
µm belong to cut class VC. This cut class uses 4 cuts; therefore, for a minimum cut rule
requirement of 4 cuts, one via of this cut class is required to meet the rule.
PROPERTY LEF58_CUTCLASS "CUTCLASS VC WIDTH 0.20 CUTS 4 ;" ;

Type Rule

A type rule can be used to further classify a cut layer.

You can create a type rule using the following property definition:

TYPE CUT;
PROPERTY LEF58_TYPE
 "TYPE [TSV | PASSIVATION];" ;

Where:

Minimum Cut
Rule Vx1 (VA) Vx2 (VB) Vx4 (VC)

1 1 1 (1/2 rounds to 1) 1 (1/4 rounds to 1)

2 2 1 (2/2 = 1) 1 (2/4 = .5, rounds to 1)

3 3 2 (3/2 = 1.5, rounds to 2) 1 (3/4 rounds to 1)

4 4 2 (4/2 = 2) 1 (4/4 = 1)

5 5 3 (5/2 = 2.5, rounds to 3) 2 (5/4 = 1.25, rounds to 2)

6 6 3 (6/2 = 3) 2 (6/4 = 1.5, rounds to 2)

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 47 Product Version 5.7

TSV

Indicates that the cut layer is a through-silicon via (TSV) cut layer.

PASSIVATION

Indicates that the cut layer is a passivation cut layer.

Backside Rule

A backside rule can be used to specify that cut layer is used on the underside of the die.

You can create a backside rule using the following property definition:

PROPERTY LEF58_BACKSIDE
“BACKSIDE ;” ;

Where:

BACKSIDE

Indicates that the cut layer is a backside cut layer. Only a regular cut layer or a
passivation cut layer can be a backside layer; a TSV cut layer cannot be a backside layer.

Enclosure Rule

An enclosure rule can be used to prohibit via cuts from sharing the same wire edge.

You can create an enclosure rule using the following property definition:

PROPERTY LEF58_ENCLOSURE
“ENCLOSURE [CUTCLASS className][ABOVE | BELOW]
{overhang1 overhang2 | END overhang1 SIDE overhang2}
 [WIDTH minWidth
 [EXCEPTEXTRACUT cutWithin [PRL | NOSHAREDEDGE]]
 | LENGTH minLength]
 | EXTRACUT
 | REDUNDANTCUT cutWithin
] ;...” ;

Where:

All other keywords are the same as the existing LEF cut layer ENCLOSURE syntax.

CUTCLASS className

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 48 Product Version 5.7

Defines the enclosure rule for a specific cut class
(className). If a cut layer has more than one cut class,
CUTCLASS must be specified. Specify individual rules with the
CUTCLASS keyword for each cut class, if needed.

END overhang1 SIDE overhang2

Specifies that for rectangular cut vias, overhang1 applies to
the end edges, and overhang2 applies to the side edges. You
must use this syntax only with cut class having rectangular cut
vias.

EXCEPTEXTRACUT cutWithin [PRL | NOSHAREDEDGE]

Indicates that if there is another via cut having same metal
shapes on both metal layers less than or equal to cutWithin
distance away, then the ENCLOSURE with WIDTH rule is ignored,
and the ENCLOSURE rules for minimum width wires (that is, no
WIDTH keyword) are applied to the via cuts instead. If the
NOSHAREDEDGE keyword is specified, the via cuts cannot share
the same failing wire edge. (See Figure 1-13 on page 51)

If the PRL keyword is used, the exemption will only be applied if
there are neighbor cuts with common parallel run length greater
than 0 on the opposite edges for all of the failing edges of a cut.

If you have more than one ENCLOSURE statement for a given
WIDTH, only one of the ENCLOSURE statements for that WIDTH
needs to be met.
Type: Float, specified in microns (for all values)

EXTRACUT Indicates that the enclosure rule only applies when there are
two or more cuts having same metal shapes on both metal
layers. If you have multiple ENCLOSURE statements (some with
EXTRACUT) defined, only one of the rules need to be met.

REDUNDANTCUT cutWithin

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 49 Product Version 5.7

Enclosure Rule Examples

■ The following enclosure rule specifies that VC vias should have 0.10 µm overhang on all
four sides of the routing layers:
PROPERTY LEF58_ENCLOSURE

"ENCLOSURE CUTCLASS VC 0.10 0.10 ;" ;

■ Figure 1-13 on page 51 illustrates the following enclosure rules:
ENCLOSURE 0.0 0.05 ; #overhang 0.0 0.05

ENCLOSURE 0.02 0.02 ; #or, overhang 0.02 0.02

PROPERTY LEF58_ENCLOSURE

"ENCLOSURE 0.03 0.03 WIDTH 0.3 EXCEPTEXTRACUT 0.2 PRL ;" ;

Specifies the enclosure on redundant cuts, which have the
same metal shapes on both metal layers to a cut within
cutWithin distance that fulfills a ENCLOSURE statement
without the REDUNDANTCUT keyword.

If you specify the WIDTH keyword, the cut in a wide object with
width greater than and equal to minWidth should fulfill the
corresponding overhang values so that the redundant cuts
follow the overhang values in another ENCLOSURE statement
specified using the REDUNDANTCUT keyword. If multiple
enclosure rules are specified with the REDUNDANTCUT keyword,
the software only needs meet one of the rules.
Type: Float, specified in microns.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 50 Product Version 5.7

Figure 1-12 Illustrations of Enclosure Rule With PRL

■ Figure 1-13 on page 51 illustrates the following enclosure rules:
ENCLOSURE 0.0 0.05 ; #overhang 0.0 0.05

ENCLOSURE 0.01 0.04 ; #or overhang 0.01 0.04

PROPERTY LEF58_ENCLOSURE

"ENCLOSURE 0.03 0.03 WIDTH 0.3 EXCEPTEXTRACUT 0.2 ;" ;

0.3

0.05

0.1

a) OK. Extra-cut is <= 0.2 away,
with PRL > 0, so use min-width rule,
both cuts meet the 0.0 0.05
enclosure rule of 0.0 0.05

0.36

c) Violation, the left 0.02 failing edges
do not have a neighbor cut on the
opposite right edges

0.3

0.05

0.1

b) Violation. Extra-cut is <= 0.2
away, but no PRL, so wide-wire
enclosure of 0.03 0.03 is required

0.10.02

0.02

0.02

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 51 Product Version 5.7

Figure 1-13 Illustrations of Enclosure Rule With ExceptExtraCut and NoSharedEdge

■ The following enclosure rule specifies that VB rectangular cut vias should have 0.10 µm
overhang on the end edges, and no overhang on the side edges on the routing layers.
(See Figure 1-14 on page 52.)
PROPERTY LEF58_ENCLOSURE

"ENCLOSURE CUTCLASS VB END 0.10 SIDE 0.000 ;" ;

0.050.05

0.10

a) Okay; has 0.0 and 0.05 overhang.

0.01

0.040.04

b) Okay; has 0.01 and 0.04 overhang.

0.03

0.030.3

c) Okay; meets wide-wire
enclosure rule of 0.03 0.03.

0.10 0.05

d) Okay. Extra cut is close enough so
just need 0.0 0.5 enclosure. Violation
if NOSHAREDEDGE is specified; extra
cut has shared edge, so wide-wire
enclosure of 0.03 0.03 is required.

0.3 0.1

e) Violation. Extra cut is <= 0.2
away; therefore, use minimum
width rule, but cannot meet either
0.0 0.05 or 0.01 0.04 enclosure
rules.

0.3

0.05

0.1

f) Okay. Okay for NOSHAREDEDGE also.
Extra cut is <= 0.2 away, there is no
shared edge; so use minimum width
rule; both cuts meet the minimum width
enclosure rule of 0.0 0.05.

0.3

0.0

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 52 Product Version 5.7

Figure 1-14 Illustrations of Enclosure Rule With CutClass

■ The following enclosure rule specifies that VA vias with two or more same-metal cuts
should have 0.15 µm overhang on any two opposite sides of the routing layers. (See
Figure 1-15 on page 52).
PROPERTY LEF58_ENCLOSURE

"ENCLOSURE CUTCLASS VA 0.000 0.20 ;

"ENCLOSURE CUTCLASS VA 0.000 0.15 EXTRACUT;" ;

Figure 1-15 Illustrations of Enclosure Rule With CutClass

■ The following enclosure rule indicates that a VA cut via must at least have either 0.10
µm, 0.12 µm or 0.0 µm, or 0.20 µm enclosures. For redundant cuts having same metal
shapes on both metal layers, one of the VA cuts should at least have either 0.10 µm,
0.12 µm or 0.0 µm, or 0.20 µm enclosures, and the rest of the VA cuts within 0.15 µm
distance from it, should have at least 0.0 µm, 0.05 µm enclosures.
PROPERTY LEF58_ENCLOSURE

"ENCLOSURE CUTCLASS VA 0.10 0.12 ;

"ENCLOSURE CUTCLASS VA 0 0 0.20 ;

"ENCLOSURE CUTCLASS VA 0.0 0.05 REDUNDANTCUT 0.15 ;" ;

Enclosure Edge Rule

You can create a specific cut-edge enclosure rule that does not fit the normal enclosure rule
semantics by using the following property definition:

0.100.10

a) Okay; has 0.0 and 0.10
overhang on proper sides.

b) Violation; overhang on wrong sides.

0.10

0.10

0.150.15

a) Violation; only one cut. b) Okay; has 0.15 overhang on two
opposite sides with two or more same
metal cuts.

0.150.15

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 53 Product Version 5.7

PROPERTY LEF58_ENCLOSUREEDGE
"ENCLOSUREEDGE [CUTCLASS className] [ABOVE | BELOW] overhang
 WIDTH minWidth PARALLEL parLength WITHIN parWithin
 [EXCEPTEXTRACUT [cutWithin]]
 [EXCEPTTWOEDGES]
 ;..." ;

Where:

Enclosure Edge Rule Example

■ Figure 1-16 on page 54 illustrates the following enclosure edge rule:
ENCLOSURE 0.0 0.05 ; #normal enclosure rule

PROPERTY LEF58_ENCLOSUREEDGE

ENCLOSUREEDGE overhang WIDTH minWidth PARALLEL parLength WITHIN
parWithin

Indicates that any edge from this cut layer that is enclosed by
metal that is greater than or equal to minWidth wide, and the
enclosing metal edge is parallel to another metal edge greater
than parLength in length and less than parWithin
distance away, requires overhang enclosure.
Type: Float, specified in microns (for all values)

CUTCLASS className Defines the enclosure edge rule for a specific cut class
(className). If a cut layer has more than one cut class,
CUTCLASS must be specified. Specify individual rules with the
CUTCLASS keyword for each cut class, if needed.

ABOVE | BELOW If you specify ABOVE, the overhang is required on the routing
layers above this cut layer. If you specify BELOW, the overhang is
required on the routing layers below this cut layer. If you specify
neither, the rule applies to both adjacent routing layers.

EXCEPTEXTRACUT [cutWithin]

Indicates that if there is another via cut in the same metal
intersection, this rule is not checked. If you specify
cutWithin, the other via cut should be less than and equal to
cutWithin distance away in order to ignore this rule.

EXCEPTTWOEDGES Specifies that if the enclosing metal edges have parallel metal
edges greater than parLength that are less than
parWithin distance away on the opposite sides, the rule
does not apply.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 54 Product Version 5.7

"ENCLOSUREEDGE 0.02 WIDTH 0.2 PARALLEL 0.25 WITHIN 0.11 ;" ;

Figure 1-16 Illustration of Enclosure Edge Rules

■ Figure 1-17 on page 55 illustrates the following enclosure edge rule:
PROPERTY LEF58_ENCLOSUREEDGE

0.20

0.3

0.11

a) Okay. Width >= 0.2, but spacing to
neighbor is >= 0.11, so edge enclosure
rule is not required. Cut meets the
normal 0.00 0.05 enclosure rule.

0.20

0.3

0.10

b) Violation. Width >= 0.2, spacing to
neighbor is < 0.11, parallel length is >
0.25, so edge enclosure rule of 0.02 is
required but not met.

0.25

0.3

0.10

c) Okay. Width >= 0.2, spacing to neighbor is <
0.11, parallel length is > 0.25, so edge enclosure
rule of 0.02 is required and met. Cut also meets
the normal 0.00 0.05 enclosure rule.

0.05

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 55 Product Version 5.7

"ENCLOSUREEDGE 0.05 WIDTH 0.20 PARALLEL 0.50 WITHIN 0.10 EXCEPTTWOEDGES ;"
;

Figure 1-17 Illustration of Enclosure Edge Rules

Spacing with Same Metal Rule

You can use spacing with same metal rules to:

■ Require extra space between cuts on different nets that overlap orthogonally, in order to
avoid stress migration between the cuts. This rule does not apply if the cuts have the
same metal above or below.

■ Require extra spacing between different cut layers unless they are connected by a single
metal shape.

You can create a spacing with same metal rule using the following property definition:

PROPERTY LEF58_SPACING
"SPACING cutSpacing
 [MAXXY
 |[CENTERTOCENTER]
 [SAMENET | SAMEMETAL | SAMEVIA]
 [LAYER secondLayerName [STACK]
 | ADJACENTCUTS {2 | 3 | 4} [EXACTALIGNED exactAlignedCut]
 WITHIN cutWithin [EXCEPTSAMEPGNET][CUTCLASS className]
 [SIDEPARALLELOVERLAP]
 | PARALLELOVERLAP [EXCEPTSAMENET | EXCEPTSAMEMETAL | EXCEPTSAMEVIA]
 | PARALLELWITHIN within [EXCEPTSAMENET]

0.2

0.02

0.09

a) Okay, since it has 2 parallel
neighbors, the rule is ignored.

0.6

0.09

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 56 Product Version 5.7

 | SAMEMETALSHAREDEDGE parwithin [ABOVE][CUTCLASS className]
 [EXCEPTTWOEDGES][EXCEPTSAMEVIA numCut]
 | AREA cutArea] ;..." ;

Where:

All other keywords are the same as the existing LEF cut layer SPACING syntax.

MAXXY Indicates that the cutSpacing value is used as the largest x
or y distance for spacing between objects. This keyword can be
applied only when EUCLIDEAN is specified in
CLEARANCEMEASURE.

SAMEMETAL Indicates that the cutSpacing value only applies to cuts that
are overlapped with the same metal shape. The SAMEMETAL
cutSpacing value should be smaller than the normal
SPACING cutSpacing value that applies to different-net cuts.

See Figure 1-19 on page 60 for an example of the difference
between SAMEMETAL and SAMENET.

SAMEVIA

Indicates that the cutSpacing value only applies to cuts that
share the same metal shapes above and below that cover the
overlap area between the cuts. The SAMEVIA cutSpacing
value should be smaller than the normal SPACING
cutSpacing value that applies to different-metal cuts.

CUTCLASS className

Defines the adjacent cut spacing rule for a specific cut class
(className). If a cut layer has more than one cut class,
CUTCLASS must be specified. Specify individual rules with the
CUTCLASS keyword for each cut class, if needed.

ADJACENTCUTS {2 | 3 | 4} [EXACTALIGNED exactAlignedCut] WITHIN
cutWithin [SIDEPARALLELOVERLAP]

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 57 Product Version 5.7

The EXACTALIGNED keyword specifies that the adjacent cut
spacing rule applies when the cut has exactAlignedCut via
cuts that are perfectly aligned horizontally and/or vertically and
are less than cutWithin distance from each other.
Otherwise, the adjacent cut spacing rule applies when non-
perfectly aligned cuts are equal to the specified number of cuts
after the ADJACENTCUTS keyword, which must be smaller than
exactAlignedCut.

The SIDEPARALLELOVERLAP keyword indicates that the
adjacent cut spacing rule applies only when there is a parallel
edge overlap greater than 0 side by side between two
rectangular cut vias.

Note: Do not use the SIDEPARALLELOVERLAP for square cut
classes.

PARALLELOVERLAP Indicates that the cuts that have a parallel edge overlap greater
than 0 require cutSpacing distance between them. Only one
PARALLELOVERLAP spacing value is allowed per cut layer.

Note: You should not use PARALLELOVERLAP along with
SAMENET, SAMEMETAL, or SAMEVIA.

EXCEPTSAMENET Indicates that the parallel overlap rule does not apply to same-
net cuts.

EXCEPTSAMEMETAL Indicates that the parallel overlap rule does not apply to cuts
that share the same metal shapes above or below metal layers
that cover the overlap area between the cuts. This is the default
rule, if EXCEPTSAMENET and EXCEPTSAMEVIA are not
specified.

EXCEPTSAMEVIA Indicates that the parallel overlap rule does not apply to cuts
that share the same metal shapes both above and below the
metal layers that cover the overlap area between the cuts.

PARALLELWITHIN within

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 58 Product Version 5.7

Spacing Rule Examples

■ The following spacing rule indicates that cuts should have x or y distance of maximum
0.12 µm between them:
PROPERTY LEF58_SPACING

 "SPACING 0.12 MAXXY ;" ;

Specifies that if the edge of a neighbor cut is within within
distance beyond the edge of another cut, cutSpacing is
required between them. If a cut layer has more than one cut
class, the parallel within rule could be applied among all cut
classes, including via cuts belonging to different cut classes

Note: You should not use PARALLELWITHIN along with
SAMENET, SAMEMETAL, or SAMEVIA. In addition, you can either
specify PARALLELOVERLAP or PARALLELWITHIN.

EXCEPTSAMENET Indicates that the parallel within rule does not apply to same-net
cuts.

SAMEMETALSHAREDEDGE parWithin
[ABOVE][EXCEPTTWOEDGES][EXCEPTSAMEVIA numCut]

Specifies the spacing greater than and equal to cutSpacing
between two via cuts that have a common parallel run length
greater than 0, have common above and /or below metal
shapes covering the entire length of common projection
between them and have neighbor wire(s) within parWithin
distance from them on the same edge.

ABOVE specifies that the rule only applies if the via cut must
have a common metal routing layer. This means that having a
common below metal routing layer of the cuts is irrelevant.

EXCEPTTWOEDGES specifies that if the cuts have two neighbor
wires within parWithin distance on the opposite sides, the
spacing rule is ignored.

EXCEPTSAMEVIA numCut specifies that if there are greater
than and equal to numCut of cuts having common same metal
on both the above and below layers, the spacing rule is ignored.
Type: Integer

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 59 Product Version 5.7

Figure 1-18 Illustration of Spacing Rule with MAXXY

Figure 1-19 on page 60 illustrates the SAMEMETAL rules for the following examples.

■ If the via3 layer has the following spacing rules:
SPACING 1.5 ; #via3 to via3 spacing

SPACING 1.5 LAYER via2 ; #via3 to via2 spacing

Then both a) and b) are violations.

■ If the via3 layer has the following spacing rules, then a) is a violation, but b) is allowed:
SPACING 1.5 ;

SPACING 1.5 LAYER via2 ;

PROPERTY LEF58_SPACING

"SPACING 0 SAMEMETAL LAYER via2 STACK ;" ;

0.12

a) Violation, a neighbor cut edge is
within 0.02 of a cut edge, 0.1 spacing
is required between them.

0.13

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 60 Product Version 5.7

Figure 1-19 Illustration of SAMEMETAL Rules

■ The following spacing rule specifies that a VA via can have at most one neighboring VA
via within 0.30 µm center-to-center distance away:
PROPERTY LEF58_SPACING

 "SPACING 0.30 CENTERTOCENTER ADJACENTCUTS 2 WITHIN 0.30 CUTCLASS VA ;" ;

■ The following spacing rule specifies that 0.1 µm spacing is required between two cuts if
one cut is within 0.02 µm beyond the edge of the other cut:
PROPERTY LEF58_SPACING

 "SPACING 0.09 ;" ;

 "SPACING 0.1 PARALLELWITHIN 0.02 ;" ;

via2

m3

m4

via3 via3

m4

via2 via3

m4 m4

1.0
1.0

via3

m3

m3

m4

m3 m3

a) SAMENET rules apply,
but not SAMEMETAL

b) SAMEMETAL and
SAMENET rules apply.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 61 Product Version 5.7

Figure 1-20 Illustration of PARALLELWITHIN Rules

■ The following spacing rule indicates that cuts that share the same metal shapes on both
above and below metal layers should be 0.12 µm apart:
PROPERTY LEF58_SPACING

 "SPACING 0.12 SAMEVIA ;" ;

■ The following spacing rule indicates that a cut can have at the most two perfectly aligned
neighbor cuts horizontally and/or vertically or at the most one non-perfectly aligned
neighbor cut within 0.2 µm distance:
PROPERTY LEF58_SPACING

 "SPACING 0.2 CENTERTOCENTER ADJACENTCUTS 2 EXACTALIGNED 3 WITHIN 0.2 ;" ;

0.01

a) Violation, a neighbor cut edge is
within 0.02 of a cut edge, 0.1 spacing
is required among them.

0.09

0.02

0.09

b) Okay, the neighbor cut is not within
0.02 beyond the other cut edge.

0.09

c) Violation, the 0.1 parallel within
spacing applies to same-metal as
well

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 62 Product Version 5.7

Figure 1-21 Illustration of ADJACENTCUTS Rule with EXACTALIGNED

■ The following spacing rule indicates that a VB via can at most have 1 neighbor VB via
within 0.45 µm distance if they have a side to side parallel edge overlap greater than 0:
PROPERTY LEF58_SPACING

 "SPACING 0.45 ADJACENTCUTS 2 WITHIN 0.45 CUTCLASS VB SIDEPARALLELOVERLAP ;" ;

a) Okay. Only 1 neighbor
cut within 0.2

0.19

d) Violation.Three perfectly aligned
neighbor cuts would trigger the rule
spacing of 0.2

0.19

0.19

b) Violation. When there is 1 non-
perfectly aligned neighbor cut (on the
left), any other neighbor cut, perfectly
aligned or not (on the right) would
trigger the rule spacing of 0.2

0.19

0.19

c) Okay. Two perfectly aligned
neighbor cuts in ’L’ or a straight line
are fine

0.19

0.19 0.19

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 63 Product Version 5.7

■ The following spacing rule indicates that cuts that do not share the same metal shapes
both above and below metal layers and have a parallel edge overlap greater than 0 must
have 0.15 µm distance between them:
PROPERTY LEF58_SPACING

 "SPACING 0.12 SAMEVIA ;" ;

 "SPACING 0.13 ;" ;

 "SPACING 0.15 PARALLELOVERLAP EXCEPTSAMEVIA ;" ;

0.44

a) Violation, 2 VB < 0.2 with
side by side parallel edge
overlap > 0

VB

VB

VB

0.44

b) OK, the right VB does
not have side by side
parallel edge overlap > 0

VB

VB

VB

0.44

c) OK, the left VB only has
a side to end parallel edge
overlap > 0

VB VB

VB

0.35

d) Violation, the side by side parallel
edge overlap > 0 does not need to
be on the same edge

VB

VB

VB

0.35

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 64 Product Version 5.7

Figure 1-22 Illustration of PARALLELOVERLAP Rule with EXCEPTSAMEVIA

■ The following spacing rule indicates that two via cuts having common parallel run length
greater than 0, having common above and /or below metal shapes covering the entire
length of common projection between them and having one neighbor wire within 0.12 µm
distance of them on the same edge must be, at least 0.1 µm spacing apart:
PROPERTY LEF58_SPACING

 "SPACING 0.1 SAMEMETALSHAREDEDGE 0.12 EXCEPTTWOEDGES ;" ;

Figure 1-23 Illustration of SAMEMETALSHAREDEDGE rule

a) Violation, the cuts only share metal shape
on one metal layer, and 0.15 parallel overlap
spacing is needed. Okay, if
EXCEPTSAMEVIA is not used.

0.13

b) OK, the cuts share metal shapes on
both metal layers, and 0.12 SAMEVIA
spacing is needed and met

0.12

a) Violation, there is a neighbor
within 0.12, and 0.1 spacing
needed between the cuts

0.09
0.11

b) Okay, at least 1 cut having 2
neighbors within 0.12 on opposite
sides will exempt the rule

0.09
0.11 0.11

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 65 Product Version 5.7

Figure 1-24 Illustration of SAMEMETALSHAREDEDGE rule

a) Okay, the cuts do not have
common parallel run length
greater than 0

0.09
0.11

b) Violation, the neighbors
could be different wires

0.09

0.11

0.11

c) Okay, the top cut does not
have a neighbor

0.09

0.11

0.11

d) Violation, parallel opposite
neighbor edges, one neighbor
per cuts, triggers the rule

0.09

0.11

0.11

e) Okay, the cuts do not have
common metal shapes

0.09

0.11

f) Violation, the common metal
shapes covering the entire length
of the projection between the cuts

0.09

0.11

PROPERTY LEF58_SPACING "SPACING 0.1 SAMEMETALSHAREDEDGE 0.12 ;" ;

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 66 Product Version 5.7

Spacing Table Rule

Spacing table rules can be used to define cut spacing between different cut classes.

You can create a spacing table rule using the following property definition:

[PROPERTY LEF58_SPACINGTABLE
 “SPACINGTABLE
 [ORTHOGONAL
 {WITHIN cutWithin SPACING orthoSpacing} ... ;
 |[DEFAULT defaultCutSpacing]
 [SAMENET | SAMEMETAL]
 [LAYER secondLayerName]
 [CENTERTOCENTER { {className1 | ALL}| TO {className2 | ALL}
 }...]
 CUTCLASS { {className1 | ALL} [SIDE | END]}...
 {{className2 | ALL} [SIDE | END] {- | cutSpacing}
 {- | cutSpacing}...}...;
]
;...” ;

Where:

All other keywords are the same as the existing LEF cut layer SPACINGTABLE syntax.

DEFAULT defaultCutSpacing

Indicates the default cut spacing between cut classes.
Type: Float, specified in microns

Note: If a table entry contains -, the defaultCutSpacing
value applies. In this case the DEFAULT keyword must be
specified.

SAMENET Indicates that the cutSpacing values only apply to same-net
cuts. The SAMENET cutSpacing values should be smaller
than the normal SPACINGTABLE cutSpacing values that
apply to different-net cuts.

SAMEMETAL Indicates that the cutSpacing values only apply to cuts that
are overlapped with the same metal shape. The SAMEMETAL
cutSpacing values should be smaller than the normal
SPACINGTABLE cutSpacing values that apply to different-
metal cuts.

LAYER secondLayerName

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 67 Product Version 5.7

Defines the inter-cut-layer spacing between className1 in
the first row of the table on the current layer, to className2 in
the first column on secondLayerName cut layer. This cut
spacing ignores same-metal cuts, that is, cuts that are
overlapped with the same metal shape, unless the SAMEMETAL
keyword is used in a separate spacing table to specify inter-cut-
layer spacing for same-metal cuts. The second layer must be a
cut layer already defined in the LEF file, and immediately below
the current (“one layer look ahead” is not supported).

If an inter-cut-layer spacing table is defined for same-net cuts
using the SAMENET keyword, the cuts on two different layers can
always be stacked if they are exactly aligned (that is, the centers
of the cuts are aligned) for same sized cuts. For different sized
cuts, it is legal if the smaller cut is completely covered by the
bigger cut. Otherwise, the cuts must have cutSpacing
between them.

CENTERTOCENTER { {className1 | ALL} TO {className2 | ALL} }

Computes the cutSpacing distance from cut-center to cut-
center, instead of cut-edge to cut-edge (the default behavior),
for the given list of class name pairs. The className1 is one
of the cut classes in the first row of the table and className2
is one of the cut classes in the first column of the table. The ALL
keyword applies to all the vias on a cut layer that has only one
cut class without an explicit CUTCLASS definition. The keyword
should be specified only if one of the layers does not have a cut
class. Do not use CENTERTOCENTER rule for non-square cut
classes.

CUTCLASS { {className1 | ALL} [SIDE | END|]}

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 68 Product Version 5.7

You can specify up to two cut class SPACINGTABLE rules, one with the SAMENET or
SAMEMETAL rule, and one with neither of them. For the same cut layer spacing, you can
specify up to two tables for intercut layer spacing. You cannot mix with any other cut layer

Specifies a list of cut classes. The cut class list may not cover all
the cut classes in the cut layer. In this case, cut spacing
requirements are not needed for cut classes that are not
specified. (The ALL keyword is the same as described earlier.)

If an intercut layer is specified (using the LAYER keyword), the
cut classes in className1 are defined for the layer for which
the spacing table is defined. When intercut layer spacing is
needed between a cut layer with multiple cut classes and a cut
layer without a cut class, this cut class spacing table should be
specified, and the "SPACING ... LAYER ... ;" statement
cannot be used.

If the cut class has a rectangular cut shape, the SIDE and END
keywords can be used to specify cut spacing on a certain edge -
side/long or end/short (see Figure 1-25 on page 69). The
diagram indicates the regions that the other cut via should be
fully contained on certain edges to be applied.

{ {className2 |ALL} [SIDE | END] {- | cutSpacing} {- |
cutSpacing}

Indicates that cutSpacing is applied between className2
and className1 in the first row of the table. (The ALL, SIDE,
and END keywords are the same as described earlier.)

There are two sets of cutSpacing values for each table entry.
The first cutSpacing value applies if there is no parallel edge
overlap between the via cuts. The second cutSpacing value
applies if there is a parallel edge overlap greater than 0. If
CENTERTOCENTER keyword is used for two cut classes, both
the cutSpacing values between the cut classes should be
identical. If - is specified, the defaultCutSpacing value
(specified with the DEFAULT keyword) is used.

If interlayer cut spacing is specified with the LAYER keyword, the
cut class in className2 is defined for the
secondLayerName (specified with the LAYER keyword). If
LAYER is not specified, then the table must be a NxN
symmetrical table.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 69 Product Version 5.7

spacing statments, except for ADJACENTCUTS, PARALLELWITHIN, and
SAMEMETALSHAREDEDGE.

Multiple spacing among different cut classes is possible. For cut layer shapes in PIN or OBS
statement that belong to a macro of class CORE, the cut size of the via should match one of
the sizes of the cut classes so that the tools can determine the proper spacing for the cut. If
not, specific spacing should be defined for the cut in the macro definition using the SPACING
keyword that is part of the layer geometry specification in MACRO. If the SPACING keyword is
not specified, minimum spacing in the cut layer is used. If the cut size of the abstracted cuts
does not match one of the cut class sizes, a single spacing value is applied to all four sides
of the cut. This may cause DRC violations.

As with any OBS shapes, a cut layer OBS shape is always considered to belong to a net that
is different from any pin, even if it is overlapping with a pin geometry on the adjacent metal
layer. In this case, different-net cut-to-cut spacing is used to compute the cut-to-cut distance
between the OBS and any cut that is connected to the corresponding pin.

Note: It is recommended not to define a large cut layer OBS shape abstracting cut shapes,
even in a macro for a non-standard cell. If defined, minimum cut spacing is applied to prevent
blocking via access of nearby pins. This may, however, cause DRC violations. The cut layer
blockage shapes (defined using the BLOCKAGES keyword) will use minimum cut spacing
around them, similar to OBS.

Spacing Table Rule Examples

■ The following illustration shows the regions that the cut via should be overlapped with
when SIDE or END keywords are used.

Figure 1-25 Illustration of Spacing Table Rule With Side and End

Via

Regions of the other cut that
should be fully contained
when SIDE spacing is used.

Via
Regions of the other cut
that should be fully
contained when END
spacing is used.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 70 Product Version 5.7

■ The following spacing table rules specify the spacing requirements between VA via and
end edge of VB via, and end edge of VB via and VA via:

The rules translate into the following SPACINGTABLE property definition:
PROPERTY LEF58_SPACINGTABLE

 DEFAULT 0.15 CENTERTOCENTER VA TO VA VC TO VC

CUTCLASS VA VB SIDE VB END VC

VA 0.20 0.20 - - 0.30 - -

VB SIDE - - - - - 0.40 - -

VB END - 0.30 - 0.40 - 0.40 - 0.30

VC - - - - - 0.30 0.50 0.50

■ The following spacing table rule indicates that center-to-center spacing between two
square cut VA vias must be greater than or equal to 0.20 µm (see Figure 1-26 on
page 70):
PROPERTY LEF58_SPACINGTABLE CENTERTOCENTER VA TO VA

 CUTCLASS VA

 VA 0.20 0.20

Figure 1-26 Illustration of Spacing Table Rule With CenterToCenter

Cut-to-cut spacing between two center-to-center VA vias 0.20 µm

Cut-to-cut spacing between two center-to-center VC vias 0.50 µm

Edge-to-edge spacing between the end edge of VB and VA or VC via with
parallel edge overlap greater than 0

0.30 µm

Edge-to-edge spacing between the end edge of VB via and an edge of
another VB via with a parallel edge overlap greater than 0

0.40 µm

Edge-to-edge spacing for the rest of the combinations 0.15 µm

V

a) Violation. Center-to-
center spacing < 0.20.

0.19
V V

b) Okay. Center-to-center
spacing >= 0.20.

0.20
V

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 71 Product Version 5.7

■ The following spacing table rule indicates that a default spacing of 0.15 µm is required
between via VC and end edge of via VB when parallel edge overlap is less than 0 (see
Figure 1-27 on page 71):
PROPERTY LEF58_SPACINGTABLE DEFAULT 0.15

CUTCLASS VB SIDE VB END VC

VB SIDE - - - 0.40 - -

VB END - 0.40 - 0.40 - 0.30

VC - - - 0.30 0.50 0.50

Figure 1-27 Illustration of Spacing Table Rule With Default

■ The following spacing table rule indicates the spacing requirements between two VB vias
when default spacing of 0.15 µm is specified (see Figure 1-28 on page 72):
PROPERTY LEF58_SPACINGTABLE DEFAULT 0.15

CUTCLASS VB SIDE VB END

0.29

a) Violation. Spacing <
0.30 between end edge of
VB via and VC via.

VB

VC

0.29

b) Okay. No parallel edge overlap > 0
with the end edge of VB. Only default
0.15 spacing is needed.

VB

VC

0.29

c) Okay. No parallel edge overlap > 0
with the end edge of VB. Violation if
non-parallel edge overlap value is
0.30.

VB

VC

0.29

d) Okay. No parallel edge overlap > 0
with the end edge of VB. Violation if non-
parallel edge overlap value is 0.30.

VB

VC

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 72 Product Version 5.7

VB SIDE - 0.40 - -

VB END - - - -

Figure 1-28 Illustration of Spacing Table Rule With Default

■ The following spacing table rules specify the intercut layer spacing of different metals
between vias:

Intercut layer center-to-center spacing between two VA vias,
when one of the vias is on the current cut layer and the other is
on V1 cut layer

0.10 µm

Intercut layer spacing between the side edge of VB to VA via,
when one of the vias is on the current cut layer and the other is
on V1 cut layer

0.20 µm

Intercut layer spacing between the side edge of two VB vias,
when one of the vias is on the current cut layer and the other is
on V1 cut layer.

0.30 µm

0.39

a) Violation. Spacing <
0.40 between two VB vias
on the side edges.

VB

VB

0.39

b) Okay. No parallel edge
overlap > 0 between two VB
vias. Violation if non-parallel
edge overlap value is 0.40.

VB

VB

0.39

c) Okay. Spacing (default
spacing) >= 0.15 between side
edge of VB and end edge of VB.

VB

VB

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 73 Product Version 5.7

Note: All the intercut layer spacings are excluded for same metal cuts.

The rules translate into the following SPACINGTABLE property definition:
PROPERTY LEF58_SPACINGTABLE LAYER V1 CENTERTOCENTER VA TO VA

CUTCLASS VA VB SIDE

VA 0.10 0.10 0.20 0.20

VB SIDE 0.20 0.20 0.30 0.30

■ The following spacing table rule indicates that via VA should not overlap with the
projection line from the side edge of via VB (see Figure 1-29 on page 73):
PROPERTY LEF58_SPACINGTABLE DEFAULT 0.0 LAYER V1

CUTCLASS VA VB SIDE

VA - - 0.20 0.22

VB SIDE 0.20 0.22 - -

Figure 1-29 Illustration of Spacing Table Rule With Layer

■ The following spacing table rule specifies that the intercut layer spacing between VA via
on the current cut layer to any center-to-center vias on C1 cut layer, when the cuts do not
share a common same metal shape, must be 0.15 µm:
PROPERTY LEF58_SPACINGTABLE LAYER C1 CENTERTOCENTER VA TO ALL

CUTCLASS VA

0.21

VA is on V1 cut layer, and
does not have a common
same metal shape with
VB

VB

VA

0.19

b) Violation. Spacing < 0.20
with or without parallel edge
overlap > 0.

VB

VA

c) Okay. VA is not fully above
the projection line from the
SIDE edge

VB
VA

0.19

VB

VA

a) Violation. Spacing <
0.22.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 74 Product Version 5.7

ALL 0.15 0.15

Layer (Implant)
LAYER layerName

TYPE IMPLANT ;
[WIDTH minWidth ;]
[SPACING minSpacing [LAYER layerName2] ;] ...
[PROPERTY propName propVal ;] ...

END layerName

Defines implant layers in the design. Each layer is defined by assigning it a name and simple
spacing and width rules. These spacing and width rules only affect the legal cell placements.
These rules interact with the library methodology, detailed placement, and filler cell support.
You must define implant layers separately, with their own layer statements.

Example 1-1 Implant Layer

Typically, you define high-drive cells on one implant layer and low-drive cells on another
implant layer. The following example defines high-drive cells on implant1 and low-drive cells

LAYER layerName Specifies the name for the layer. This name is used in later
references to the layer.

LAYER layerName2 Specifies the name of another implant layer that requires extra
spacing that is greater than or equal to minspacing from this
implant layer.

PROPERTY propName propVal

Specifies a numerical or string value for a layer property defined
in the PROPERTYDEFINITIONS statement. The propName
you specify must match the propName listed in the
PROPERTYDEFINITIONS statement.

SPACING minSpacing

Specifies the minimum spacing for the layer. This value affects
the legal cell placement.
Type: Float, specified in microns

TYPE IMPLANT Identifies the layer as an implant layer.

WIDTH minWidth Specifies the minimum width for this layer. This value affects the
legal cell placement.
Type: Float, specified in microns

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 75 Product Version 5.7

on implant2. Both implant layers cover the entire cell. The placer and filler cell creation
attempt to legalize the cell overlaps in abutting rows to ensure that the minimum width and
spacing values are met.
LAYER implant1 #high-drive implant layer

TYPE IMPLANT ;

WIDTH 0.50 ; #implant rectangles must be >=0.50 microns wide

SPACING 0.50 ; #implant rectangles must be >=0.50 microns apart

END implant1

LAYER implant2 #low-drive implant layer

 TYPE IMPLANT ;

 WIDTH 0.50 ; #implant rectangles must be >=0.50 microns wide

 SPACING 0.50 ; #implant rectangles must be >=0.50 microns apart

END implant2

Assume that the high-drive cells and low-drive cells are completely covered by their
respective implant layers. Because there is no spacing between implant1 and implant2
specified, you might see a placement like that illustrated in Figure 1-30 on page 75.

Figure 1-30

Note that you can correct A, C, D, and E by putting in filler cells with the appropriate implant
type. However, B cannot be corrected by a filler cell—either the placer must avoid it, or you

HH

H H

H LL

LL

L

L L

A: MS B: MW, MS C: MS D: MS E: MW

MS = Minimum spacing error
MW = Minimum width error

Abut is legal

Flipped and
abutted rows

L

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 76 Product Version 5.7

must allow the filler cell or post-process command to move cells or modify the implant layer
to correct the error.

Layer (Masterslice or Overlap)
LAYER layerName

TYPE {MASTERSLICE | OVERLAP} ;
[PROPERTY propName propVal ;] ...
[PROPERTY LEF58_TYPE
 "TYPE {NWELL | PWELL};" ;]
[PROPERTY LEF58_SPACING
 "SPACING minSpacing [SAMENET | LAYER secondLayerName];..." ;]
[PROPERTY LEF58_WIDTH
 "WIDTH defaultWidth;" ;]

END layerName

Defines masterslice (nonrouting) or overlap layers in the design. Masterslice layers are
typically polysilicon layers and are only needed if the cell MACROs have pins on the polysilicon
layer.

The overlap layer should normally be named OVERLAP. It can be used in MACRO definitions to
form rectilinear-shaped cells and blocks (that is, an “L”-shaped block).

Each layer is defined by assigning it a name and design rules. You must define masterslice
or overlap layers separately, with their own layer statements.

You must define layers in process order from bottom to top. For example:
poly masterslice

cut01 cut

metal1 routing

cut12 cut

metal2 routing

cut23 cut

metal3 routing

LAYER layerName
Specifies the name for the layer. This name is used in later references to the layer.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 77 Product Version 5.7

TYPE

Specifies the purpose of the layer.

PROPERTY propName propVal

Specifies a numerical or string value for a layer property defined in the
PROPERTYDEFINITIONS statement. The propName you specify must match the
propName listed in the PROPERTYDEFINITIONS statement.

Defining Masterslice Layer Properties to Create 32nm and 45nm Rules

You can include masterslice layer properties in your LEF file to create 32nm and 45nm rules
that currently are not supported by existing LEF syntax. The properties are specified inside
the LAYER MASTERSLICE statements, where they can be seen with other rules.

Before you can reference them, properties must be defined at the beginning of the LEF file in
the PROPERTYDEFINITIONS statement, immediately before the first LAYER statement.

■ Properties belong to the LAYER object and have a type of STRING.

■ Property strings cannot have new lines or carriage returns inside the string definitions
(that is, between the double quotation marks). This means that the entire string definition
for a property must be on the same line.

■ The property names used for these rules all start with LEF58_.

All properties use the following syntax within the LEF PROPERTYDEFINITIONS statement:

PROPERTYDEFINITIONS
LAYER propName STRING ["stringValue"] ;

END PROPERTYDEFINITIONS

The property definitions for the masterslice layer properties are as follows:

MASTERSLICE Layer is fixed in the base array. If pins appear in the masterslice
layers, you must define vias to permit the routers to connect those
pins and the first routing layer. Wires are not allowed on
masterslice layers.

Routing tools can use only one masterslice layer. If a masterslice
layer is defined, exactly one cut layer must be defined between
the masterslice layer and the adjacent routing layers.

 OVERLAP Layer used for overlap checking for rectilinear blocks. Obstruction
descriptions in the macro obstruction statements refer to the
overlap layer.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 78 Product Version 5.7

PROPERTYDEFINITIONS

LAYER LEF58_TYPE STRING ;

LAYER LEF58_SPACING STRING ;

LAYER LEF58_WIDTH STRING ;

END PROPERTYDEFINITIONS

Type Rule

A type rule can be used to further classify a masterslice layer.

You can create a type rule using the following property definition:

TYPE MASTERSLICE;
PROPERTY LEF58_TYPE
 “TYPE {NWELL | PWELL} ;” ;

Where:

Spacing Rule

A spacing rule can be used to specify the minimum spacing allowed between objects on the
same well layer or objects on different well layers.

PROPERTY LEF58_SPACING
"SPACING minSpacing [SAMENET | LAYER secondLayerName] ;..." ;

Where:

NWELL Indicates that the layer is a nwell layer.

PWELL Indicates that the layer is a pwell layer.

minSpacing Specifies the default minimum spacing in a well layer.
Type: Float, specified in microns

SAMENET Indicates that the cutSpacing value only applies to same-net
cuts. The SAMENET cutSpacing value should be smaller than
the normal SPACING cutSpacing value that applies to
different-net cuts.

LAYER secondLayerName

Applies the spacing rule between objects on this well layer and
objects on another previously defined well layer
(secondLayerName) for specifying an inter-well layer spacing.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 79 Product Version 5.7

Width Rule

A width rule can be used to specify a default width for a well layer.

You can create a width rule using the following property definition:

PROPERTY LEF58_WIDTH
"WIDTH defaultWidth;" ;

Where:

Layer (Routing)
LAYER layerName

TYPE ROUTING ;
[PROPERTY LEF58_TYPE
 "TYPE {POLYROUTING | MIMCAP}] ;" ;
[PROPERTY LEF58_BACKSIDE
 “BACKSIDE ;” ;]
DIRECTION {HORIZONTAL | VERTICAL | DIAG45 | DIAG135} ;
PITCH {distance | xDistance yDistance} ;
[DIAGPITCH {distance | diag45Distance diag135Distance} ;]
WIDTH defaultWidth ;
[OFFSET {distance | xDistance yDistance} ;]
[DIAGWIDTH diagWidth ;]
[DIAGSPACING diagSpacing ;]
[DIAGMINEDGELENGTH diagLength ;]
[AREA minArea ;]
[PROPERTY LEF58_AREA
 "AREA minArea
 [[EXCEPTMINWIDTH minWidth]
 | [EXCEPTEDGELENGTH minLength]
 [EXCEPTMINSIZE minWidth minLength]
]
 ;..." ;]
[MINSIZE minWidth minLength [minWidth2 minLength2] ... ;]
[[SPACING minSpacing
 [RANGE minWidth maxWidth
 [USELENGTHTHRESHOLD
 | INFLUENCE value [RANGE stubMinWidth stubMaxWidth]
 | RANGE minWidth maxWidth]
 | LENGTHTHRESHOLD maxLength [RANGE minWidth maxWidth]
 | ENDOFLINE eolWidth WITHIN eolWithin
 [PARALLELEDGE parSpace WITHIN parWithin [TWOEDGES]]

WIDTH defaultWidth

Specifies the default width for the well layer.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 80 Product Version 5.7

 | SAMENET [PGONLY]
 | NOTCHLENGTH minNotchLength
 | ENDOFNOTCHWIDTH endOfNotchWidth NOTCHSPACING minNotchSpacing
 NOTCHLENGTH minNotchLength
]
 ;] ...
[SPACINGTABLE
 PARALLELRUNLENGTH {length} ...
 {WIDTH width {spacing} ...} ... ;
 [SPACINGTABLE
 INFLUENCE {WIDTH width WITHIN distance SPACING spacing} ... ;]
 | TWOWIDTHS {WIDTH width [PRL runLength] {spacing} ...} ... ;
]
]
[PROPERTY LEF58_SPACINGTABLE
 "SPACINGTABLE
 PARALLELRUNLENGTH {length} ...
 {WIDTH width {spacing} ...} ... ;
 [SPACINGTABLE
 INFLUENCE {WIDTH width WITHIN distance SPACING spacing} ... ;]
 | TWOWIDTHS {WIDTH width [PRL runLength] {spacing} ...} ... ;
 | PARALLELSPANLENGTH PRL runLength {SPANLENGTH spanLength {spacing} ...
};
 ;";
[PROPERTY LEF58_SPACING
 "SPACING eolSpace EOLPERPENDICULAR eolWidth perWidth ;" ;]
[PROPERTY LEF58_SPACING
 "SPACING eolSpace ENDOFLINE eolWidth [OPPOSITEWIDTH oppositeWidth]
 WITHIN eolWithin
 [ENDTOEND endToEndSpace [OTHERENDWIDTH otherEndWidth]]
 [MAXLENGTH maxLength | MINLENGTH minLength [TWOSIDES]]
 [EQUALRECTWIDTH]
 [PARALLELEDGE [SUBTRACTEOLWIDTH] parSpace WITHIN parWithin
 [MINLENGTH minLength] [TWOEDGES]]
 [ENCLOSECUT [BELOW | ABOVE] encloseDist CUTSPACING cutToMetalSpace]
 ;..." ;]
[PROPERTY LEF58_FILLTOFILLSPACING
 “FILLTOFILLSPACING spacing ;” ;]
[PROPERTY LEF58_OPPOSITEEOLSPACING
 "OPPOSITEEOLSPACING WIDTH width
 ENDWIDTH eolWidth [MINLENGTH minLength]
 [JOINTWIDTH jointWidth] JOINTLENGTH spanLength
 {[JOINTTOEDGEEND jointToEdgeEndLength]
 {[EXCEPTEDGELENGTH edgeLength [PRL maxPRL]]}...
 ENDTOEND endSpacing endSpacing
 ENDTOJOINT endSpacing jointSpacing
 JOINTTOEND jointSpacing endSpacing
 JOINTTOJOINT jointSpacing jointSpacing ;
 ;" ;
[WIREEXTENSION value ;]
[MINIMUMCUT numCuts WIDTH width [WITHIN cutDistance]

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 81 Product Version 5.7

 [FROMABOVE | FROMBELOW]
 [LENGTH length WITHIN distance] ;] ...
[PROPERTY LEF58_MINIMUMCUT
 "MINIMUMCUT numCuts WIDTH width [WITHIN cutDistance]
 [FROMABOVE | FROMBELOW]
 [LENGTH length WITHIN distance
 |AREA area [WITHIN distance]
] ;..." ;]
[MAXWIDTH width ;]
[MINWIDTH width ;]
[MINSTEP minStepLength
 [[INSIDECORNER | OUTSIDECORNER | STEP] [LENGTHSUM maxLength]
 | [MAXEDGES maxEdges] ;]
[PROPERTY LEF58_MINSTEP
 "MINSTEP minStepLength
 [MAXEDGES maxEdges]
 [MINADJACENTLENGTH minAdjLength
 [CONVEXCORNER | minAdjLength2]
 | MINBETWEENLENGTH minBetweenLength [EXCEPTSAMECORNERS]
] ;..." ;]
[PROPERTY LEF58_EOLEXTENSIONSPACING
 "EOLEXTENSIONSPACING spacing
 {ENDOFLINE eolWidth EXTENSION extension
 [ENDTOEND endToEndExtension]} ...
 [MINLENGTH minLength [TWOSIDES]]
 ;" ;]
[MINENCLOSEDAREA area [WIDTH width] ;] ...
[PROTRUSIONWIDTH width1 LENGTH length WIDTH width2 ;]
[RESISTANCE RPERSQ value ;]
[CAPACITANCE CPERSQDIST value ;]
[HEIGHT distance ;]
[THICKNESS distance ;]
[SHRINKAGE distance ;]
[CAPMULTIPLIER value ;]
[EDGECAPACITANCE value ;]
[MINIMUMDENSITY minDensity ;]
[MAXIMUMDENSITY maxDensity ;]
[DENSITYCHECKWINDOW windowLength windowWidth ;]
[DENSITYCHECKSTEP stepValue ;]
[FILLACTIVESPACING spacing ;]
[ANTENNAMODEL {OXIDE1 | OXIDE2 | OXIDE3 | OXIDE4} ;] ...
[ANTENNAAREARATIO value ;] ...
[ANTENNADIFFAREARATIO {value | PWL ((d1 r1) (d2 r2) ...) } ;] ...
[ANTENNACUMAREARATIO value ;] ...
[ANTENNACUMDIFFAREARATIO {value | PWL ((d1 r1) (d2 r2) ...) } ;] ...
[ANTENNAAREAFACTOR value [DIFFUSEONLY] ;] ...
[ANTENNASIDEAREARATIO value ;] ...
[ANTENNADIFFSIDEAREARATIO {value | PWL ((d1 r1) (d2 r2) ...) } ;] ...
[ANTENNACUMSIDEAREARATIO value ;] ...
[ANTENNACUMDIFFSIDEAREARATIO {value | PWL ((d1 r1) (d2 r2) ...) } ;] ...
[ANTENNASIDEAREAFACTOR value [DIFFUSEONLY] ;] ...

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 82 Product Version 5.7

[ANTENNACUMROUTINGPLUSCUT ;]
[ANTENNAGATEPLUSDIFF plusDiffFactor ;]
[ANTENNAAREAMINUSDIFF minusDiffFactor ;]
[ANTENNAAREADIFFREDUCEPWL ((diffArea1 diffMetalFactor1)
 (diffArea2 diffMetalFactor2) ...) ;]
[PROPERTY propName propVal ;] ...
[ACCURRENTDENSITY {PEAK | AVERAGE | RMS}
 { value
 | FREQUENCY freq_1 freq_2 ... ;
 [WIDTH width_1 width_2 ... ;]
 TABLEENTRIES
 v_freq_1_width_1 v_freq_1_width_2 ...
 v_freq_2_width_1 v_freq_2_width_2 ...
 ...
 } ;]
[DCCURRENTDENSITY AVERAGE
 { value
 | WIDTH width_1 width_2 ... ;
 TABLEENTRIES value_1 value_2 ...
 } ;]

END layerName

Defines routing layers in the design. Each layer is defined by assigning it a name and design
rules. You must define routing layers separately, with their own layer statements.

You must define layers in process order from bottom to top. For example:
poly masterslice

cut01 cut

metal1 routing

cut12 cut

metal2 routing

cut23 cut

metal3 routing

ACCURRENTDENSITY

Specifies how much AC current a wire on this layer of a certain width can handle at a
certain frequency in units of milliamps per micron (mA/µm).
Note: The true meaning of current density would have units of milliamps per square
micron (mA/µm2); however, the thickness of the metal layer is implicitly included, so the
units in this table are milliamps per micron, where only the wire width varies.
The ACCURRENTDENSITY syntax is defined as follows:
{PEAK | AVERAGE | RMS}
{ value
| FREQUENCY freq_1 freq_2 ... ;
 [WIDTH width_1 width_2 ... ;]

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 83 Product Version 5.7

 TABLEENTRIES
 v_freq_1_width_1 v_freq_1_width_2 ...
 v_freq_2_width_1 v_freq_2_width_2 ...
 ...
} ;

Example 1-2 AC Current Density Statements

 PEAK Specifies the peak current limit of the layer.

 AVERAGE Specifies the average current limit of the layer.

 RMS Specifies the root mean square current limit of the layer.

 value Specifies a maximum current for the layer in mA/µm.
Type: Float

 FREQUENCY Specifies frequency values, in megahertz. You can specify more
than one frequency. If you specify multiple frequency values, the
values must be specified in ascending order.

If you specify only one frequency value, there is no frequency
dependency, and the table entries are assumed to apply to all
frequencies.
Type: Float

 WIDTH Specifies wire width values, in microns. You can specify more
than one wire width. If you specify multiple width values, the
values must be specified in ascending order.

If you specify only one width value, there is no width dependency,
and the table entries are assumed to apply to all widths.
Type: Float

 TABLEENTRIES Defines the maximum current for each of the frequency and width
pairs specified in the FREQUENCY and WIDTH statements, in mA/
µm.

The pairings define each width for the first frequency in the
FREQUENCY statement, then the widths for the second frequency,
and so on.

The final value for a given wire width and frequency is computed
from a linear interpolation of the table values. the widths are not
adjusted for any process shrinkage, so the should be correct for
the “drawn width”.
Type: Float

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 84 Product Version 5.7

The following examples define AC current density tables:
LAYER met1

...

ACCURRENTDENSITY PEAK #peak AC current limit for met1

FREQUENCY 100 400 ; #2 freq values in MHz

WIDTH

 0.4 0.8 1.6 5.0 10.0 ; #5 width values in microns

TABLEENTRIES

9.0 7.5 6.5 5.4 4.7 #mA/um for 5 widths and freq_1 (100 Mhz)

7.5 6.8 6.0 4.8 4.0 ; #mA/um for 5 widths and freq_2 (400 Mhz)

ACCURRENTDENSITY AVERAGE #avg. AC current limit for met1

50.0 ; #mA/um for any width at any frequency

ACCURRENTDENSITY RMS #RMS AC current limit for met1

FREQUENCY 1 ; #1 freq (required by syntax; not really used

WIDTH

 0.4 0.8 1.6 5.0 20.0 ; #5 width values in microns

TABLEENTRIES

7.5 6.8 6.0 4.8 4.0 ; #mA/um for 5 widths

...

END met1 ;

The PEAK current density at .4 µm, 100 MHz is 9.0 mA/µm. Therefore, a 0.4 µm wide wire can
carry 9.0 x .4 = 3.6 mA of PEAK current.

The RMS current density at .4 µm is 7.5 mA/µm. Therefore, a 0.4 µm wide wire can carry 7.5
x .4 = 3.0 mA of RMS current.
LAYER cut12

...

ACCURRENTDENSITY PEAK #peak AC current limit for one cut

FREQUENCY 10 200 ; #2 freq values in MHz

 CUTAREA 0.16 0.32 ; #2 cut areas in um squared

TABLEENTRIES

0.5 0.4 #mA/um squared for 2 cut areas at freq_1 (10 Mhz)

0.4 0.35 ; #mA/um squared for 2 cut areas at freq_2 (200 Mhz)

ACCURRENTDENSITY AVERAGE #average AC current limit for via cut12

10.0 ; #mA/um squared for any cut area at any frequency

ACCURRENTDENSITY RMS #RMS AC current limit for via cut12

FREQUENCY 1 ; #1 freq (required by syntax; not really used)

 CUTAREA 0.16 1.6 ; #2 cut areas in um squared

TABLEENTRIES

10.0 9.0 ; #mA/um squared for 2 cut areas at any frequency

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 85 Product Version 5.7

....

END cut12 ;

ANTENNAAREADIFFREDUCEPWL ((diffArea1 diffMetalFactor1)
 (diffArea2 diffMetalFactor2) ...)

Indicates that the metal area is multiplied by a diffMetalReduceFactor that is
computed from a piece-wise linear interpolation based on the diff_area attached to the
metal. (See Example 4 in Routing Layer Process Antenna Model Examples, in
“Calculating and Fixing Process Antenna Violations” on page 369.) This means that the
ratio is calculated as:
ratio = (metalFactor x metal_area x diffMetalReduceFactor) / gate_area
The diffArea values are floats, specified in microns squared. The diffArea values
should start with 0 and monotonically increase in value to the maximum size diffArea
allowed. The diffMetalFactor values are floats with no units. The
diffMetalFactor values are normally between 0.0 and 1.0. If no rule is defined,
the diffMetalReduceFactor value in the PAR(mi) equation defaults to 1.0.
For more information on the PAR(mi) equation and process antenna models, see
Calculating a PAR, in “Calculating and Fixing Process Antenna Violations” on page 369.

ANTENNAAREAFACTOR value [DIFFUSEONLY]

Specifies the multiply factor for the antenna metal area calculation. DIFFUSEONLY
specifies that the current antenna factor should only be used when the corresponding
layer is connected to the diffusion.
Default: 1.0
Type: Float
For more information on process antenna calculation, see Appendix C, “Calculating and
Fixing Process Antenna Violations.”
Note: If you specify a value that is greater than 1.0, the computed areas will be larger,
and violations will occur more frequently.

ANTENNAAREAMINUSDIFF minusDiffFactor

Indicates that the antenna ratio metal area should subtract the diffusion area connected
to it. This means that the ratio is calculated as:
ratio = (metalFactor x metal_area - minusDiffFactor x diff_area) /gate_area
If the resulting value is less than 0, it should be truncated to 0. For example, if a metal2
shape has a final ratio that is less than 0 because it connects to a diffusion shape, then
the cumulative check for metal3 (or via2) connected to the metal2 shape adds in a
cumulative value of 0 from the metal2 layer. (See Example 1 in Routing Layer Process
Antenna Model Examples, in “Calculating and Fixing Process Antenna Violations” on
page 369.)
Type: Float
Default: 0.0

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 86 Product Version 5.7

For more information on process antenna models, see Calculating a PAR, in “Calculating
and Fixing Process Antenna Violations” on page 369.

ANTENNAAREARATIO value

Specifies the maximum legal antenna ratio, using the area of the metal wire that is not
connected to the diffusion diode. For more information on process antenna calculation,
see Appendix C, “Calculating and Fixing Process Antenna Violations.”
Type: Integer

ANTENNACUMAREARATIO value

Specifies the cumulative antenna ratio, using the area of the wire that is not connected
to the diffusion diode. For more information on process antenna calculation, see
Appendix C, “Calculating and Fixing Process Antenna Violations.”
Type: Integer

ANTENNACUMDIFFAREARATIO {value | PWL ((d1 r1) (d2 r2)...)}
Specifies the cumulative antenna ratio, using the area of the metal wire that is connected
to the diffusion diode. You can supply and explicit ratio value or specify piece-wise
linear format (PWL), in which case the cumulative ratio value is calculated using linear
interpolation of the diffusion area and ratio input values. The diffusion input values must
be specified in ascending order.
Type: Integer
For more information on process antenna calculation, see Appendix C, “Calculating and
Fixing Process Antenna Violations.”

ANTENNACUMDIFFSIDEAREARATIO {value | PWL ((d1 r1) (d2
r2)...)}

Specifies the cumulative antenna ratio, using the side wall area of the metal wire that is
connected to the diffusion diode. You can supply and explicit ratio value or specify
piece-wise linear format (PWL), in which case the cumulative ratio value is calculated
using linear interpolation of the diffusion area and ratio input values. The diffusion input
values must be specified in ascending order.
Type: Integer
For more information on process antenna calculation, see Appendix C, “Calculating and
Fixing Process Antenna Violations.”

ANTENNACUMROUTINGPLUSCUT

Indicates that the cumulative ratio rules (ANTENNACUMAREARATIO and
ANTENNACUMDIFFAREARATIO) accumulate with the previous cut layer instead of the
previous metal layer. Use this to combine metal and cut area ratios into one cumulative
ratio rule.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 87 Product Version 5.7

Note: This rule does not affect ANTENNACUMSIDEAREARATIO and
ANTENNACUMDIFFSIDEAREA models.
For more information on process antenna models, see Calculating a PAR, in “Calculating
and Fixing Process Antenna Violations” on page 369.

ANTENNACUMSIDEAREARATIO value

Specifies the cumulative antenna ratio, using the side wall area of the metal wire that is
not connected to the diffusion diode. For more information on process antenna
calculation, see Appendix C, “Calculating and Fixing Process Antenna Violations.”

ANTENNADIFFAREARATIO {value | PWL ((d1 r1) (d2 r2)...)}
Specifies the antenna ratio, using the area of the metal wire that is connected to the
diffusion diode. You can supply and explicit ratio value or specify piece-wise linear
format (PWL), in which case the ratio value is calculated using linear interpolation of the
diffusion area and ratio input values. The diffusion input values must be specified in
ascending order.
Type: Integer
For more information on process antenna calculation, see Appendix C, “Calculating and
Fixing Process Antenna Violations.”

ANTENNADIFFSIDEAREARATIO {value | PWL ((d1 r1) (d2 r2)...)}
Specifies the antenna ratio, using the side wall area of the metal wire that is connected
to the diffusion diode. You can supply and explicit ratio value or specify piece-wise
linear format (PWL), in which case the ratio value is calculated using linear interpolation
of the diffusion area and ratio input values. The diffusion input values must be specified
in ascending order.
Type: Integer
For more information on process antenna calculation, see Appendix C, “Calculating and
Fixing Process Antenna Violations.”

ANTENNAGATEPLUSDIFF plusDiffFactor

Indicates that the antenna ratio gate area includes the diffusion area multiplied by
plusDiffFactor. This means that the ratio is calculated as:
ratio = (metalFactor x metal_area) / (gate_area + plusDiffFactor x diff_area)
The ratio rules without “DIFF” (the ANTENNAAREARATIO, ANTENNACUMAREARATIO,
ANTENNASIDEAREARATIO, and ANTENNACUMSIDEAREARATIO statements), are
unnecessary for this layer if the ANTENNAGATEPLUSDIFF rule is specified because a
zero diffusion area already is accounted for by the ANTENNADIFF*RATIO statements.
(See Example 3 in Routing Layer Process Antenna Model Examples in “Calculating and
Fixing Process Antenna Violations” on page 369.)
Type: Float
Default: 0.0

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 88 Product Version 5.7

For more information on process antenna models, see Calculating a PAR, in “Calculating
and Fixing Process Antenna Violations” on page 369.

ANTENNAMODEL {OXIDE1 | OXIDE2 | OXIDE3 | OXIDE4}

Specifies the oxide model for the layer. If you specify an ANTENNAMODEL statement, that
value affects all ANTENNA* statements for the layer that follow it until you specify another
ANTENNAMODEL statement.
Default: OXIDE1, for a new LAYER statement
Because LEF is sometimes used incrementally, if an ANTENNA statement occurs twice
for the same oxide model, the last value specified is used. For any given ANTENNA
keyword, only one value or PWL table is stored for each oxide metal on a given layer.

Example 1-3 Antenna Model Statement

The following example defines antenna information for oxide models on layer metal1.
LAYER metal1

ANTENNAMODEL OXIDE1 ; #OXIDE1 not required, but good practice

ANTENNACUMAREARATIO 5000 ; #OXIDE1 values

ANTENNACUMDIFFAREARATIO 8000 ;

ANTENNAMODEL OXIDE2 ; #OXIDE2 model starts here

ANTENNACUMAREARATIO 500 ; #OXIDE2 values

ANTENNACUMDIFFAREARATIO 800 ;

ANTENNAMODEL OXIDE3 ;

ANTENNACUMAREARATIO 300 ;

ANTENNACUMDIFFAREARATIO 600 ;

...

END metal1

ANTENNASIDEAREAFACTOR value [DIFFUSEONLY]
Specifies the multiply factor for the antenna metal side wall area calculation.
DIFFUSEONLY specifies that the current antenna factor should only be used when the
corresponding layer is connected to the diffusion.
Default: 1.0
Type: Float
For more information on process antenna calculation, see Appendix C, “Calculating and
Fixing Process Antenna Violations.”

ANTENNASIDEAREARATIO value
Specifies the antenna ratio, using the side wall area of the metal wire that is not
connected to the diffusion diode. For more information on process antenna calculation,
see Appendix C, “Calculating and Fixing Process Antenna Violations.”
Type: Integer

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 89 Product Version 5.7

AREA minArea

Specifies the minimum metal area required for polygons on the layer. All polygons must
have an area that is greater than or equal to minArea, if no MINSIZE rule exists. If a
MINSIZE rule exists, all polygons must meet either the MINSIZE or the AREA rule. For
an example using these rules, see Example 1-8 on page 97.
Type: Float, specified in microns squared

CAPACITANCE CPERSQDIST value

Specifies the capacitance for each square unit, in picofarads per square micron. This is
used to model wire-to-ground capacitance.

CAPMULTIPLIER value

Specifies the multiplier for interconnect capacitance to account for increases in
capacitance caused by nearby wires.
Default: 1
Type: Integer

DCCURRENTDENSITY

Specifies how much DC current a wire on this layer of a given width can handle in units
of milliamps per micron (mA/µm).
The true meaning of current density would have units of milliamps per square micron
(mA/µm2); however, the thickness of the metal layer is implicitly included, so the units in
this table are milliamps per micron, where only the wire width varies.
The DCCURRENTDENSITY syntax is defined as follows:
AVERAGE
{ value
| WIDTH width_1 width_2 ... ;
 TABLEENTRIES value_1 value_2 ...
} ;

 AVERAGE Specifies the average current limit of the layer.

 value Specifies the current limit for the layer, in mA/µm.

 WIDTH Specifies wire width values, in microns. You can specify more
than one wire width. If you specify multiple width values, the
values must be specified in ascending order.
Type: Float

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 90 Product Version 5.7

Example 1-4 DC Current Density Statements

The following examples define DC current density tables:
LAYER met1

...

DCCURRENTDENSITY AVERAGE #avg. DC current limit for met1

50.0 ; #mA/um for any width

(or)
DCCURRENTDENSITY AVERAGE #avg. DC current limit for met1

WIDTH

 0.4 0.8 1.6 5.0 20.0 ; #5 width values in microns

TABLEENTRIES

7.5 6.8 6.0 4.8 4.0 ; #mA/um for 5 widths

...

END met1 ;

The AVERAGE current density at 0.4 µm is 7.5 mA/µm. Therefore, a 0.4 µm wide wire can carry
7.5 x .4 = 3.0 mA of AVERAGE DC current.
LAYER cut12

...

DCCURRENTDENSITY AVERAGE #avg. DC current limit for via cut12

10.0 ; #mA/um squared for any cut area

(or)
DCCURRENTDENSITY AVERAGE #avg. DC current limit for via cut12

 CUTAREA 0.16 0.32 ; #2 cut areas in µm2

TABLEENTRIES

10.0 9.0 ; #mA/um squared for 2 cut areas

...

END cut12 ;

 TABLEENTRIES Specifies the value of current density for each specified width, in
mA/µm.

The final value for a given wire width is computed from a linear
interpolation of the table values. The widths are not adjusted for
any process shrinkage, so they should be correct for the “drawn
width”.
Type: Float

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 91 Product Version 5.7

DENSITYCHECKSTEP stepValue

Specifies the stepping distance for metal density checks, in distance units.
Type: Float

DENSITYCHECKWINDOW windowLength windowWidth

Specifies the dimensions of the check window, in distance units.
Type: Float

DIAGMINEDGELENGTH diagLength

Specifies the minimum length for a diagonal edge. Any 45-degree diagonal edge must
have a length that is greater than or equal to diagLength.
Type: Float, specified in microns

DIAGPITCH {distance | diag45Distance diag135Distance}

Specifies the 45-degree routing pitch for the layer. Pitch is used by the router to get the
best routing density.
Default: None
Type: Float, specified in microns

DIAGSPACING diagSpacing

Specifies the minimum spacing allowed for a 45-degree angle shape.
Default: None
Type: Float, specified in microns

DIAGWIDTH diagWidth

Specifies the minimum width allowed for a 45-degree angle shape.
Default: None
Type: Float, specified in microns

DIRECTION {HORIZONTAL | VERTICAL | DIAG45 | DIAG135}

Specifies the preferred routing direction. Automatic routing tools attempt to route in the
preferred direction on a layer. A typical case is to route horizontally on layers metal1 and
metal3, and vertically on layer metal2.

 distance Specifies one pitch value that is used for both the 45-degree angle
and 135-degree angle directions.

 diag45Distance diag135Distance

 Specifies the 45-degree angle pitch (the center-to-center space
between 45-degree angle routes) and the 135-degree angle pitch.

 HORIZONTAL Routing parallel to the x axis is preferred.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 92 Product Version 5.7

EDGECAPACITANCE value

Specifies a floating-point value of peripheral capacitance, in picofarads per micron. The
place-and-route tool uses this value in two situations:

For the second calculation, the tool uses value only if you set layer thickness, or layer
height, to 0. In this situation, the peripheral capacitance is used in the following formula:

FILLACTIVESPACING spacing

Specifies the spacing between metal fills and active geometries.
Type: Float

HEIGHT distance

Specifies the distance from the top of the ground plane to the bottom of the interconnect.
Type: Float

LAYER layerName

Specifies the name for the layer. This name is used in later references to the layer.

MAXIMUMDENSITY maxDensity

Specifies the maximum metal density allowed for the layer, as a percentage. The
minDensity and maxDensity values represent the metal density range within which
all areas of the design must fall. The metal density must be greater than or equal to
minDensity and less than or equal to maxDensity.
Type: Float
Value: Between 0.0 and 100.0

Example 1-5 Minimum and Maximum Density

 VERTICAL Routing parallel to the y axis is preferred.

 DIAG45 Routing along a 45-degree angle is preferred.

 DIAG135 Routing along a 135-degree angle is preferred.

Note: Angles are measured counterclockwise from the positive x axis.

 ■ Estimating capacitance before routing

■ Calculating segment capacitance after routing

 segment capacitance = (layer capacitance per square x segment width x segment length) +
(peripheral capacitance x 2 (segment width + segment length))

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 93 Product Version 5.7

The following example specifies a metal density range in which the minimum metal density
must be greater than or equal to 20 percent and the maximum metal density must be less
than or equal to 70 percent.
MINIMUMDENSITY 20.0 ;

MAXIMUMDENSITY 70.0 ;

MAXWIDTH width

Specifies the maximum wire width, in microns, allowed on the layer. Maximum wire width
is defined as the smaller value of the width and height of the maximum enclosed
rectangle. For example, MAXWIDTH 10.0 specifies that the width of every wire on the
layer must be less than or equal to 10.0 µm.
Type: Float

MINENCLOSEDAREA area [WIDTH width]

Specifies the minimum area size limit for an empty area that is enclosed by metal (that
is, a donut hole formed by the metal).

Example 1-6 Min Enclosed Area Statement

The following MINENCLOSEDAREA example specifies that a hole area must be greater than
or equal to 0.40 µm2.
LAYER m1

...

MINENCLOSEDAREA 0.40 ;

The following MINENCLOSEDAREA example specifies that a hole area must be greater than
or equal to 0.30 µm2. However, if any of the wires enclosing the hole have a width that is
greater than 0.15 µm, then the hole area must be greater than or equal to 0.40 µm2. If any of
the wires enclosing the hole are larger than 0.50 µm, then the hole area must be greater than
or equal to 0.80 µm2.
LAYER m1

...

MINENCLOSEDAREA 0.30 ;

 area Specifies the minimum area size of the hole, in microns
squared.
Type: Float

 width Applies the minimum area size limit only when a hole is created
from a wire that has a width that is greater than width, in
microns. If any of the wires that surround the donut hole are
larger than this value, the rule applies.
Type: Float

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 94 Product Version 5.7

MINENCLOSEDAREA 0.40 WIDTH 0.15 ;

MINENCLOSEDAREA 0.80 WIDTH 0.50 ;

MINIMUMCUT

Specifies the number of cuts a via must have when it is on a wide wire or pin whose width
is greater than width. The MINIMUMCUT rule applies to all vias touching this particular
metal layer. You can specify more than one MINIMUMCUT rule per layer. (See Example 1-
7 on page 95.)
The MINIMUMCUT syntax is defined as follows:
[MINIMUMCUT numCuts WIDTH width
 [WITHIN cutDistance]
 [FROMABOVE | FROMBELOW]
 [LENGTH length WITHIN distance]
;] ...

 numCuts Specifies the number of cuts a via must have when it is on a
wire or pin whose width is greater than width.
Type: Integer

 WIDTH width Specifies the width of the wire or pin, in microns.
Type: Float

WITHIN cutDistance

Indicates that numCuts via cuts must be less than
cutDistance from each other in order to be counted together
to meet the minimum cut rule. (See Figure 1-32 on page 96.)

 FROMABOVE | FROMBELOW

 Indicates whether the rule applies only to connections from
above this layer or from below.
Default: The rule applies to connections from above and below.

 LENGTH length WITHIN distance

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 95 Product Version 5.7

Example 1-7 Minimum Cut Rules

The following MINIMUMCUT definitions show different ways to specify a MINIMUMCUT rule.

■ Minimum Cut Rule Example 1

The following syntax specifies that two via cuts are required for metal4 wires that are
greater than 0.5 µm when connecting from metal3 or metal5.
LAYER metal4

MINIMUMCUT 2 WIDTH 0.5 ;

■ Minimum Cut Rule Example 2

The following syntax specifies that four via cuts are required for metal4 wires that are
greater than 0.7 µm, when connecting from metal3.
LAYER metal4

MINIMUMCUT 4 WIDTH 0.7 FROMBELOW ;

■ Minimum Cut Rule Example 3

The following syntax specifies that four via cuts are required for metal4 wires that are
greater than 1.0 µm, when connecting from metal5.
LAYER metal4

MINIMUMCUT 4 WIDTH 1.0 FROMABOVE ;

■ Minimum Cut Rule Example 4

The following syntax specifies that two via cuts are required for metal4 wires that are
greater than 1.1 µm wide and greater than 20.0 µm long, and the via cut is less than 5.0
µm from the wide wire. Figure 1-31 on page 96 illustrates this example.
LAYER metal4

 Indicates that the rule applies for thin wires directly connected to
wide wires, if the wide wire has a width that is greater than
width and a length that is greater than length, and the vias
on the thin wire are less than distance from the wide wire.
(See Figure 1-31 on page 96). The length value must be
greater than or equal to the width value.

If LENGTH and WITHIN are present, this rule only checks the
thin wire connected to a wide wire, and does not check the wide
wire itself. A separate MINIMUMCUT x WIDTH y ; statement
without LENGTH and WITHIN is required for any wide wire
minimum cut rule.
Type: Float, specified in microns

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 96 Product Version 5.7

MINIMUMCUT 2 WIDTH 1.1 LENGTH 20.0 WITHIN 5.0 ;

Figure 1-31 Minimum Cut Rule

■ Minimum Cut Rule Example 5

The following syntax specifies that two via cuts are required for metal4 wires that are
greater than 1.0 µm wide. The via cuts must be less than 0.3 µm from each other in order
to meet the minimum cut rule. Figure 1-32 on page 96 illustrates this example.
MINIMUMCUT 2 WIDTH 1.0 WITHIN 0.3 ;

Figure 1-32 Minimum Cut Within Rule

MINIMUMDENSITY minDensity

Specifies the minimum metal density allowed for the layer, as a percentage. The
minDensity and maxDensity values represent the metal density range within which

Within <5.0 µm

Width >1.1 µm

Length >20.0 µm

0.3 0.299
2.0 2.0

a) Violation. The wire width is > 1.0 µm,
therefore 2 cuts are needed. However,
the 2 cuts are >= 0.3 µm apart, therefore
they cannot be counted together.

b) Okay. The wire width is > 1.0 µm,
therefore 2 cuts are needed. The 2 cuts
are < 0.3 µm apart, therefore they are
counted together and meet the rule.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 97 Product Version 5.7

all areas of the design must fall. The metal density must be greater than or equal to
minDensity and less than or equal to maxDensity. For an example of this
statement, see Example 1-5 on page 92.
Type: Float
Value: Between 0.0 and 100.0

MINSIZE minWidth minLength [minWidth2 minLength2]

Specifies the minimum width and length of a rectangle that must be able to fit somewhere
within each polygon on this layer (see Figure 1-33 on page 98). All polygons must meet
this MINSIZE rule, if no AREA rule is specified. If an AREA rule is specified, all polygons
must meet either the MINSIZE or the AREA rule.
You can specify multiple rectangles by specifying a list of minWidth2 and
minLength2 values. If more than one rectangle is specified, the MINSIZE rule is
satisfied if any of the rectangles can fit within the polygon.
Type: Float, specified in microns, for all values

Example 1-8 Minimum Size and Area Rules

Assume the following minimum size and area rules:
LAYER metal1

TYPE ROUTING ;

AREA 0.07 ; #0.20 um x 0.35 um = 0.07 um^2

MINSIZE 0.14 0.30 ; #0.14 um x 0.30 um = 0.042 um^2

....

Figure 1-33 on page 98 illustrates how these rules behave when one or both of the rules are
present in the LAYER statement:

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 98 Product Version 5.7

Figure 1-33 Minimum Size and Area Rules

The following statement defines a MINSIZE rule that specifies that every polygon must have
a minimum area of 0.07 µm2, or that a rectangle of 0.14 x 0.30 µm must be able to fit within
the polygon, or that a rectangle of 0.16 x 0.26 µm must be able to fit within the polygon:
LAYER metal1

MINSIZE rule

minLength = 0.3 µm
minWidth = 0.14 µm
(area = 0.045 µm2)

AREA rule = 0.07 µm^2

x = 0.4 µm
y = 0.14 µm
area = 0.056 µm2

AREA only: violation
MINSIZE only: legal
AREA and MINSIZE: legal

x = 0.3 µm
y = 0.26 µm
area = 0.072 µm2

AREA only: legal
MINSIZE only: violation
AREA and MINSIZE: legal

x = 0.3 µm
y = 0.2 µm
area = 0.054 µm2

AREA only: violation
MINSIZE only: violation
AREA and MINSIZE: violation

x = 0.32 µm
y = 0.2 µm
area = 0.056 µm2

AREA only: violation
MINSIZE only: legal
AREA and MINSIZE: legal

x = 0.2 µm
y = 0.32 µm
area = 0.056 µm2

AREA only: violation
MINSIZE only: legal
AREA and MINSIZE: legal

a)

b)

c)

d)

e)

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 99 Product Version 5.7

TYPE ROUTING ;

AREA 0.07 ; #0.20 x 0.35 um = 0.07 um^2

MINSIZE 0.14 0.30 0.16 0.26 ; #0.14 x 0.30 um = 0.042 um^2
 #0.16 x 0.26 um = 0.0416 um^2

...

END metal1

MINSTEP

Specifies the minimum step size, or shortest edge length, for a shape. The MINSTEP rule
ensures that Optical Pattern Correction (OPC) can be performed during mask creation
for the shape.
Note: A single layer should only have one type of MINSTEP rule. It should include either
INSIDECORNER, OUTSIDECORNER, or STEP statements (with an optional LENGTHSUM
value), or one LENGTHSUM statement, or one MAXEDGES statement.
For an illustration of the MINSTEP rules, see Figure 1-34 on page 102. For an example,
see Example 1-9 on page 101.
The syntax for MINSTEP is as follows:
[MINSTEP minStepLength
 [[INSIDECORNER | OUTSIDECORNER | STEP]
 [LENGTHSUM maxLength]
 | [MAXEDGES maxEdges] ;]

 minStepLength Specifies the minimum step size, or shortest edge length, for a
shape. The edge of a shape must be greater than or equal to this
value, or a violation occurs.
Type: Float, specified in microns

 INSIDECORNER Indicates that a violation occurs if two or more consecutive
edges of an inside corner are less than minStepLength.

If LENGTHSUM is also defined, a violation only occurs if the total
length of all consecutive edges (that are less than
minStepLength) is greater than maxLength.

Shape b in Figure 1-34 on page 102 shows an inside corner. It is
considered an inside corner because the two edges >=
minStepLength (shown with thick lines) that abut the
consecutive short edges < minStepLength (shown with
dashed lines) form an inside corner (or concave shape).
Default: OUTSIDECORNER

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 100 Product Version 5.7

 OUTSIDECORNER Indicates that a violation occurs if two or more consecutive
edges of an outside corner are less than minStepLength.

If LENGTHSUM is also defined, a violation only occurs if the total
length of all consecutive edges (that are less than
minStepLength) is greater than maxLength.

Shape a in Figure 1-34 on page 102 shows an outside corner. It
is considered an outside corner because the two edges >=
minStepLength (shown with thick lines) that abut the
consecutive short edges < minStepLength (shown with
dashed lines) form an outside corner (or convex shape).

Note: This is the default rule, if INSIDECORNER,
OUTSIDECORNER, or STEP is not specified.

 STEP Indicates that a violation occurs if one or more consecutive
edges of a step are less than minStepLength.

If LENGTHSUM is also defined, a violation only occurs if the total
length of all consecutive edges (that are less than
minStepLength) is greater than maxLength.

Shape f in Figure 1-34 on page 102 shows a step. It is
considered a step because the two edges >= minStepLength
(shown with thick lines) that abut the consecutive short edges <
minStepLength (shown with dashed lines) form a step
instead of a corner.
Default: OUTSIDECORNER

 LENGTHSUM maxLength

 Specifies the maximum total length of consecutive short edges
(edges that are less than minStepLength) that OPC can
correct without causing new DRC violations.

If the total length of the edges is greater than maxLength, a
violation occurs. No violation occurs if the total length is less
than or equal to maxLength.

 MAXEDGES maxEdges

 Specifies that up to maxEdges consecutive edges that are less
than minStepLength in length are allowed, but more than
maxEdges in a row is a violation. Typically, most tools only
allow a maxEdges value of 0, 1, or 2. A maxEdges value of 0
means that no edge can be less than minStepLength.
Type: Integer

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 101 Product Version 5.7

Example 1-9 Minimum Step Rules

■ The following table shows the results of the specified MINSTEP rules using the shapes
in Figure 1-34 on page 102. For these rules, assume minStepLength equals 0.05
µm, and that each dashed edge is 0.04 µm in length.

MINSTEP Rule Result

MINSTEP 0.05 ; OUTSIDECORNER is the default behavior.
Therefore, shapes a and d are violations
because their consecutive edges are less than
0.05 µm. Shapes b, c, e, and f are not outside
corner checks.

MINSTEP 0.04 ; OUTSIDECORNER is the default behavior.
Therefore, shapes a and d are checked and are
legal because their consecutive edges are
greater than or equal to 0.04 µm.

MINSTEP 0.05 LENGTHSUM 0.08 ; Shape a is legal because its consecutive edges
are less than 0.05 µm, and the total length of the
edges is less than or equal to 0.08 µm. Shape d
is a violation because even though its
consecutive edges are less than 0.05 µm, the
total length of the edges is greater than 0.08 µm.

MINSTEP 0.05 LENGTHSUM 0.16 ; Shapes a and d are legal because the total
length of their consecutive edges is less than or
equal to 0.16 µm.

MINSTEP 0.05 INSIDECORNER ; Shapes b and e are violations because their
consecutive edges are less than 0.05 µm.
Shapes a, c, d, and f are not inside corner
checks.

MINSTEP 0.05 INSIDECORNER

 LENGTHSUM 0.15 ;
Shape b is legal because its consecutive edges
are less than 0.05 µm, and the total length of the
edges is less than or equal to 0.15 µm. Shape e
is a violation because even though its
consecutive edges are less than 0.05 µm, the
total length of the edges is greater than 0.15 µm.

MINSTEP 0.05 STEP ; Shapes c and f are violations because their
consecutive edges are less than 0.05 µm.
Shapes a, b, d, and e are not step checks.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 102 Product Version 5.7

Figure 1-34

■ Figure 1-35 on page 103 shows the results of the following MINSTEP MAXEDGES rule:
MINSTEP 1.0 MAXEDGES 2 ;

MINSTEP 0.05 STEP LENGTHSUM 0.08 ; Shape c is legal because its consecutive edges
are less than 0.05 µm, and the total length of the
edges is less than or equal to 0.08 µm. Shape f
is a violation because even though its
consecutive edges are less than 0.05 µm, the
total length of the edges is greater than 0.08 µm.

MINSTEP 0.04 STEP ; Shapes c and f are legal because their
consecutive edges are greater than or equal to
0.04 µm.

MINSTEP Rule Result

a) OUTSIDECORNER
0.08 µm LENGTHSUM

b) INSIDECORNER
0.08 µm LENGTHSUM

c) STEP
0.04 µm

d) OUTSIDECORNER
0.16 µm LENGTHSUM

e) INSIDECORNER
0.16 µm LENGTHSUM

f) STEP
0.12 µm LENGTHSUM

Note: All dashed edges are 0.04 µm in length.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 103 Product Version 5.7

Figure 1-35

MINWIDTH width

Specifies the minimum legal object width on the routing layer. For example, MINWIDTH
0.15 specifies that the width of every object must be greater than or equal to 0.15 µm.
This value is used for verification purposes, and does not affect the routing width. The
WIDTH statement defines the default routing width on the layer.
Default: The value of the WIDTH statement
Type: Float, specified in microns

OFFSET {distance | xDistance yDistance}

Specifies the offset for the routing grid for the layer. This value is used to align routing
tracks with standard cell boundaries, which helps routers get good on-grid access to the
cell pin shapes. For the best routing results, most standard cells have a 1/2 pitch offset
between the MACRO SIZE boundary and the center of cell pins that should be aligned
with the routing grid. If some other offset is required to get more pins to align, specify an
OFFSET value.
Generally, it is best for all of the horizontal layers to have the same offset and all of the
vertical layers to have the same offset, so that routing grids on different layers align with
each other. Higher layers can have a larger pitch, but for best results, they should still
align with a lower layer routing grid every few track.
Default: Half the routing pitch for the layer
Type: Float, specified in distance units

 distance Specifies one offset value that is used for both the x and y offsets.

 xDistance yDistance

0.95

0.95

0.95

0.95

a) Violation; there is more
than two edges in a row
that are < 1.0 µm in length.

b) Violation; there is more
than two edges in a row
that are < 1.0 µm in length.

c) No violation; there
are only two edges in
a row that ares < 1.0
µm in length.

0.95

1.0

0.950.95 0.95

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 104 Product Version 5.7

PITCH {distance | xDistance yDistance}

Specifies the required routing pitch for the layer. Pitch is used to generate the routing grid
(the DEF TRACKS). For more information, see “Routing Pitch” on page 171.
Type: Float, specified in microns

PROPERTY propName propVal

Specifies a numerical or string value for a layer property defined in the
PROPERTYDEFINITIONS statement. The propName you specify must match the
propName listed in the PROPERTYDEFINITIONS statement.

PROTRUSIONWIDTH width1 LENGTH length WIDTH width2
Specifies that the width of a protrusion must be greater than or equal to width1 if it is
shorter than length, and it connects to a wire that has a width greater than or equal to
width2 (see Figure 1-36 on page 105). Length is determined by the shortest possible
path among all of the protrusion wires with width smaller width1, and is measured by
the shortest outside edges of the wires.
Type: Float, specified in microns

Example 1-10 Protrusion

The following example specifies that a protrusion must have a width that is greater than or
equal to 0.28 µm, if the length of the protrusion is less than 0.60 µm and the wire it connects
to has a width that is greater than or equal to 1.20 µm.
LAYER m1

...

PROTRUSIONWIDTH 0.28 LENGTH 0.60 WIDTH 1.20 ;

...

 Specifies the x offset for vertical routing tracks, and the y offset for
horizontal routing tracks.

 distance Specifies one pitch value that is used for both the x and y pitch.

 xDistance yDistance

 Specifies the x pitch (the space between each vertical routing
track), and the y pitch (the space between each horizontal routing
track).

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 105 Product Version 5.7

Figure 1-36

Length >= 0.60

Width1 < 0.28

Width1 < 0.28

Width2 >= 1.20

Width1 <
0.28

a) Okay; length >= 0.60 among all protrusion wires.

Length < 0.60

Width1 < 0.28

Width1 < 0.28

Width2 >= 1.20

Width1 >
0.28

b) Violation; length < 0.60 is measured among all
protrusion wires with width < 0.28.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 106 Product Version 5.7

RESISTANCE RPERSQ value

Specifies the resistance for a square of wire, in ohms per square. The resistance of a
wire can be defined as

SHRINKAGE distance

Specifies the value to account for shrinkage of interconnect wiring due to the etching
process. Actual wire widths are determined by subtracting this constant value.
Type: Float

SPACING

Specifies the spacing rules to use for wiring on the layer. You can specify more than one
spacing rule for a layer. See “Using Spacing Rules” on page 112.
Note: You cannot mix SPACING rules and SPACINGTABLE rules inside a single LAYER
statement. You must specify either SPACING statements or SPACINGTABLE statements
for a single routing layer, but not both.
The syntax for describing spacing rules is defined as follows:
[SPACING minSpacing
 [RANGE minWidth maxWidth
 [USELENGTHTHRESHOLD
 | INFLUENCE influenceLength
 [RANGE stubMinWidth stubMaxWidth]
 | RANGE minWidth maxWidth]
 | LENGTHTHRESHOLD maxLength

 RPERSQU x wire length/wire width

Width1 < 0.28

Length < 0.60

Width2 >= 1.20

Width1 < 0.28 Length >= 0.60

c) Violation; length < 0.60 for shortest possible path.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 107 Product Version 5.7

 [RANGE minWidth maxWidth]
 | ENDOFLINE eolWidth WITHIN eolWithin
 [PARALLELEDGE parSpace WITHIN parWithin
 [TWOEDGES]]
 | SAMENET [PGONLY]
 | NOTCHLENGTH minNotchLength
 | ENDOFNOTCHWIDTH endOfNotchWidth
 NOTCHSPACING minNotchSpacing
 NOTCHLENGTH minNotchLength
]
;] ...

 SPACING minSpacing

 Specifies the default minimum spacing, in microns, allowed
between two geometries on different nets.
Type: Float

RANGE minWidth maxWidth

Indicates that the minimum spacing rule applies to objects on the
layer with widths in the indicated RANGE (that is, widths that are
greater than or equal to minWidth and less than or equal to
maxWidth). If you do not specify a range, the rule applies to all
objects.
Type: Float

Note: If you specify multiple RANGE rules, the range values should
not overlap.

 USELENGTHTHRESHOLD

 Indicates that the threshold spacing rule should be used if the other
object meets the previous LENGTHTHRESHOLD value.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 108 Product Version 5.7

 INFLUENCE influenceLength
 [RANGE stubMinWidth stubMaxWidth]

 Indicates that any length of the stub wire that is less than or equal to
influenceLength from the wide wire inherits the wide wire
spacing.
Type: Float

The influence rule applies to stub wires on the layer with widths in
the indicated RANGE (that is, widths that are greater than or equal to
stubMinWidth and less than or equal to stubMaxWidth). If
you do not specify a range, the rule applies to all stub wires.
Type: Float

Note: Specifying the INFLUENCE keyword denotes that the
statement only checks the influence rule, and does not check
normal spacing. You must also specify a separate SPACING
statement for normal spacing checks.

 RANGE minWidth maxWidth

 Specifies an optional second width range. The spacing rule applies
if the widths of both objects fall in the ranges defined (each object in
a different range). For an object’s width to fall in a range, it must be
greater than or equal to minWidth and less than or equal to
maxWidth.
Type: Float

Note: If you specify multiple RANGE rules, the range values should
not overlap.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 109 Product Version 5.7

 LENGTHTHRESHOLD maxLength
 [RANGE minWidth maxWidth]

 Specifies the maximum parallel run length or projected length with
an adjacent metal object for this spacing value. The minSpacing
value should be less than or equal to the “default” minSpacing
value when no LENGTHTHRESHOLD is specified for this range of
widths. For an example, see “Using Spacing Rules” on page 112.

The threshold spacing rule applies to objects with widths in the
indicated RANGE (that is, widths that are greater than or equal to
minWidth and less than or equal to maxWidth). If you do not
specify a range, the rule applies to all objects.
Type: Float

Note: If you specify multiple RANGE rules, the range values should
not overlap.

ENDOFLINE eolWidth WITHIN eolWithin

Indicates that an edge that is shorter than eolWidth, noted as
end-of-line (EOL from now on) edge requires spacing greater than
or equal to eolSpace beyond the EOL anywhere within (that is,
less than) eolWithin distance (see Figure 1-37 on page 109).

Typically, eolSpace is slightly larger than the minimum allowed
spacing on the layer. The eolWithin value must be less than the
minimum allowed spacing.

Figure 1-37

eolWithin

eolSpace

EOL

eolWidth

Any overlap
here is a violation.

a) EOL width < eolWidth requires
eolSpace beyond EOL to either side by
< eolWithin distance.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 110 Product Version 5.7

PARALLELEDGE parSpace WITHIN parWithin
 [TWOEDGES]

Indicates the EOL rule applies only if there is a parallel edge that is
less than parSpace away, and is also less than parWithin from
the EOL and eolWithin beyond the EOL (see Figure 1-38 on
page 110).

Figure 1-38

 If TWOEDGES is specified, the EOL rule applies only if there are two
parallel edges that meet the PARALLELEDGE parSpace,
eolWithin, and parWithin parameters (see Figure 1-39 on
page 111).

eolSpace

parWithin

Any parallel edge overlap
here means a parallel edge
is present; therefore
eolSpace applies.

b) EOL space rule with PARALLELEDGE is
triggered only if there is a parallel edge that
overlaps inside the illustrated shaded box.

parSpace

eolWithin

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 111 Product Version 5.7

Figure 1-39

 SAMENET [PGONLY]

 Indicates that the minSpacing value only applies to same-net
metal. If PGONLY also is specified, the minSpacing value only
applies to same-net metal that is a power or ground net.

This rule typically is used when a technology has wider spacing for
wider width wires; however, it still allows minimum spacing for
same-net wires, even if they are wide. (See Example 1-12 on
page 118.)

NOTCHLENGTH minNotchLength

Indicates that any notch with a notch length less than
minNotchLength must have a notch spacing of less than or
equal to minspacing. (See illustration a in Figure 1-46 on
page 120.)

The value you specify for minSpacing should be only slightly
larger than the normal minimum spacing rule (typically, between 1x
and 1.5x minimum spacing).
Type: Float, specified in microns

Note: You can specify only one NOTCHLENGTH rule per layer.

parSpace

eolSpace

parWithin

There must be parallel edges in
both areas to trigger two-edge rule.

c) EOL rule with TWOEDGES is triggered only if
both sides have parallel edge overlaps inside
the illustrated shaded boxes.

eolWithin

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 112 Product Version 5.7

Using Spacing Rules

Spacing rules apply to pin-to-wire, obstruction-to-wire, via-to-wire, and wire-to-wire spacing.
These requirements specify the default minimum spacing allowed between two geometries
on different nets.

When defined with a RANGE argument, a spacing value applies to all objects with widths
within a specified range. That is, the rule applies to objects whose widths are greater than or
equal to the specified minimum width and less than or equal to the specified maximum width.

Note: If you specify multiple RANGE arguments, the RANGE values should not overlap.

In the following example, the default minimum allowed spacing between two adjacent objects
is 0.3 µm. However, for objects between 0.5 and 1.0 µm in width, the spacing is 0.4 µm. For
objects between 1.01 and 2.0 µm in width, the spacing is 0.5 µm.
SPACING 0.3 ;

SPACING 0.4 RANGE 0.5 1.0 ;

SPACING 0.5 RANGE 1.01 2.0 ; #The RANGE begins at 1.01 and not 1.0 because

 #RANGE values should not overlap.

ENDOFNOTCHWIDTH endOfNotchWidth
 NOTCHSPACING minNotchSpacing
 NOTCHLENGTH minNotchLength

Indicates that the notch metal at the bottom end of a U-shaped
notch requires spacing that is greater than or equal to
minSpacing, if the notch has a width that is less than
endOfNotchWidth, notch spacing that is less than or equal to
minNotchSpacing, and notch length that is greater than or
equal to minNotchLength. The spacing is required for the extent
of the notch.

The values you specify for notchSpacing and minSpacing
should be only slightly larger than the normal minimum spacing rule
(typically between 1x and 1.5x minimum spacing). The value you
specify for endOfNotchWidth should be only slightly larger than
the minimum width rule (typically, between 1x and 1.5x minimum
width).
Type: Float, specified in microns (for all values)

Note: You can specify only one ENDOFNOTCHWIDTH rule per layer.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 113 Product Version 5.7

Threshold spacing is a function of both the wire width and the length of the neighboring
object. It is typically used when vias are wider than the wire to allow tighter wire-to-wire
spacing, even when the vias are present.

In the following example, a slightly tighter spacing of .24 µm is needed if the other object is
less than or equal to 1.0 µm in length (see Figure 1-40 on page 113).
SPACING 0.28 ;

SPACING 0.24 LENGTHTHRESHOLD 1.0 ;

Figure 1-40

The USELENGTHTHRESHOLD argument specifies that the threshold spacing rule should be
applied if the other object meets the previous LENGTHTHRESHOLD value.

In the following example, a larger spacing of 0.32 µm is needed for wire widths between 1.5
and 9.99 µm. However, if the other object is less than or equal to 1.0 µm in length, the smaller
.0.28 µm spacing is applied (see Figure 1-41 on page 114).
SPACING 0.28 ; #Default minimum spacing is >=0.28 um.

SPACING 0.28 LENGTHTHRESHOLD 1.0 ; #For short parallel lengths of <= 1.0 um,

 #0.28 spacing is allowed.

SPACING 0.32 RANGE 1.5 9.99 USELENGTHTHRESHOLD ;

 #Wide wires with 1.5 <= width <=9.99 need

 #0.32 spacing unless the parallel run

 #length is <= 1.0 from the previous rule.

Smaller spacing for short Minimum spacing/width

.28 .24
<=1.0

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 114 Product Version 5.7

Figure 1-41

Influence spacing rules are used to support the inheritance of wide wire spacing by nets
connected to the wide wires. For example, a larger spacing is needed for stub wires attached
to large objects like pre-routed power wires. A piece of metal connecting to a wider wire will
inherit spacing rules for a user-defined distance from the wider wire.

In Figure 1-42 on page 115, a minimum space of N is required between two metal lines when
at least one metal line has a width that is >= Y. This spacing must be maintained for any small
piece of metal (<Y) that is connected to the wide metal within X range of the wide metal.
Outside of this range, normal spacing rules (Z) apply.

.28

a.) No violation.

.28

b.) No violation.

>=1.

<1.0

.28

c.) Violation.

>=1.

>=1.0
.32

d.) No violation.

>=1.

>=1.0

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 115 Product Version 5.7

Figure 1-42

In the following example, the 0.5 µm spacing applies for the first 1.0 µm of the stub sticking
out from the large object. This rule only applies to the stub wire; the previous rule must be
included for the wide wire spacing. The SPACING 0.5 RANGE 2.01 2000.0 statement is
required to get extra spacing for the wide-wire itself.
SPACING 0.5 RANGE 2.01 2000.0 ;

SPACING 0.28 ; #Minimum spacing is >= 0.28 um.

SPACING 0.5 RANGE 2.01 2000.0 ; #wide-wire >= 2.01 um wide requires 0.5um spacing

SPACING 0.5 RANGE 2.01 2000.0 INFLUENCE 1.000 ;

 #Stub wires <= 1.0 um from wide wires >= 2.01

 #require 0.5 um spacing.

Some processes only need the INFLUENCE rule for certain widths of the stub wire. In the
following example, the 0.5 µm spacing is required only for stub wires between 0.5 and 1.0 µm
in width.
SPACING 0.28 ; #Minimum spacing is >= 0.28 um.

SPACING 0.5 RANGE 2.01 2000.0 ; #wide-wire >= 2.01 um wide requires 0.5um spacing

SPACING 0.5 RANGE 2.01 2000.0 INFLUENCE 1.00 RANGE 0.5 1.0 ;

 #Stub wires with 0.5 <= width <= 1.0, and <= 1.0 um from

 #wide wide wires >= 2.01 require 0.5 um spacing.

Example 1-11 EOL Spacing Rules

■ If you include the following routing layer rules in your LEF file:
SPACING 1.0 ; #minimum spacing is 1.0 µm
SPACING 1.2 ENDOFLINE 1.3 WITHIN 0.6 ;

Z

metal1

metal1

X

X
N

N

>=Y

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 116 Product Version 5.7

Any EOL that is less than 1.3 µm wide requires spacing that is greater than or equal to
1.2 µm beyond the EOL, within 0.6 µm to either side. Figure 1-43 on page 116 includes
examples of legal spacing for, and violations of, this rule.

Figure 1-43

■ If you include the following routing layer rules in your LEF file:
SPACING 1.0 ; #minimum spacing is 1.0 µm
SPACING 1.2 ENDOFLINE 1.3 WITHIN 0.6 PARALLELEDGE 1.1 WITHIN 0.5 ;

Any line that is less than 1.3 µm wide, with a parallel edge that is less than 1.1 µm away,
and is within 0.5 µm of the EOL, requires spacing greater than or equal to 1.2 µm beyond
the EOL, within 0.6 µm to either side of the EOL. Figure 1-44 on page 117 includes
examples of legal spacing for, and violations of, this rule.

1.0

0.6

1.2

a) No violation. Has
1.2 µm spacing.

1.0

Area to check

b) Violation; has only
1.0 µm spacing.

0.5

1.0

0.6

1.0

c) Violation; has
<1.2 µm spacing
within 0.6 µm away.

d) No violation.
Has >= 1.2 µm
spacing within
(<) 6 µm away.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 117 Product Version 5.7

Figure 1-44

a) No
violation, no
parallel

b) Violation. Has
parallel edge,
needs 1.2 spacing
at EOL.

1.0

1.00.6

1.0

1.0

c) Violation. Still
has parallel edge,
needs 1.2 spacing
at EOL.

1.0

1.0

0.
1.0 1.0

d) No violation, no
parallel edge.

1.0

1.0

0.

1.0

e) No violation. Has
parallel edge, but has
1.2 spacing at EOL.

1.0

1.2

f) No violation, no
parallel edge (left
edge is >= 1.1 away).

1.1

1.0

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 118 Product Version 5.7

■ The following routing layer rule creates an EOL spacing rule for two parallel edges:
SPACING 1.0 ; #minimum spacing is 1.0 µm
SPACING 1.2 ENDOFLINE 1.3 WITHIN 0.6 PARALLELEDGE 1.1 WITHIN 0.5 TWOEDGES ;

Example 1-12 Same Net Spacing Rule

If you include the following routing layer rules in your LEF file, same-net power or ground nets
can use 1.0 µm spacing, even if they are 2 µm to 5 µm wide, as shown in Figure 1-45 on
page 119:

LAYER M1

TYPE ROUTING ;

SPACING 1.0 ; #min spacing is 1.0

SPACING 1.5 RANGE 2.0 5.0 ; #need 1.5 spacing for 2 to 5 µm wide wires
SPACING 1.0 SAMENET PGONLY ;

1.0

g) No violation. Has
overlap on the left side,
but no parallel edge.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 119 Product Version 5.7

Figure 1-45

Example 1-13 Notch Length Spacing Rule

Figure 1-46 on page 120 illustrates the following routing layer rules:
SPACING 0.10 ;

SPACING 0.12 NOTCHLENGTH 0.15 ;

1.0

2.0 1.0

a) Okay if both wires are the
same net and are either a
power or ground net.

1.0

2.0 2.0

b) Okay if both wires are the
same net and are either a
power or ground net.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 120 Product Version 5.7

Figure 1-46 Notch Length Rule Definitions

Example 1-14 End Of Notch Width Spacing Rule

If you include the following routing layer rules in your LEF file, the notch metal at the bottom
end of a U-shaped notch must have spacing that is greater than or equal to 0.14 µm, if the
notch metal has a width that is less than 0.15 µm, notch spacing that is less than or equal to
0.16 µm, and notch length that is greater than or equal to 0.08 µm. See Figure 1-47 on
page 121 for different layout examples for these rules.
SPACING 0.10 ; #default spacing

SPACING 0.14 ENDOFNOTCHWIDTH 0.15 NOTCHSPACING 0.16 NOTCHLENGTH 0.08 ;

minNotchLength

minNotchSpacing

a) Illustration of notch spacing rule.

0.15

0.10

b) Okay; notchLength is not < 0.15.

0.14

0.10

c) Violation

0.14

0.10

d) Violation

0.14

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 121 Product Version 5.7

Figure 1-47 End Of Notch Width Rule Definitions

a) ENDOFNOTCHWIDTH rule definitions. The
gray box shows where extra space is required.

notchSpacing notchLength

endOfNotchWidth

minSpacing
required for the
extent of the notch.

Extent of the
notch that
requires extra
spacing.

b) Violation; at least 0.14 µm
spacing required.

0.16 0.08

0.14

0.13

c) Okay. No overlap with notch above;
therefore only default spacing of 0.10
required.

0.16

0.14

0.10

d) Okay. Notch metal width is >= 0.15 for
the overlap; therefore extra space is not
required.

0.16

0.14

0.10

0.16

e) Violation. Notch metal width is < 0.15 for part
of the overlap; therefore 0.14 spacing is required.

0.16

0.14

0.12

0.16

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 122 Product Version 5.7

SPACINGTABLE

Specifies the spacing tables to use for wiring on the layer. You can specify only one
parallel run length and one influence spacing table for a layer. For information on and
examples of using spacing tables, see “Using Spacing Tables” on page 123.
Note: You cannot mix SPACING rules and SPACINGTABLE rules inside a single LAYER
statement. You must specify either SPACING statements or SPACINGTABLE statements
for a single routing layer, but not both.
The syntax for describing spacing tables is defined as follows:
[SPACINGTABLE
 PARALLELRUNLENGTH {length} ...
 {WIDTH width {spacing} ...}... ;
 [SPACINGTABLE
 INFLUENCE {WIDTH width WITHIN distance
 SPACING spacing} ... ;]
 | TWOWIDTHS {WIDTH width [PRL runLength]
 {spacing} ...} ... ;
;]

 PARALLELRUNLENGTH {length} ...
 {WIDTH width {spacing} ...}

 Specifies the maximum parallel run length between two objects, in
microns. If the maximum width of the two objects is greater than
width, and the parallel run length is greater than length, then
the spacing between the objects must be greater than or equal to
spacing. The first spacing value is the minimum spacing for a
given width, even if the PRL value is not met.

You must specify length, width, and spacing values in
increasing order.
Type: Float, specified in microns (for all values)

TWOWIDTHS {WIDTH width [PRL runLength] {spacing} ...}

Creates a table in which the spacing between two objects depends
on the widths of both objects (instead of just the widest width).
Optionally, it also can depend on the parallel run length between
the two objects (PRL). For more information, see "Two-Width
Spacing Tables."

The first width value should be 0 without an accompanied run
length definition.
Type: Float, specified in microns (for all values)

 INFLUENCE {WIDTH width WITHIN distance SPACING spacing ...}

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 123 Product Version 5.7

Specifying SPACING Statements with SPACINGTABLE

You can specify some of the the SPACING statements with the SPACINGTABLE statements.
For example, the following SPACING statements can be specified with SPACINGTABLE:

SPACING x SAMENET ___ ;

SPACING x ENDOFLINE ___ ;

SPACING x NOTCHLENGTH ___ ;

SPACING x ENDOFNOTCHWIDTH ___ ;

These SPACING checks are orthogonal to the SPACINGTABLE checks.

However, you cannot specify some SPACING statements (as given below) with
SPACINGTABLE as these would generate semantic errors.

SPACING x ;

SPACING x SPACING RANGE ___ ;

SPACING x SPACING LENGTHTHRESHOLD ___ ;

Using Spacing Tables

Some processes have complex width and length threshold rules. Instead of creating multiple
SPACING rules with different LENGTHTHRESHOLD and RANGE statements, you can define the
information in a spacing table.

For example, for Figure 1-48 on page 124, a typical 90nm DRC manual might have the
following rules described:

Creates a table that enforces wide wire spacing rules between
nearby perpendicular wires. If an object has a width that is greater
than width, and is located less than distance from two
perpendicular wires, then the spacing between the perpendicular
wires must be greater than or equal to spacing.

You must specify width values in increasing order.
Type: Float, specified in microns (for all values)

Note: You can only specify an INFLUENCE table if you specify a
PARALLELRUNLENGTH table first.

Minimum spacing 0.15 µm spacing

Either width>0.25 µm and parallel length>0.50 µm 0.20 µm spacing

Either width>1.50 µm and parallel length>0.50 µm 0.50 µm spacing

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 124 Product Version 5.7

Figure 1-48

These rules translate into the following SPACINGTABLE PARALLELRUNLENGTH statement:
LAYER metal1

...

SPACINGTABLE

 PARALLELRUNLENGTH 0.00 0.50 3.00 5.00 #lengths must be increasing

 WIDTH 0.00 0.15 0.15 0.15 0.15 #max width>0.00

 WIDTH 0.25 0.15 0.20 0.20 0.20 #max width>0.25

 WIDTH 1.50 0.15 0.50 0.50 0.50 #max width>1.50

 WIDTH 3.00 0.15 0.50 1.00 1.00 #max width>3.00

 WIDTH 5.00 0.15 0.50 1.00 2.00 ; #max width>5.00

...

END metal1

Using the SPACINGTABLE PARALLELRUNLENGTH statement, the rules can be described in
the following way:

1. Find the maximum width of the two objects.

Either width>3.00 µm and parallel length>3.00 µm 1.00 µm spacing

Either width>5.00 µm and parallel length>5.00 µm 2.00 µm spacing

Spacing

Parallel run length
Width2

Width1

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 125 Product Version 5.7

2. Find the lowest table row where the maximum width is greater than the table-row width
value. The first row is used even if the maximum width is less than and equal to the table-
row width.

3. Find the right-most table column where the parallel run length is greater than the table
PRL value. The first column spacing value is used even if the object’s parallel run length
is less than and equal to the table PRL value. The spacing value listed where the row and
column intersect is the required spacing for that maximum width and parallel run length.

By definition, the width is the smaller dimension of the object (that is, the width of each object
must be less than or equal to its length).

Influence Spacing Tables

Processes often require a second spacing table to enforce the wide wire spacing rules
between nearby perpendicular wires, even if the wires are narrow. Figure 1-49 on page 126
illustrates this situation. Use the following SPACINGTABLE INFLUENCE syntax to describe
this table:

SPACINGTABLE INFLUENCE
{WIDTH width WITHIN distance SPACING spacing} ... ;

If a wire has a width that is greater than width, and the distance between it and two other
wires is less than distance, the other wires must be separated by spacing that is greater
than or equal to spacing. Typically, the distance and spacing values are the same.
Note that the distance halo extends horizontally, but not into the corners.

By definition, the width is the smaller dimension of the object (that is, the width is less than or
equal to the length of the large wire).

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 126 Product Version 5.7

Figure 1-49

The wide wire rules often match the larger width and spacing values in the SPACINGTABLE
PARALLELRUNLENGTH values. The previously described rules translate into the following
SPACINGTABLE INFLUENCE statement:
LAYER metal1

...

SPACINGTABLE INFLUENCE

 WIDTH 1.50 WITHIN 0.50 SPACING 0.50 #w>1.50, dist<0.50, needs sp>=0.50

 WIDTH 3.00 WITHIN 1.00 SPACING 1.00 #widths must be increasing

 WIDTH 5.00 WITHIN 2.00 SPACING 2.00 ;

...

END metal1

Two-Width Spacing Tables

You can create a table that enforces spacing rules that depends on the width of both objects
instead of just the widest width, and optionally depends on the parallel run length between
the two objects. You can use this table to replace existing SPACING ...RANGE...RANGE
rules to make it easier to read, and to include parallel run length effects in one common table.
Use the following SPACINGTABLE TWOWIDTHS syntax to describe this table:

SPACINGTABLE
TWOWIDTHS {WIDTH width [PRL runLength] {spacing} ... } ... ;

Spacing

Spacing

Spacing

Distance

No effect on this spacing

Width

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 127 Product Version 5.7

To find the required spacing, a 2-dimensional table is used that implicitly has the same widths
(and optional parallel run lengths) for the row and column headings. There must be exactly
as many spacing values in each WIDTH row as there are WIDTH rows. The width and
runLength values must be the same or increasing from top to bottom in the table. The
spacing values must be the same or increasing from left to right, and from top to bottom in
the table.

Given two objects with width1, width2, and a parallel overlap of runLength, you find
the spacing using the following method:

1. Find the last row where both width1 is greater than the table row width, and
runLength is greater than the table row run length. If no table row run length exists, the
runLength value is not checked for that row (only that width1 is greater than table
row width is checked).

2. Find the right-most column where both width2 is greater than table column width and
runLength is greater than table column run length. If no table column run length exists,
the runLength value is not checked for that column (only that width2 is greater than
table column width is checked).

3. The intersection of the matching row and column gives the required spacing.

For example, assume a DRC manual has the following rules described:

The rules translate into the following SPACINGTABLE:
SPACINGTABLE TWOWIDTHS

width= 0.00 0.25 1.50 3.0

prl= none 0.00 1.50 3.0

WITDH 0.00 0.15 0.20 0.50 1.00

WIDTH 0.25 PRL 0.0 0.20 0.25 0.50 1.00

WIDTH 1.50 PRL 1.50 0.50 0.50 0.60 1.00

WIDTH 3.00 PRL 3.00 1.00 1.00 1.00 1.20 ;

Minimum spacing 0.15 µm spacing

Either width>0.25 µm and parallel length>0.0 µm 0.20 µm spacing

Both width>0.25 µm and parallel length>0.0 µm 0.25 µm spacing

Either width>1.50 µm and parallel length>1.50 µm 0.50 µm spacing

Both width>1.50 µm and parallel length>1.50 µm 0.60 µm spacing

Either width>3.00 µm and parallel length>3.00 µm 1.00 µm spacing

Both width>3.00 µm and parallel length>3.00 µm 1.20 µm spacing

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 128 Product Version 5.7

Note that both width and parallel run length (if specified) must be exceeded to index into the
row and column. Therefore, in this example:

THICKNESS distance

Specifies the thickness of the interconnect.
Type: Float

TYPE ROUTING

Identifies the layer as a routable layer.

WIDTH defaultWidth

Specifies the default routing width to use for all regular wiring on the layer.
Type: Float

WIREEXTENSION value

Specifies the distance by which wires are extended at vias. You must specify a value that
is more than half of the routing width.
Default: Wires are extended half of the routing width
Type: Float

Defining Routing Layer Properties to Create 32nm and 45nm Rules

You can include routing layer properties in your LEF file to create 32nm and 45nm rules that
currently are not supported by existing LEF syntax. The properties are specified inside the
LAYER ROUTING statements, where they can be seen with other rules.

Before you can reference them, properties must be defined at the beginning of the LEF file in
the PROPERTYDEFINITIONS statement, immediately before the first LAYER statement.

■ Properties belong to the LAYER object and have a type of STRING.

■ Property strings cannot have new lines or carriage returns inside the string definitions
(that is, between the double quotation marks). This means that the entire string definition
for a property must be on the same line.

■ The property names used for these rules all start with LEF58_.

If width1 = 0.25, width2 = 0.25, and prl = 0.0, then spacing = 0.15.

If width1 = 0.25, width2 = 0.26, and prl = 0.0, then spacing = 0.15.

If width1 = 0.25, width2 = 0.26, and prl = 0.1, then spacing = 0.20.

If width1 = 0.26, width2 = 0.26, and prl = 0.1, then spacing = 0.25.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 129 Product Version 5.7

All properties (with the exception of MAXFLOATINGAREA and MAXVIASTACK) use the
following syntax within the LEF PROPERTYDEFINITIONS statement:

PROPERTYDEFINITIONS
LAYER propName STRING ["stringValue"] ;

END PROPERTYDEFINITIONS

The property definitions for the routing layer properties are as follows:
PROPERTYDEFINITIONS

 LIBRARY LEF58_MAXFLOATINGAREA STRING ;

 LIBRARY LEF58_MAXVIASTACK STRING ;

 LAYER LEF58_TYPE STRING ;

 LAYER LEF58_FILLTOFILLSPACING STRING ;

 LAYER LEF58_OPPOSITEEOLSPACING STRING ;

 LAYER LEF58_BACKSIDE STRING ;

 LAYER LEF58_MINSTEP STRING ;

 LAYER LEF58_MINIMUMCUT STRING ;

 LAYER LEF58_EOLEXTENSIONSPACING STRING ;

 LAYER LEF58_AREA STRING ;

 LAYER LEF58_SPACINGTABLE STRING;

 LAYER LEF58_SPACING STRING ;

END PROPERTYDEFINITIONS

EOL Spacing Rule

An EOL spacing rule ensures that Optical Proximity Correction (OPC) can be performed
without interference between the OPC shapes added at the EOLs.

You can create an EOL spacing rule using the following property definition:

PROPERTY LEF58_SPACING
"SPACING eolSpace ENDOFLINE eolWidth [OPPOSITEWIDTH oppositeWidth]
 WITHIN eolWithin
 [ENDTOEND endToEndSpace [OTHERENDWIDTH otherEndWidth]]
 [MAXLENGTH maxLength | MINLENGTH minLength [TWOSIDES]]
 [EQUALRECTWIDTH]
 [PARALLELEDGE [SUBTRACTEOLWIDTH] parSpace WITHIN parWithin
 [MINLENGTH minLength] [TWOEDGES]]
 [ENCLOSECUT [BELOW | ABOVE] encloseDist CUTSPACING cutToMetalSpace]
;..." ;

Where:

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 130 Product Version 5.7

SPACING (including ENDOFLINE and WITHIN), PARALLELEDGE, and TWOEDGES are the
same as the existing LEF syntax.

OPPOSITEWIDTH oppositeWidth

Indicates that the rule applies only if a wire beyond the end of
the line edge has a perpendicular span to the EOL edge less
than oppositeWidth.
Type: Float for all parameters, specified in microns

ENDTOEND endToEndSpace

Specifies two EOL spacings. For an end-to-end situation when
the parallel run length is greater than 0 between two EOL
edges, with eolWithin extension on the EOL edge being
checked, endToEndSpace is applied. Otherwise, eolSpace
is applied to the end-to-line situation.

OTHERENDWIDTH otherEndWidth

Indicates that the rule only applies if the width of the other wire
is less than the otherEndWidth.

MAXLENGTH maxLength

Indicates that if the EOL is more than maxLength along both
sides, the rule does not apply. (See Figure 1-55 on page 137.)
Type: Float, specified in microns

MINLENGTH minLength

Indicates that if the EOL length is less than minLength along
both sides, the rule does not apply.
Type: Float, specified in microns

TWOSIDES Indicates that the rule applies only when the EOL length is
greater than and equal to minLength along both sides. In
other words, if the EOL length is less than minLength along
any one side, the rule does not apply.

EQUALRECTWIDTH Indicates that if the length of the EOL edge is larger than the
wire width, the rule does not apply. If there are multiple EOL
statements with the EQUALRECTWIDTH keyword for a given
layer, they must all have the EQUALRECTWIDTH keyword.

PARALLELEDGE [SUBTRACTEOLWIDTH] parSpace WITHIN parWithin

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 131 Product Version 5.7

Indicates that the EOL rule applies only if there is a parallel-
edge less than parSpace away that is also less than
parWithin from the end of the wire.

SUBTRACTEOLWIDTH Indicates that the parSpace value should be subtracted by the
width of the EOL edge to define the distance required to search
for a parallel neighbor edge.

MINLENGTH minLength [TWOEDGES]

Indicates that if the EOL length is less than minLength, then
any parallel-edge is ignored, and the rule does not apply. If
TWOEDGES is specified, the EOL rule applies only if there are
two parallel edges on each side of the EOL edge that meet the
PARALLELEDGE.
Type: Float, specified in microns

ENCLOSECUT [BELOW | ABOVE] encloseDist CUTSPACING
cutToMetalSpace

Indicates that the rule only applies if there is a cut below or
above this metal that is less than encloseDist away from the
EOL edge, and the the cut-edge to metal-edge space beyond
the EOL edge is less than cutToMetalSpace. If there is
more than one cut connecting the same metal shapes above
and below, only one cut needs to meet this rule. (See Figure 1-
54 on page 136, and Figure 1-56 on page 138.)
Type: Float, specified in microns (for both values)

If you specify BELOW, encloseDist and
cutToMetalSpace are checked for the cut layer below this
routing layer. If you specify ABOVE, they are checked for the cut
layer above this routing layer. If you specify neither, the rule
applies to both adjacent cut layers.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 132 Product Version 5.7

Figure 1-50 EOL Spacing Rule Illustrations

length of EOL
sides

a) Violation, the length on the
right side >= 0.06, and the
opposite wire width < 0.08. OK
if TWOSIDES is used

EOL edge
0.01

0.02

0.11

0.02 0.06

b) OK, the opposite wire has
a perpendicular span (to the
EOL edge) of 0.15 >= 0.08

0.09

0.07

0.15

0.15

c) OK, opposite wire width
>= 0.08, and the rule does
not apply

0.11

0.08

0.2

0.07

0.2

d) Violation, swapping the
wire width of the wires
becomes a violation

0.11

0.07

0.2

0.08

0.2

e) Violation, if part of the
opposite wire width < 0.08 (the
left segment), it is a violation

0.11

0.07

0.1

0.08

0.2

0.15

0.09

PROPERTY LEF58_SPACING "SPACING 0.12 ENDOFLINE 0.1
OPPOSITEWIDTH 0.08 WITHIN 0.05 MINLENGTH 0.06 ;" ;

0.11

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 133 Product Version 5.7

Figure 1-51 EOL Spacing Rule Illustrations

a) Violation, the top wire
needs to be 0.15 away to
avoid the EOL violation

0.14

0.02

0.08

0.06

PROPERTY LEF58_SPACING "SPACING 0.15 ENDOFLINE 0.1 WITHIN 0.05
PARALLELEDGE SUBTRACTEOLWIDTH 0.16 WITHIN 0.03 ;" ;

b) OK, the combined EOL wire
width & the gap of the parallel edge
is 0.17 (>= 0.16), and the EOL rule
does not apply

0.14

0.02

0.08

0.01

d) Okay, the parallel edge is searched by
extending the outline of the wire dynamically
based on the wire width. Hence, 0.1 (0.16 -
0.06) on top, and 0.01 (0.16 - 0.15) on bottom.

0.03

0.08
0.15

0.06

0.14

0.01

0.11

0.01

Search
window

0.1

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 134 Product Version 5.7

Figure 1-52 EOL Spacing Rule Illustrations

length of EOL
sides

a) OK, the length of the left
EOL side < 0.11, and the rule
does not apply. Violation
without TWOSIDES

EOL edge
0.140.01

0.1 0.2

b) Violation, the length of
both of the sides >= 0.11.
and EOL spacing < 0.1

c) OK, the right edge is not a
EOL edge, and 0.1 is
needed

0.1
0.14

0.3

0.14

0.3

d) Violation, this is an end-
to-end situation, and EOL
spacing < 0.12

0.14

0.3

length of EOL
sides

EOL edge

0.11 0.2

0.14
0.01

0.14

0.3

0.1

PROPERTY LEF58_SPACING "SPACING 0.10 ENDOFLINE 0.15 WITHIN 0.05
ENDTOEND 0.12 MINLENGTH 0.11 TWOSIDES ;" ;

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 135 Product Version 5.7

Figure 1-53

e) OK, it fulfills the end-to-line EOL
spacing of 0.1, and the 2 EOL edges
do not have common parallel run
length such that end-to-end EOL
spacing is ignored.

0.050.14 0.5

0.14

0.3

0.12

0.1

f) Violation, it does not satisfy end-to-
end EOL spacing

0.05

0.14

0.3

0.12

0.1

0.14
0.3

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 136 Product Version 5.7

Figure 1-54 EOL Spacing Rule Illustrations

eolWithin

eolSpace

EOL edge

eolWidth

Any edge
parallel to EOL
edge in gray box
is a violation.

a) Basic EOL rule: EOL
width < eolWidth
requires >= eolSpace
beyond EOL edge to
opposite edges to either
side by < eolWithin
distance (gray box).

eolSpace

parWithin

EOL edge

eolWithin

parWithin parSpace

Any edge parallel to
EOL sides that
overlaps in gray box
means parallel
edge is present, so
eolSpace is
needed.

b) EOL with PARALLELEDGE is triggered only if an
EOL side also has a parallel edge < parSpace
and < eolWithin above, or < parWithin
below, EOL edge (gray box). If minLength is
given, and the EOL side is < minLength, the
parallel edge does not matter, and no extra space
is needed.

eolSpace

c) EOL with ENCLOSECUT rule is
triggered if EOL edge has a cut edge
that has
< encloseDist enclosure, and the
cut edge is < cutToMetalSpace

cutToMetalSpace

encloseDist

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 137 Product Version 5.7

Figure 1-55 Examples of EOL Spacing Rule with MaxLength and MinLength

0.09 0.16

0.1
eolSpace

Length of
EOL sides

EOL edge

0.08

eolSpace

Length of
EOL sides

EOL edge

0.16

0.1

b) a)

PROPERTY LEF58_SPACING
 "SPACING 0.12 ENDOFLINE 0.11 WITHIN 0.05 MAXLENGTH 0.08 ;" ;
a): Both sides have a maximum length > 0.08, so do not check eolSpace.
b): One side has a maximum length <= 0.08, so check eolSpace >= 0.12.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 138 Product Version 5.7

Figure 1-56 Example of More Complex EOL Spacing Rule

0.05

0.07

0.1 = eolSpace

0.1

a) No violation. No parallel edge
inside gray box (parSpace <
0.10, eolWithin < 0.05, and
parWithin < 0.07), so do not
check eolSpace.

0.1

0.05 = encloseDist

0.1 0.15 =
cutToMetalSpace

b) Violation. Meets min length, has
parallel edge, cut enclosure
encloseDist < 0.06,
cutToMetalSpace < 0.16, so needs
0.15 eolSpace.

0.1

0.06

0.1

c) No violation. Meets min length,
has parallel edge, but cut enclosure
encloseDist >= 0.06, so do not
check eolSpace.

0.11

0.05

0.1 0.16 =
cutToMetalSpace

d) No violation. Meets min length, has
parallel edge, cut enclosure
encloseDist < 0.06, but
cutToMetalSpace >= 0.16, so do
not check eolSpace.

PROPERTY LEF58_SPACING
 "SPACING 0.15 ENDOFLINE 0.10 WITHIN 0.05 PARALLELEDGE 0.10
 WITHIN 0.07 MINLENGTH 0.10 ENCLOSECUT BELOW 0.06 CUTSPACING 0.16 ;" ;

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 139 Product Version 5.7

Figure 1-57 Example of EOL Spacing Rule with EQUALRECTWIDTH

Type Rule

A type rule can be used to further classify a routing layer.

0.05

0.1

e) No violation. Does not meet
minLength >= 0.06, so do not
check eolSpace.

0.1

f) Violation. The minLength = 0.08 means
no left parallel edge, but the right side has a
parallel edge, so needs 0.15 eolSpace or
cutToMetalSpace >= 0.16.

0.1

0.0

0.1

0.08 =
minLength

0.1

0.1

0.24

a) No violation. The 0.24 edge is not a valid
EOL edge with the EQUALRECTWIDTH
keyword since its length is not the same as
the wire width of 0.1.

b) Violation. The 0.1 edge is a valid EOL
edge, even with the EQUALRECTWIDTH
keyword, and EOL spacing is < 0.15.

0.14

0.1

0.14

PROPERTY LEF58_SPACING
 "SPACING 0.15 ENDOFLINE 0.25 WITHIN 0.10 EQUALRECTWIDTH;

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 140 Product Version 5.7

You can create a type rule using the following property definition:

TYPE ROUTING;
PROPERTY LEF58_TYPE
 “TYPE {POLYROUTING | MIMCAP};” ;

Where:

Fill to Fill Spacing Rule

A fill to fill spacing rule can be used to define spacing between metal fills.

You can create a fill to fill spacing rule using the following property definition:

PROPERTY LEF58_FILLTOFILLSPACING
“FILLTOFILLSPACING spacing ;” ;

Where:

Opposite EOL Spacing Rule

An opposite EOL spacing rule can be used to define spacing on a wire with two neighbor
wires on the opposite edges.

You can create an opposite EOL spacing rule using the following property definition:

PROPERTY LEF58_OPPOSITEEOLSPACING
“OPPOSITEEOLSPACING WIDTH width ;” ;
 ENDWIDTH eolWidth [MINLENGTH minLength]
 [JOINTWIDTH jointWidth] JOINTLENGTH spanLength
 [JOINTTOEDGEEND jointToEdgeEndLength]
 {[EXCEPTEDGELENGTH edgeLength [PRL maxPRL]]}...
 ENDTOEND endSpacing endSpacing
 ENDTOJOINT endSpacing jointSpacing

POLYROUTING Indicates that the polysilicon layer should be considered as a routing
layer. Polysilicon layers provide extra routing resources for designs with
limited metal routing layers.

MIMCAP Indicates that the layer is a mimcap layer. A mimcap layer is a metal
layer that is not to be used as a routing layer.

FILLTOFILLSPACING Specifies the spacing between metal fills.
Type: Float, specified in microns

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 141 Product Version 5.7

 JOINTTOEND jointSpacing endSpacing
 JOINTTOJOINT jointSpacing jointSpacing ;
 ;" ;

Where:

OPPOSITEEOLSPACING Defines the spacing requirements on a wire with two neighbor
wires on opposite edges that have a projected parallel run
length greater than 0. The neighbor wires are classified either
as a EOL or a T or L joint.

WIDTH width Specifies that the rule applies only if the width of the middle
wire is less than width.
Type: Float, specified in microns

ENDWIDTH eolWidth
[MINLENGTH
minLength]

Specifies that the rule applies only if the neighbor end-of-line
with a width is less than eolWidth.

MINLENGTH indicates that the rule applies only when the end-
of-line length is greater than and equal to minLength along
both the sides. In other words, if the end-of-line length is less
than minLength along any one side, the rule does not apply.
Type: Float, specified in microns

[JOINTWIDTH jointWidth] JOINTLENGTH spanLength [JOINTTOEDGEEND
jointToEdgeEndLength]

Specifies that the neighbor wire end edge is a joint if it’s width is
less than jointWidth, if specified, or less than eolWidth,
it’s span is greater than spanLength, and it is not a EOL
edge.

If JOINTTOEDGEEND is specified, then at least one of the
distances from the end points of the joint to the ends of the
edge, that contain the joint, must be less than or equal to
jointToEdgeEndLength. A T or L configuration (see
Figure 1-58 on page 143) is a typical joint. However, joints are
not restricted to such configurations only. A joint can be any
edge that fulfills the above definition.
Type: Float, specified in microns

JOINTLENGTH spanLength

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 142 Product Version 5.7

Specifies that the neighbor wire end edge is a joint if it has
width less than eolWidth and span greater than
spanLength, and it is not an EOL, that is, it is either a T or L
joint pattern.
Type: Float, specified in microns

{EXCEPTEDGELENGTH edgeLength [PRL maxPRL]}...

Specifies that the rule does not apply if both the end or joint
neighbor edges have a length greater than and equal to
edgeLength and projected parallel run length is less than
and equal to maxPRL, if PRL is also specified. At the most, two
such statements can be specified and supported.
Type: Float, specified in microns

ENDTOEND endSpacing endSpacing

ENDTOJOINT endSpacing jointSpacing

JOINTTOEND jointSpacing endSpacing

JOINTTOJOINT jointSpacing jointSpacing

Specifies the spacing between the neighbor edges to the
middle wire. There are four groups of two spacings. The
keywords define the category of the neighbors, either as an end
or a joint. For example, in the case of ENDTOJOINT, the first
spacing, endSpacing, specifies the minimum spacing
between the end neighbor edge to the middle wire, and the
second spacing, jointSpacing, specifies the minimum
spacing between the joint neighbor edge to the middle wire. To
satisfy the rule, for both end/joint neighbors, either both the
neighbor spacings must be greater than and equal to the
minimum of the specified spacings, or at least one neighbor
spacing must be greater than and equal to the maximum of the
specified spacings in ENDTOEND or JOINTTOJOINT. For end
and joint neighbors, both ENDTOJOINT and JOINTOTEND
statements must be fulfilled individually. To fulfill one statement
either joint spacing greater than or equal to jointSpacing,
or end spacing greater than or equal to endSpacing, must be
true.
Type: Float, specified in microns (for all values)

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 143 Product Version 5.7

Examples

■ The following example shows END and JOINT with ENDWIDTH 0.1 and JOINTLENGTH
0.15:

Figure 1-58 Illustration of END and JOINT

0.07

0.07

0.09

0.35

JOIN

END

0.20.08

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 144 Product Version 5.7

Figure 1-59 Illustration of OPPOSITEEOLSPACING

0.07

0.080.08 0.110.11

a) Okay, both of the neighbor spacings
>= 0.11 (minimum of the spacings)

0.07

0.080.08 0.130.10

b) Okay, right spacing >= 0.13
(maximum of the spacings)

0.07

0.080.08 0.120.10

c) Violation, left spacing < 0.11 to
trigger the rule

0.07

0.08

0.08

0.12

0.10

d) Okay, no projected parallel run length

PROPERTY LEF58_OPPOSITEEOLSPACING
 WIDTH 0.08
 ENDWIDTH 0.1
 JOINTLENGTH 0.15
 EXCEPTEDGELENGTH 0.08 PRL 0.03
 ENDTOEND 0.11 0.13
 ENDTOJOINT 0.12 0.10
 JOINTTOEND 0.12 0.10
 JOINTTOJOINT 0.12 0.16;

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 145 Product Version 5.7

Backside Rule

A backside rule can be used to specify that the routing layer is used on the underside of the
die.

You can create a backside rule using the following property definition:

PROPERTY LEF58_BACKSIDE
“BACKSIDE ;” ;

Where:

Perpendicular EOL Spacing Rule

BACKSIDE Indicates that the routing layer is a backside routing layer.

0.07

0.08
0.020.19

e) Okay, the exception conditions are
met

0.09
0.12

0.10

0.07

0.19

f) Violation, ENDTOJOINT is fine, but
JOINTTOEND is bad

0.09

0.11

0.09

0.08

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 146 Product Version 5.7

Perpendicular EOL spacing rules can be specified to allow a different spacing rule for
perpendicular edges versus opposite edges.

You can create a perpendicular EOL spacing rule using the following property definition:

PROPERTY LEF58_SPACING
"SPACING eolSpace EOLPERPENDICULAR eolWidth perWidth ;" ;

Where:

Examples

Figure 1-60 Illustration of Perpendicular EOL Spacing Parameters

SPACING eolSpace EOLPERPENDICULAR eolWidth perWidth

Indicates that an EOL edge with a width that is less than
eolWidth requires spacing greater than or equal to
eolSpace beyond the EOL, to a perpendicular edge with a
width that is less than perWidth. Typically, eolSpace is
slightly larger than the minimum allowed spacing on this layer.
Type: Float, specified in microns (for all values)

target EOL edge

eolWidth

perWidth

Check eolSpace
beyond target EOL eolSpace

Perpendicular
EOL edge

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 147 Product Version 5.7

Figure 1-61 Example of Perpendicular EOL Spacing Rule

1.1

1.0

1.4

a) Violation. EOL is < 1.1 wide, and
has a perpendicular edge < 1.5 wide
that is < 1.2 distance from EOL edge.

Perpendicular
EOL edge

Target EOL
edge

1.1

1.0

1.4

b) No violation. Perpendicular edge
is not "seen" by EOL edge, so it is not
checked.

1.1

1.0

1.4

c) Violation. EOL is < 1.1 wide, and
has a perpendicular edge < 1.5 wide
that is < 1.2 distance from EOL edge.

1.1

1.0

1.4

d) No violation. Perpendicular edge is
not "seen" by EOL edge, so it is not
checked.

PROPERTY LEF58_SPACING "SPACING 1.2 EOLPERPENDICULAR 1.1 1.5 ;" ;

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 148 Product Version 5.7

Maximum Floating Area Rule

Maximum area rules exist for floating metal shapes that are not connected to a diffusion or
polysilicon gate. Similar to process antenna rules, maximum floating area rules apply only to
the current layer and any lower layers (that is, all layers that have been fabricated up to the
layer of interest). Maximum floating area rules can be used to avoid shorts between floating
and non-floating metal wires that are caused by arcing due to charge buildup during
processing steps.

You can create a global maximum floating area rule using the following
PROPERTYDEFINITIONS statement:
PROPERTYDEFINITIONS
LIBRARY LEF58_MAXFLOATINGAREA STRING
 "MAXFLOATINGAREA maxArea
 {SINGLELAYER | CONNECTED | ALLCONNECTED} minRoutingLayer maxRoutingLayer
 [[LAYERS minRoutingLayer maxRoutingLayer]
 SPACING minSpacing [PARSPACING minParSpacing minParallelLength ...]] ...
;" ;
END PROPERTYDEFINITIONS

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 149 Product Version 5.7

Where:

MAXFLOATINGAREA maxArea

Indicates that floating metal shapes must have a total area that
is less than or equal to maxArea.
Type: Float, specified in units of microns squared

Floating metal is defined as metal on the current layer that
cannot trace a path to a diffusion connection or polysilicon gate,
using only same-layer or lower-layer metal connections.
Grounded metal is defined as metal that can connect to a
diffusion connection or polysilicon gate using only same-layer
or lower-layer connections.

Note: The MAXFLOATINGAREA rule depends on the existing
LEF MACRO PIN ANTENNADIFFAREA and ANTENNAGATEAREA
statements to indicate which pins are connected to diffusion or
polysilicon gates.

You can have two MAXFLOATINGAREA statements: one for
SINGLELAYER, and one for CONNECTED or ALLCONNECTED.

SINGLELAYER minRoutingLayer maxRoutingLayer

Indicates the rule applies to each individual floating metal
shape on any routing layer between minRoutingLayer and
maxRoutingLayer inclusive. Each shape must have an area
that is less than or equal to maxArea, or meet the minimum
spacing to other grounded shapes. The names you specify for
minRoutingLayer and maxRoutingLayer must be two
previously defined LEF routing layers.

CONNECTED minRoutingLayer maxRoutingLayer

Indicates that the rule applies to the area of floating metal
shapes connected together on each layer between
minRoutingLayer and maxRoutingLayer inclusive. The
connected area on a current layer must be less than or equal to
maxArea, or meet the minimum spacing to other grounded
shapes on this layer and all lower connected layer shapes. The
names you specify for minRoutingLayer and
maxRoutingLayer must be two previously defined LEF
routing layers.

ALLCONNECTED minRoutingLayer maxRoutingLayer

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 150 Product Version 5.7

Indicates that the rule applies to the connected area of floating
metal shapes connected together on each layer between
minRoutingLayer and maxRoutingLayer inclusive. The
total connected area on the current and lower layers must be
less than or equal to maxArea, or meet the minimum spacing
to other grounded shapes on this layer and all lower-connected
layer shapes. The names you specify for minRoutingLayer
and maxRoutingLayer must be two previously defined LEF
routing layers.

LAYERS minRoutingLayer maxRoutingLayer

Indicates that layers between minRoutingLayer and
maxRoutingLayer inclusive must meet the specified
SPACING rules. The names you specify for
minRoutingLayer and maxRoutingLayer must be
previously defined LEF routing layers, and can be the same
layer.

SPACING minSpacing Indicates that if the current layer floating metal has an area that
is greater than maxArea, the floating metal on the current layer
(and all connected lower layers with CONNECTED or
ALLCONNECTED) must be greater than or equal to
minSpacing distance from grounded metal for all layers that
have MAXFLOATINGAREA rules. If you define SPACING for the
same layer more than once (due to overlapping LAYERS layer
ranges) the last SPACING value overwrites the previous values.
Type: Float, specified in microns

PARSPACING minParSpacing minParallelLength ...

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 151 Product Version 5.7

Maximum Floating Area Rule Examples

■ Example 1

Assume the following rule exists:
PROPERTYDEFINITIONS
 LIBRARY LEF58_MAXFLOATINGAREA STRING
 “MAXFLOATINGAREA 1000 SINGLELAYER m1 m6 SPACING 1.0 ;” ;
END PROPERTYDEFINITIONS

Every shape on layers m1 to m6 with maximum floating area greater than 1000 µm2
must have spacing of greater than or equal to 1.0 µm to any grounded metal.

■ Example 2

Assume the following rule exists:

Indicates that floating metal that is greater than or equal to
minParSpacing from grounded metal must have greater
than or equal to minParallelLength at the minimum
spacing distance. If more than one pair of values is given, the
smallest spacing value that matches is used. (See Example 2.)
Type: Float, specified in microns (for both values)

The minParSpacing values must be defined in decreasing
value, and be smaller than SPACING minSpacing. The intent
of the PARSPACING rule is to spread out the charge build up on
floating shapes to reduce the chance of spark; therefore,
smaller spacing values require larger parallel lengths in order to
be legal.

If you define PARSPACING for the same layer more than once
(due to overlapping LAYERS layer ranges) the last
PARSPACING values overwrite the previous values.

minParallelLength

minParSpace

Definition of minSpace and minParallelLength for
MAXFLOATINGAREA rule.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 152 Product Version 5.7

PROPERTYDEFINITIONS
 LIBRARY LEF58_MAXFLOATINGAREA STRING
 “MAXFLOATINGAREA 1000 CONNECTED m1 m6
 LAYERS m1 m1 SPACING 1.0 PARSPACING 0.5 0.8 0.2 2.0
 LAYERS m2 m6 SPACING 0.6 PARSPACING 0.3 0.9 ;” ;
END PROPERTYDEFINITIONS

For layer m1, any floating metal must be either greater than or equal to 1.0 µm distance
from grounded metal, or:

❑ If it is greater than or equal to 0.5 µm distance away, there must be at least 0.8 µm
of parallel length at the minimum spacing.

❑ If it is greater than or equal to 0.2 µm distance away, there must be at least 2.0 µm
of parallel length at the minimum spacing.

Spacing that is less than 0.2 µm is not allowed.

Any floating m2 through m6 shapes with area that is greater than 1000 µm2, must either
be greater than or equal to 0.6 µm distance from grounded metal, or they must be greater
than or equal to 0.3 µm distance away with greater than or equal to 0.9 µm of parallel
length.

See Figure 1-62 on page 153 for different layout examples using this rule.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 153 Product Version 5.7

Figure 1-62

Area > 1000 µm2

Area > 1000 µm2

spacing = 1.0 µm
spacing = 0.5 µm for 0.6 µm parallel length

a) m2 violation, m1 okay. m2 did
not meet the spacing rule (0.5
µm spacing requires 0.9 µm
parallel length). m1 met the 1.0
µm spacing rule.

Area > 1000 µm2

spacing = 0.5 µm for 0.6 µm
parallel length

b) Violation for m1. m2 does not
exist when m1 is created;
therefore m1 is still floating, and
does not meet the required 0.8
µm parallel length for
minSpacing >= 0.5 µm.

Area = 500 µm2

spacing = 0.4 µm for
1.0 µm parallel length

Area > 1000 µm2

spacing = 1.0 µm

Area = 500 µm2

spacing = 0.4 µm for
1.0 µm parallel length

Area = 501 µm2

spacing = 1.0 µm

Area = 500 µm2

Area = 500 µm2

spacing = 0.4 µm for 1.0
µm parallel length

Area = 501 µm2

spacing = 1.0 µm

c) Violation for m1. m2 spacing
is okay, but m2 floating area is
connected to m1 floating area;
therefore m1 must meet the
required parallel length of 2.0
µm for minSpacing >= 0.2 µm.

d) Violation for m1. m2 spacing is
okay, but total m2 floating area
is > 1000 µm2 connected to m1
floating area; therefore m1 must
meet the required parallel length
of 2.0 µm for minSpacing >= 0.2
µm.

e) Okay. m1 area < 1000 µm2,
therefore no spacing required.
m2 area is <1000 µm2; therefore
no spacing required, and m2
has no effect on m1 spacing. If
ALLCONNECTED was present,
then this is a violation (m1 + m2
area > 1000 µm2).

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 154 Product Version 5.7

Maximum Via Stack Rule

You can create a maximum via stack rule to require a series of stacked vias to all be multi-
cut vias. A via is considered to be in a stack with other vias if the cuts of all the vias partially
overlap (the boolean AND of the cut layer shapes from every via in the stack is not empty). A
multi-cut via interrupts the stack, unless the NOSINGLE keyword is specified.

You can define a maximum via stack rule using the following PROPERTYDEFINITIONS
statement:
PROPERTYDEFINITIONS
LIBRARY LEF58_MAXVIASTACK STRING
 "MAXVIASTACK maxStack [NOSINGLE] [RANGE bottomLayer topLayer] ;" ;
END PROPERTYDEFINITIONS

Where:

Maximum Via Stack Rule Examples

■ If the following rule exists:
PROPERTYDEFINITIONS
 LIBRARY LEF58_MAXVIASTACK STRING
 “MAXVIASTACK 3 RANGE m1 m6 ;” ;
END PROPERTYDEFINITIONS

Only three single-cut vias can be stacked between layers m1 and m6. See Figure 1-63
on page 155 for different layout examples using this rule.

MAXSTACK maxStack

Specifies the maximum number of single-cut vias that are
allowed on top of each other (that is, in one continuous stack).
Type: Integer

RANGE bottomLayer topLayer

Specifies a range of routing layers for which the maximum
stacked via rule applies. If you do not specify a range, the
maxStack value applies for all routing layers. The
bottomLayer and topLayer values are routing layer
names. The specified topLayer layer must be above the layer
specified for bottomLayer.

NOSINGLE Indicates that any single-cut via in a stack that is larger than
maxStack is a violation, and multi-cut vias do not interrupt a
stack. Therefore, any stack larger than maxStack must
consist of all multi-cut vias.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 155 Product Version 5.7

Figure 1-63 Max Via Stack Rule Examples

Minimum Area Rule

In some cases, it is necessary to allow a smaller minimum area for "simple rectangles" and
simple polygon shapes, but require a larger minimum area for complex polygons. This is done
with multiple AREA statements.

You can define a minimum area rule that requires a larger area

1. When all the edges of the polygon are short

or

2. If a minimum-sized rectangle cannot fit inside the polygon.

M6

M1

M2

M4

M3

 M1

 M2

 M4

 M3

 M6

 M1

 M2

 M4

 M3

 M6 M6

M1

M2

 M4

M3

 M1

 M2

 M4

 M3

 M6

a) Violation.
Stack = 4

b) Okay.
Max-stack =
3

c) 1-cut max
stack = 1, so
default is okay.
For NOSINGLE,
max-stack = 5,
so violation.

d) 1-cut max-
stack =3, so
default is okay.
For NOSINGLE,
max-stack = 5,
so violation.

e) 1-cut max-
stack =1, so
default is okay.
For NOSINGLE,
max-stack = 3
(see arrow), so
okay.

Library LEF58_MAXVIASTACK STRING "MAXVIASTACK 3 RANGE m1 m6 ;" ;
Library LEF58_MAXVIASTACK STRING "MAXVIASTACK 3 NOSINGLE RANGE
m1 m6 ;" ;

 M5 M5 M5 M5 M5

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 156 Product Version 5.7

You can also combine the two into one statement, in which case the larger area is required if
all the edges are short and a minimum-sized rectangle cannot fit inside the polygon.

You can create a minimum area rule using the following property definition:

PROPERTY LEF58_AREA
"AREA minArea
[[EXCEPTMINWIDTH minWidth]
| [EXCEPTEDGELENGTH minLength]
[EXCEPTMINSIZE minWidth minLength]
]
;..." ;

Where:

AREA is the same as the existing AREA LEF syntax.

Minimum Area Rule Examples

■ If you have the following AREA definition in your routing layer statement:
AREA 0.4 ;

All polygons on the layer must have a minimum area of 0.4 µm.

■ If the following minimum area rule exists:
PROPERTY LEF58_AREA "AREA 0.6 EXCEPTEDGELENGTH 0.5 ;" ;

EXCEPTMINWIDTH minWidth

Specifies that the rule does not apply if the width of a wire is
greater than or equal to the minWidth.
Type: Float, specified in microns

EXCEPTEDGELENGTH minLength

Indicates that the minArea rule applies for a given polygon
except if at least one edge length is greater than or equal to
minLength.
Type: Float, specified in microns

EXCEPTMINSIZE minWidth minLength

Indicates the minArea rule applies for a given polygon except
if a minimum-sized rectangle of dimensions minWdith
minLength can fit inside the polygon.
Type: Float, specified in microns (for both values)

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 157 Product Version 5.7

All polygons on the layer must have a minimum area of 0.6 µm, except if a polygon has
at least one edge that is greater than or equal to 0.5 µm.

■ If the following minimum area rule exists:
PROPERTY LEF58_AREA
 "AREA 0.6 EXCEPTEDGELENGTH 0.5 EXCEPTMINSIZE 0.1 0.5 ;" ;

Any polygon on the layer must have a minimum area of 0.6 µm when neither of the
following conditions hold:

❑ The polygon has at least one edge that is greater than or equal to 0.5 µm

❑ A rectangle of size 0.1 m by 0.5 µm can fit inside the polygon

■ If the following minimum area rule exists:
AREA 0.1 ;
PROPERTY LEF58_AREA
 "AREA 0.15 EXCEPTMINWIDTH 0.05 ;" ;

All polygons with any width less than 0.05 µm must have a minimum area of 0.15 µm².
Otherwise, a minimum area of 0.1 µm² is needed.

Minimum Cut Rule

Minimum cut rules exist for thin wires connected to a wide wire or pin.

You can define a minimum cut rule using the following property definition:

PROPERTY LEF58_MINIMUMCUT
"MINIMUMCUT numCuts WIDTH width [WITHIN cutDistance]
 [FROMABOVE | FROMBELOW]
 [LENGTH length WITHIN distance
 |AREA area [WITHIN distance]
] ;..." ;

All other keywords are the same as the existing LEF routing layer MINIMUMCUT syntax.

Where:

AREA area [WITHIN distance]

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 158 Product Version 5.7

Minimum Cut Rule Examples

■ The following minimum cut rule indicates that vias with 2 cuts (placed at a distance less
than 0.05 µm apart) are required, if the wire has a width greater than 0.09 µm, an area

Applies the minimum cut rule when the wide object has a width
that is greater than width, and an area that is greater than
area.

The area of a polygon is determined by a process in which the
polygon is shrunk by an amount equal to width/2, then grown by
an amount equal to width/2. The resulting polygon at the
connection location is used for area comparison. If the
connection is made at a thin wire (width less than and equal to
width) that connects to the wide object, the biggest remaining
neighbor should be checked individually with their own areas. If
it is followed by a WITHIN distance syntax, the within
distance is measured from the edges of the remaining
neighbors.

Note: You can specify either AREA WITHIN or LENGTH WITHIN
in a routing layer.

If WITHIN cutDistance is absent, only cuts belonging to the
same via are considered as multiple cuts.

If width is less than width of the default routing wire is used
along with the AREA keyword, the minimum cut requirement on
the routing vias can vary depending on the area of the routing
wire on the layer. This should be used cautiously. A small area
can result in longer routing run times, and more DRC violations.

WITHIN cutDistance

Indicates that the rule applies for thin wires directly connected
to a wide object, if the cuts on the thin wire are less than
distance from the wide object. If AREA and WITHIN are
defined, this rule only checks the thin wire connected to a wide
wire; it does not check the wide wire itself. A separate
MINIMUMCUT numCuts WIDTH width statement without
AREA and WITHIN is required for any wide wire minimum cut
rule.
Type: Float, specified in microns

Note: You can define either AREA WITHIN or LENGTH WITHIN
in a routing layer.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 159 Product Version 5.7

greater than 2.0 µm2, and width is less than the default routing width of 0.10 µm. (See
Figure 1-64 on page 159).
PROPERTY LEF58_MINIMUMCUT

"MINIMUMCUT 2 WIDTH 0.09 WITHIN 0.05 AREA 2.0 ;" ;

Figure 1-64 Minimum Cut Rule Example 1

■ The following minimum cut rules indicate that 3 via cuts are required, if a thin wire is
connected to a wide wire with a width greater than 0.24 µm and an area greater than
1.6 µm2, and the distance between the vias and the wide wire is less than 3.0 µm. (See
Figure 1-65 on page 160).
PROPERTY LEF58_MINIMUMCUT

"MINIMUMCUT 2 WIDTH 0.24 ;

"MINIMUMCUT 3 WIDTH 0.40 ;

"MINIMUMCUT 2 WIDTH 0.24 AREA 0.3 WITHIN 10.0 ;

"MINIMUMCUT 3 WIDTH 0.24 AREA 1.6 WITHIN 3.0 ;" ;

m3

via2

Greater than
equal to 0.05

0.07

m3

m3

Sum of area of all
m3 wires > 2.0

via3

via2

m3

Violation; all three vias should have two cuts. If WITHIN
0.05 is not specified, it is still a violation as two cuts are
needed for all end points by definition.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 160 Product Version 5.7

Figure 1-65 Minimum Cut Rule Example 2

0.25 C

A

B

0.3

1

5

a) Okay; width of B < 0.24,
only area of A, 1.5, would
require two cuts.

2

0.20.3

0.25 C

A

B

0.3

1

5

b) Violation; sum of all three
areas (A, B, and C) is 2.09,
which would require three cuts.

2

0.30.3

0.25 C

A

B

0.3

2

6

0.2
0.3

0.3

6

d) Okay; MINIMUMCUT 2
WIDTH 0.24 rule applies. The
WITHIN rules do not apply
when direct via is dropped.

4

c) Okay; the area of C only needs 2 cuts, and
the area of A needs 3 cuts, but the cut is farther
than the WITHIN distance of 3, and it also
fulfills the 2 cuts requirement. Same situation
occurs if a 2 cut via is directly connected to B
instead of a wire.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 161 Product Version 5.7

Minimum Step Rules

Minimum step rules allow you to require a minimum adjacent edge length following edges that
are less than the specified minimum step length.

You can define a minimum step rule using the following property definition:

PROPERTY LEF58_MINSTEP
"MINSTEP minStepLength
 [MAXEDGES maxEdges]
 [MINADJACENTLENGTH minAdjLength
 [CONVEXCORNER | minAdjLength2]
 | MINBETWEENLENGTH minBetweenLength [EXCEPTSAMECORNERS]
] ;..." ;

Where:

MAXEDGES is the same as the existing LEF routing layer MINSTEP syntax.

MINADJACENTLENGTH minAdjLength [CONVEXCORNER | minAdjLength2]

Indicates that the edges adjacent to min-step edges that are
less than minStepLength must be greater than or equal to
minAdjLength in length in order to be allowed; otherwise, it
is considered a violation.
If minAdjLength2 is specified, then one adjacent edge must
be greater than or equal to minAdjLength and the other
adjacent edge must be greater than or equal to
minAdjLength2. See Minimum Step Rule Examples on
page 162.
Type: Float, specified in microns

CONVEXCORNER indicates that if a convex corner is between
two concave corners, and if one of the length of the edges to
form the convex corner is less than minAdjLength, then the
other length must be greater than or equal to
minStepLength.

MINBETWEENLENGTH minBetweenLength

Indicates that one of the edges between min-step edges that
are less than MinStepLength must be greater than or equal
to minBetweenLength in length in order to be allowed;
otherwise, it is considered a violation.
Type: float, specified in microns

EXCEPTSAMECORNERS

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 162 Product Version 5.7

Minimum Step Rule Examples

Figure 1-66 Illustration of ExceptSameCorners Definition

■ The following minimum step rule indicates that there can only be one edge less than 1.0
µm in a row. The adjacent edges must be greater than or equal to 1.0 µm.
PROPERTY LEF58_MINSTEP

"MINSTEP 1.0 MAXEDGES 1 ;" ;

Indicates that a minBetweenLength length is not required
for an edge that has the same type of 90-degree corner at each
end (that is, both corners are convex, or both are concave). See
Figure 1-66 on page 162 for an illustration of
EXCEPTSAMECORNERS in a MINSTEP rule.

The EXCEPTSAMECORNERS definition of same-corners edges
refers to any edge that ends in two convex or two concave 90-
degree corners. All of the thick edges in the object above have
same-corner edges, and would not be checked by this rule..
“Stair-step” edges are shown in thin lines.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 163 Product Version 5.7

Figure 1-67 MinStep Rule Example 1

■ The following minimum step rule indicates that an edge less than 0.6 µm must have
adjacent edges greater than or equal to 1.0 µm.
PROPERTY LEF58_MINSTEP
"MINSTEP 0.6 MAXEDGES 1 MINADJACENTLENGTH 1.0 ;" ;

Figure 1-68 MinStep Rule Example 2

■ The following minimum step rule indicates that no edge less than 0.2 µm, and any edge
less than 0.6 µm must have one adjacent edge greater than or equal to 1.0 µm, and the
other adjacent edge greater than or equal to 1.2 µm.
MINSTEP 0.2 MAXEDGES 0 ;
PROPERTY LEF58_MINSTEP
"MINSTEP 0.6 MAXEDGES 1 MINADJACENTLENGTH 1.0 1.2 ;" ;

PROPERTY LEF58_MINSTEP “MINSTEP 1.0 MAXEDGES 1 ;” ;

0.95

a) Violation, more than 1
edges in a row that are <
1.0 in length.

0.95

b) Violation, more than 1
edges in a row that are <
1.0 in length.

0.95 0.95

c) OK, only 1 edge in a
row that is < 1.0 in length.

0.95

0.95 1.0

1.0

0.5
0.8

0.5

c) Violation, the edges < 0.5
have an adjacent edge < 1.0.

1.0 1.0

0.5

a) Violation, an edge < 0.6
long has adjacent edges <
1.0.

1.0

0.8

0.5

1.0 0.5

b) Okay, all edges < 0.6 long
have >=1.0 adjacent edges.

1.0

1.1

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 164 Product Version 5.7

Figure 1-69 MinStep Rule Example 3

■ The following minimum step rule illustrates CONVEXCORNER:
PROPERTY LEF58_MINSTEP
"MINSTEP 0.6 MAXEDGES 1 MINADJACENTLENGTH 1.0 CONVEXCORNER ;" ;

0.5

a) Violation: an edge < 0.6
long has adjacent edge <
1.0.

1.2

0.8

0.5

c) Violation, an edge < 0.6 long
has adjacent edge >= 1.0, but
only 1.1 for the other edge (>= 1.2
required).

1.1

1.0

0.5

b) OK, an edge < 0.6 long
has adjacent edge >= 1.0,
and >= 1.2.

1.2

1.0

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 165 Product Version 5.7

Figure 1-70 MinStep Rule with CONVEXCORNER

0.5

0.5

0.5

c) OK, no convex corner is
found between 2 concave
corners

0.8 0.8

0.5

b) OK, the convex corner of 0.5
and 0.9 edges is not between
2 concave corners

0.9

1.1

0.6

0.8
0.4

a) Violation, the convex corner of 0.4 and
0.8 edges is between 2 concave corners,
and their lengths are smaller than 0.6
and 1.0 correspondingly

0.7

1.1

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 166 Product Version 5.7

Figure 1-71 MinStep Rule Example 5

Parallel Span Length Spacing Table Rule

Parallel span length spacing table rules can be used to define supplement spacing
constraints based on span length of the objects.

You can define a parallel span length spacing table rule using the following property definition:

PROPERTY LEF58_SPACINGTABLE
 "SPACINGTABLE
 PARALLELSPANLENGTH PRL runLength {SPANLENGTH spanLength {spacing} ...
};
 ;";

PROPERTY LEF58_MINSTEP “MINSTEP 0.6 MAXEDGES 1 MINBETWEENLENGTH 1.0 ;“ ;

0.5
0.8

0.5

c) Violation, the edges < 0.6 do not
have an edge >= 1.0 between
them.
d) Okay if the rule includes
EXCEPTSAMECORNERS, because
then 1.0 length is not required for
the same corners edge.

1.0 1.0

This is a same-corners edge.

0.5

a) Okay, an edge < 0.6 long
has a >1.0 edge between it
and any other
< 0.6 edge.

1.0

0.8
0.5

1.0 0.5

b) Okay, the edges < 0.6 µm
long have a >=1.0 µm edge
between them.

1.0

1.1
1.5

0.5

0.5

f) Violation, an edge < 0.6 long
has no edge >= 1.0 before
another edge < 0.6.

0.5

0.8

0.5

e) Okay, there is an edge
>= 1.0 between the 0.5
edges.

1.0

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 167 Product Version 5.7

Where:

All other keywords are the same as the existing LEF routing layer SPACINGTABLE syntax.

Spacing Table Rule Examples

■ Figure 1-72 on page 168 illustrates the following spacing table rules with SPANLENGTH
0, 0.10, and 0.20:

PROPERTY LEF58_SPACINGTABLE

 "SPACINGTABLE

 PARALLELSPANLENGTH PRL 0.15

 SPANLENGTH 0 0.10 0.15 0.20

 SPANLENGTH 0.10 0.15 0.17 0.23

 SPANLENGTH 0.20 0.20 0.23 0.25 ; " ;

PARALLELSPANLENGTH PRL runLength {SPANLENGTH spanLength {spacing}}

Creates a table in which spacing between two objects depends
on the span length of both the objects that have a parallel run
length greater than runLength. To find the required spacing,
a NxN two-dimensional table is used that implicitly has the
same span lengths for row and column headings. There must
be exactly as many spacing values in each SPANLENGTH row
as the number of SPANLENGTH rows. The spanLength
values must increase from top to bottom in the table. The
spacing values must be the same, or increase from left to right
and from top to bottom across the table. Consider two objects
with spanLength1 and spanLength2. You need to find the
last row where spanLength1 is greater than the table row
spanLength, and the right-most column where
spanLength2 is greater than the table column
spanLength. The intersection of the matching row and
column provides the required spacing.

The parallel run length is measured as a sum of lengths
between objects. Turning corners may break up the parallel run
length thus resulting in inaccurate calculations. These are
supplement spacing constraints, in addition to the regular
spacing based on wire width.
Type: Float, specified in microns (for all values)

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 168 Product Version 5.7

Figure 1-72 Spacing Table Rule Example

0.09

a) Violation, the continuous parallel run
length of 0.1 & 0.06 = 0.16 (> 0.15), and
top & bottom edges on the left have span
length > 0.1, 0.15 spacing is needed

0.08
0.06

0.16

b) OK, parallel run length does
not count for opposite sides

0.08

0.08 0.09

c) OK, parallel run length <=
0.15

0.14

0.14

0.08

0.21

0.1

0.14

0.21

0.16

0.14

0.14

d) OK, parallel run length is not
continuous, and each of the
individual ones of 0.09 <= 0.15
would not trigger the rule

0.08

0.09

0.16

0.14

0.08

0.090.14

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 169 Product Version 5.7

EOL Extension Spacing Rule

EOL extension spacing rule can be used to indicate that for a given width of an end-of-line
certain extension should be applied to the EOL edge before checking for edge-to-edge
spacing to any neighbor wires.

You can define a EOL extension spacing rule using the following property definition:

PROPERTY LEF58_EOLEXTENSIONSPACING
 "EOLEXTENSIONSPACING spacing
 {ENDOFLINE eolWidth EXTENSION extension
 [ENDTOEND endToEndExtension]} ...
 [MINLENGTH minLength [TWOSIDES]]
 ;" ;

Where:

EOLEXTENSIONSPACING spacing {ENDOFLINE eolWidth EXTENSION
extension [ENDTOEND endToEndExtension]} ...

0.19

f) OK, the top & side parallel run length
is calculated separately, and each of
them <= 0.15

0.08

0.15
0.11

e) Violation, it can happen in EOL when the
conditions are fulfilled. With span length of
0.21, 0.2 spacing is needed

0.08

0.06

0.1
0.15

0.16

0.21
0.14

0.08

0.14

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 170 Product Version 5.7

EOL Extension Spacing Rule Examples

■ The following EOL extension spacing rule indicates that an end-of-line edge with width
less than 0.11 µm should have 0.14 µm extension, and an end-of-line edge with width
less than 0.15 µm and greater than or equal to 0.11 µm should have 0.13 µm extension
in end-to-end situation or 0.12 µm extension in end-to-side situation. Then 0.1 µm edge
to edge spacing must be enforced with proper extension on the end-of-line edge(s).

PROPERTY LEF58_EOLEXTENSIONSPACING

 "EOLEXTENSIONSPACING 0.1 ENDOFLINE 0.11 EXTENSION 0.14

 ENDOFLINE 0.15 EXTENSION 0.12 ENDTOEND 0.13 ;" ;

Specifies that for a given width of an end-of-line, find the last
row where the width is less than eolWidth, the corresponding
extension should be applied to the EOL edge before checking
for edge-to-edge spacing to any neighbor wires. The
eolWidth values should be increased for each subsequent
ENDOFLINE statement, and at the most three statements can
be specified and supported.
Type: Float, specified in microns

ENDTOEND endToEndExtension specifies that
endToEndExtension is applied if the neighbor wire is also
an end-of-line, and extension is applied for an end-to-side
situation.
Type: Float, specified in microns

MINLENGTH minLength [TWOSIDES]

Indicates that the rule does not apply if the end-of-line length is
less than minLength along both sides.
Type: Float, specified in microns

TWOSIDES means that the rule only applies when the end-of-
line length is greater than or equal to minLength along both
the sides. In other words, the rule does not apply if the end-of-
line length is less than minLength along any one side.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 171 Product Version 5.7

Figure 1-73 EOL Extension Spacing Rule Example

Routing Pitch

The PITCH statements define the detail routing grid generated when you initialize a floorplan.
The pitch for a given routing layer defines the distance between routing tracks in the preferred
direction for that layer. The complete routing grid is the union of the tracks generated for each
routing layer.

The spacing of the grid should be no less than line-to-via spacing in both the horizontal and
vertical directions. Grid spacing less than line-to-via spacing can result in routing problems
and can decrease the utilization results.

0.1
0.09

0.14

a) Violation, 0.14 extension is
applied for width < 0.11, and 0.1
spacing is required after the
extension

0.1
0.09

0.14

b) Violation, for end-to-end situation,
0.14 extension is applied for width <
0.11 on the left, 0.13 extension is
applied for width >= 0.11, and 0.1
spacing is required

0.14

0.13

0.13
0.09

0.13

c) Violation, for end-to-end situation,
0.13 extension is applied for both wires
with width >= 0.11, and 0.1 spacing is
required

0.14

0.13

0.12
0.09

0.12

d) Violation, 0.12 extension is applied
for width >= 0.11 for end-to-side, and
0.1 spacing is required

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 172 Product Version 5.7

The grid should normally allow for diagonal vias. Via spacing on all layers included in the via
definition in LEF determines whether or not diagonal vias can be used. The router is capable
of avoiding violations between diagonal vias. If you allow diagonal vias, less time is needed
for routing and the layout creates a smaller design.

Macro
MACRO macroName

[CLASS
 { COVER [BUMP]
 | RING
 | BLOCK [BLACKBOX | SOFT]
 | PAD [INPUT | OUTPUT |INOUT | POWER | SPACER | AREAIO]
 | CORE [FEEDTHRU | TIEHIGH | TIELOW | SPACER | ANTENNACELL | WELLTAP]
 | ENDCAP {PRE | POST | TOPLEFT | TOPRIGHT | BOTTOMLEFT | BOTTOMRIGHT}
 }
;]
[FOREIGN foreignCellName [pt [orient]] ;] ...
[ORIGIN pt ;]
[EEQ macroName ;]
[SIZE width BY height ;]
[SYMMETRY {X | Y | R90} ... ;]
[SITE siteName [sitePattern] ;] ...
[PIN statement] ...
[OBS statement] ...
[DENSITY statement] ...
[PROPERTY propName propVal ;] ...

END macroName

Defines macros in the design.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 173 Product Version 5.7

CLASS

Specifies the macro type. If you do not specify CLASS, the macro is considered a CORE
macro, and a warning prints when the LEF file is read in. You can specify macros of the
following types:

COVER Macro with data that is fixed to the floorplan and cannot change, such as
power routing (ring pins) around the core. The placers understand that
CLASS COVER cells have no active devices (such as diffusion or
polysilicon), so the MACRO SIZE statement does not affect the placers,
and you do not need an artificial OVERLAP layer. However, any pin or
obstruction geometry in the COVER cells can affect the pin access checks
done by the placers.

A cover macro can be of the following sub-class:

BUMP—A physical-only cell that has bump geometries and pins. Typically
a bump cell has geometries only on the top-most “bump” metal layer,
although it might contain a via and pin to the metal layer below.

RING Large macro that has an internal power mesh, and only exposes power-
pin shapes that form a ring along the macro boundary. When power
stripes are added across the macro, they connect to each side of the
ring-pin but do not go inside the ring. The CLASS RING macro can also
be used for power-switch cells that are abutted together to form a power-
ring around a power-domain. In that case, their power-pins have the
same effect of interrupting power stripes as the ring-pins in a single block
RING macro.

 BLOCK Predefined macro used in hierarchical design.

A block macro can have one of the following sub-classes:

BLACKBOX—A block that sometimes only contains a SIZE statement
that estimates its total area. A blackbox can optionally contain pins, but in
many cases, the pin names are taken from a Verilog description and do
not need to match the LEF MACRO pin names.

SOFT—A cell that also contains a version of the sub-block that is not fully
implemented. Normally, a soft block LEF can still have certain parts of it
modified (for example, the aspect ratio, or pin locations) because the
sub-block is not yet fully implemented. Any changes should be passed to
the sub-block implementation. In contrast, a BLACKBOX has no sub-block
implementation available.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 174 Product Version 5.7

Example 1-15 Macro Pad Cell

The following example defines a power pad cell that illustrates when to use the CLASS CORE
keywords on power ports. For the VDD pin, there are two ports: one to connect to the interior
core power ring, and one to complete the I/O power ring. Figure 1-1 on page 6 illustrates this
pad cell.

 PAD I/O pad. A pad can be one of the following types: INPUT, OUTPUT,
INOUT, POWER, or SPACER, for I/O rows; INPUT, OUTPUT, INOUT, or
POWER, for I/O corner pads; AREAIO for area I/O driver cells that do not
have the bump built in as part of the macro (and therefore require routing
to a CLASS COVER BUMP macro for a connection to the IC package).

For an example of a macro pad cell, see Example 1-15 on page 174.

 CORE A standard cell used in the core area. CORE macros should always
contain a SITE definition so that standard cell placers can correctly align
the CORE macro to the standard cell rows.

A core macro can be one of the following types:

FEEDTHRU—Used for connecting to another cell.

TIEHIGH,TIELOW—Used for connecting unused I/O terminals to the
power or ground bus.

SPACER—Sometimes called a filler cell, this cell is used to fill in space
between regular core cells.

ANTENNACELL—Used for solving process antenna violations. This cell
has a single input to a diode to bleed off charge that builds up during
manufacturing.

WELLTAP—Standard cell that connects N and P diffusion wells to the
correct power or ground wire.

 ENDCAP A macro placed at the ends of core rows (to connect with power wiring).

If the library includes only one corner I/O macro, then appropriate
SYMMETRY must be included in its macro description. An ENDCAP macro
can be one of the following types:
PRE—A left-end macro
POST—A right-end macro
TOPLEFT—A top left I/O corner cell
TOPRIGHT—A top right I/O corner cell
BOTTOMLEFT —A bottom left I/O corner cell
BOTTOMRIGHT—A bottom right I/O corner cell

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 175 Product Version 5.7

MACRO PAD_0

CLASS PAD ;

FOREIGN PAD_0 0.000 0.000 ;

ORIGIN 0.000 0.000 ;

SIZE 100.000 BY 300.000 ;

SYMMETRY X Y R90 ;

SITE PAD_SITE ;

Define pin VDD with SHAPE ABUTMENT because there are no obstructions
to block a straight connection to the pad rings. The port without
CLASS CORE is used for completing the I/O power ring.

PIN VDD

DIRECTION INOUT ;

USE POWER ;

SHAPE ABUTMENT ;

PORT

 LAYER metal2 ;

 RECT 0.000 250.000 100.000 260.000 ;

 LAYER metal3 ;

 RECT 0.000 250.000 100.000 260.000 ;

END

Define VDD port with PORT CLASS CORE to indicate that the port connects
to the core area instead of to the pad ring.

 PORT

 CLASS CORE ;

 LAYER metal2 ;

 RECT 0.000 290.000 100.000 300.000 ;

 LAYER metal3 ;

 RECT 0.000 290.000 100.000 300.000 ;

 END

END VDD

Define pins VCC and GND with SHAPE FEEDTHRU because these pins
cannot make a straight connection to the pad rings due to obstructions.

PIN VCC

 DIRECTION INOUT ;

 USE POWER ;

 SHAPE FEEDTHRU ;

 PORT

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 176 Product Version 5.7

 LAYER metal2 ;

 RECT 0.000 150.000 20.000 160.000 ;

 RECT 20.000 145.000 80.000 155.000 ;

 RECT 80.000 150.000 100.000 160.000 ;

 LAYER metal3 ;

 RECT 0.000 150.000 20.000 160.000 ;

 RECT 20.000 145.000 80.000 155.000 ;

 RECT 80.000 150.000 100.000 160.000 ;

 END

END VCC

PIN GND

DIRECTION INOUT ;

USE GROUND ;

SHAPE FEEDTHRU ;

PORT

 LAYER metal2 ;

 RECT 0.000 50.000 20.000 60.000 ;

 RECT 80.000 50.000 100.000 60.000 ;

END

END GND

OBS

LAYER metal1 ;

 RECT 0.000 0.000 100.000 300.000 ;

LAYER metal2 ;

 RECT 25.000 50.000 75.000 60.000 ;

 RECT 30.500 157.000 70.500167.000 ;

END

END PAD_0

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 177 Product Version 5.7

Figure 1-74 Power Pad Cell

DENSITY statement

Specifies the metal density for large macros.
The DENSITY rectangles on a layer should not overlap, and should cover the entire area
of the macro. You can choose the size of the rectangles based on the uniformity of the
density of the block. If the density is uniform, a single rectangle can be used. If the density
is not very uniform, the size of the rectangles can be specified to be 10 to 20 percent of
the density window size, so that any error due to non-uniform density inside each
rectangle area is small.
For example, if the metal density rule is for a 100 µm x 100 µm window, the density
rectangles can be 10x10 µm squares. Any non-uniformity will have little impact on the
density calculation accuracy.

VDD port,
metal3,

VCC

VDD port, CLASS CORE, metal2

Core power ring (metal5)

Chip boundary Short power routes between SHAPE FEEDTHRU
pins to complete the I/O ring for VCC and GND.

Power route that connects
power pad to core power ring.

One long power route that
completes the I/O power ring for
VDD.

GND

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 178 Product Version 5.7

If two adjacent rectangles have the same or similar density, they can be merged into one
larger rectangle, with one average density value. The choice between accuracy and
abstraction is left to the abstract generator.
The DENSITY syntax is defined as follows:
[DENSITY
 {LAYER layerName ;
 {RECT x1 y1 x2 y2 densityValue ;} ...
 } ...
END] ...

Example 1-16 Macro Density

The following statement specifies the density for macro testMacro:
MACRO testMacro

CLASS ...

PIN ...

OBS ...

DENSITY

LAYER metal1 ;

RECT 0 0 100 100 45.5 ; #rect from (0,0) to (100,100), density of 45.5%

RECT 100 0 200 100 42.2 ; #rect from (100,0) to (200, 100), density of 42.2%

END

...

 densityValue Specifies the density for the rectangle, as a percentage. For
example, 50.0 indicates that the rectangle has a density of 50
percent on layerName.
Type: Float
Value: 0 to 100

layerName Specifies the layer on which to create the rectangle.

x1 y1 x2 y2 Specifies the coordinates of a rectangle.
Type: Float, specified in microns

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 179 Product Version 5.7

END testMacro

Example 1-17 Foreign Statements

The following examples show two variations of the FOREIGN statement. The negative offset
specifies that the GDSII structure should be above and to the right of the macro lower left
corner.

MACRO ABC ...

FOREIGN ABC -2 -3 ;

The positive offset specifies that the GDSII structure should be below and to the left of the
macro lower left corner.

MACRO EFG ...

EEQ macroName Specifies that the macro being defined should be electrically
equivalent to the previously defined macroName. EEQ macros
include devices such as OR-gates or inverters that have several
implementations with different shapes, geometries, and orientations.

Electrically equivalent macros have the following requirements:

■ Corresponding pins must have corresponding functionality.

■ Pins must be defined in the same order.

■ For each group of corresponding pins (one from each macro), pin
function and electrical characteristics must be the same.

■ The EEQ macroName specified must refer to a previously
defined macro. If the EEQ macroName referenced is already
electrically equivalent to other model macros, all referenced
macros are considered electrically equivalent.

FOREIGN foreignCellName [pt [orient]]

Specifies the foreign (GDSII) structure name to use when placing an
instance of the macro. The optional pt coordinate specifies the
macro origin (lower left corner when the macro is in north orientation)
offset from the foreign origin. The FOREIGN statement has a default
offset value of 0 0, if pt is not specified.

The optional orient value specifies the orientation of the foreign
cell when the macro is in north orientation. The default orient
value is N (North).

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 180 Product Version 5.7

FOREIGN EFG 2 3 ;

MACRO macroName Specifies the name of the library macro.

OBS statement Defines obstructions on the macro. Obstruction geometries
are specified using layer geometries syntax. See “Macro
Obstruction Statement” on page 190 for syntax information.

ORIGIN pt Specifies how to find the origin of the macro to align with a
DEF COMPONENT placement point. If there is no ORIGIN
statement, the DEF placement point for a North-oriented
macro is aligned with 0, 0 in the macro. If ORIGIN is given in
the macro, the macro is shifted by the ORIGIN x, y values first,
before aligning with the DEF placement point. For example, if
the ORIGIN is 0, -1, then macro geometry at 0, 1 are shifted
to 0, 0, and then aligned to the DEF placement point.

PIN statement Defines pins for the macro. See “Macro Pin Statement” on
page 193 for syntax information.

PROPERTY propName propVal

Specifies a numerical or string value for a macro property
defined in the PROPERTYDEFINITIONS statement. The
propName you specify must match the propName listed in
the PROPERTYDEFINITIONS statement.

SITE siteName [sitePattern]

Specifies the site associated with the macro. Normal row-
based standard cells only have a single SITE siteName
statement, without a sitePattern. The sitePattern
syntax indicates that the cell is a gate-array cell, rather than a
row-based standard cell. Gate-array standard cells can have
multiple SITE statements, each with a sitePattern.

The sitePattern syntax is defined as follows:

[xOrigin yOrigin siteOrient [stepPattern]]

 xOrigin yOrigin Specifies the origin of the site inside
the macro.
Type: Float, specified in microns

 siteOrient Specifies the orientation of the site at
that location.
Value: N, S, E, W, FN, FS, FE, or FW

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 181 Product Version 5.7

If the site is repeated, you can specify a stepPattern that defines the repeating
pattern. The stepPattern syntax is defined as follows:
[DO xCount BY yCount STEP xStep yStep]

Example 1-18 Macro Site

The following statement defines a macro that uses the sites created in Example 1-29 on
page 209:
MACRO myTest

CLASS CORE ;

SIZE 10.0 BY 14.0 ; #Uses 2 F and 1 L site, is F + L wide, and double height

SYMMETRY X ; #Can flip about the X axis

SITE Fsite 0 0 N ; #The lower left Fsite at 0,0

SITE Fsite 0 7.0 FS ; #The flipped south Fsite above the first Fsite at 0,7

SITE Lsite 4.0 0 N ; #The Lsite to the right of the first Fsite at 4,0

...

PIN ... ;

END myTest

Figure 1-75 on page 182 illustrates the placement results of this definition.

 Note: Legal placement locations for macros with site patterns
must match the site pattern inside the macro to the site pattern
in the design rows.

 xCount yCount Specifies the number of sites to add in the x and y directions.
You must specify values that are greater than or equal to 0
(zero).
Type: Integer

 xStep yStep Specifies the spacing between sites in the x and y directions.
Type: Float, specified in microns

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 182 Product Version 5.7

Figure 1-75

The following statement includes the gate-array site pattern syntax. It uses two F sites in a
row with N (North) orientation.
MACRO myTest

CLASS CORE ;

SIZE 8.0 BY 7.0 ; #Width = 2 * Fsite width, height = Fsite height

SITE Fsite 0 0 N DO 2 BY 1 STEP 4.0 0 ; #Xstep = 4.0 = Fsite width

...

END myTest

This definition produces a cell with the sites shown in Figure 1-76 on page 182.

Figure 1-76

Standard cell myTest uses two F sites and one L site. Note that the top-
right corner is empty, and any site there can be used by a different cell.

With symmetry X, it can match the row site pattern in two orientations.

Site orientation inside horizontal rows:

FS, FS, S, FS, FS, S, etc.

N, N, FN, N, N, FN, etc.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 183 Product Version 5.7

SIZE width BY height

Specifies a placement bounding rectangle, in microns, for the
macro. The bounding rectangle always stretches from (0, 0) to
the point defined by SIZE. For example, given SIZE 10 BY 40,
the bounding rectangle reaches from (0, 0) after adjustment
due to the ORIGIN statement, to (100, 400).

Placers assume the placement bounding rectangle cannot
overlap placement bounding rectangles of other macros,
unless OBS OVERLAP shapes are used to create a non-
rectangular area.

After placement, a DEF COMPONENTS placement pt indicates
where the lower-left corner of the placement bounding
rectangle is placed after any possible rotations or flips. The
bounding rectangle width and height should be a multiple of
the placement grid to allow for abutting cells.

For blocks, the placement bounding rectangle typically
contains all pin and blockage geometries, but this is not
required. For example, typical standard cells have pins that lie
outside the bounding rectangle, such as power pins that are
shared with cells in the next row above them.

SYMMETRY {X | Y | R90}

Specifies which macro orientations should be attempted by
the placer before matching to the site of the underlying rows.
In general, most standard cell macros should have symmetry
X Y. N (North) is always a legal candidate. For each type of
symmetry defined, additional orientations become legal
candidates. For more information on defining symmetry, see
“Defining Symmetry” on page 184.

Possible orientations include:

X N and FS orientations should be tried.

Y N and FN orientations should be tried.

X Y N, FN, FS, and S orientations should
all be tried.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 184 Product Version 5.7

For corner I/O pads, if the library includes BOTTOMLEFT, BOTTOMRIGHT, TOPLEFT, and
TOPRIGHT I/O corner cells, then they are placed in North orientation (no flipping). However,
if the library includes only one type of corner I/O, then SYMMETRY in x and y are required to
create the rows for all four of them.

Defining Cover Macros

If you define a cover macro with its actual size, some place-and-route tools cannot place the
rest of the cells in your design because it uses the cell boundary to check for overlaps. You
can resolve this in two ways:

■ The easiest way to support a cover macro is to define the cover macro with a small size,
for example, 1 by 1.

■ If you want to define the cover macro with its actual size, create an overlap layer with the
nonrouting LAYER TYPE OVERLAP statement. You define this overlap layer (cover macro)
with the macro obstruction (OBS) statement.

Defining Symmetry

Symmetry statements specify legal orientations for sites and macros. Figure 1-77 on
page 184 illustrates the normal orientations for single-height, flipped and abutted rows with
standard cells and sites.

Figure 1-77 Normal Orientations for Single-Height Rows

R90 Specify this value only for pad cells.
Do not specify this value for standard
cells.

Note: If you do not specify a SYMMETRY statement, only N
orientation is tried.

N

FS

FN

S

N row

FS row

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 185 Product Version 5.7

The following examples describe typical combinations of orientations for standard cells.
Applications typically create only N (or FS for flipped) row orientations for horizontal standard
cell rows; therefore, the examples describe these two rows.

Example 1-19 Single-Height Cells

Single-height cells for flipped and abutted rows should have SITE symmetry Y and MACRO
symmetry X Y. These specifications allow N and FN macros in N rows, and FS and S macros
in FS rows (see d in Figure 1-78 on page 185). These symmetries work with flipped and
abutted rows, as well as rows that are not flipped and abutted. If the rows are not flipped, the
cells all have N orientation. The extra MACRO symmetry of X is not required in this case, but
causes no problems.

Figure 1-78 Legal Placements for Row Sites with Symmetry Y

Example 1-20 Double-Height Cells

Double-height cells that are intended to align with flipped and abutted single-height rows
should have SITE symmetry X Y and MACRO symmetry X Y. These symmetries allow all four
cell orientations (N, FN, FS, and S) to fit inside the double-height row (see Figure 1-79 on
page 186). Usually, double-height rows are just N orientation rows that are abutted and
aligned with a pair of single-height flipped and abutted rows.

NN row

FS row

a) Macro has no symmetry

N

FS

N row

FS row

b) Macro symmetry X

N FNN row

FS row

c) Macro symmetry Y

N

FS

FN

S

N row

FS row

d) Macro symmetry X Y

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 186 Product Version 5.7

Figure 1-79 Legal Placements for Single-Height Row Sites with Symmetry Y and
Double-Height Row Sites with Symmetry X Y

Example 1-21 Special Orientations

Some single-height cells have special orientation needs. For example, the design requires
flipped and abutted rows, but only N and FS orientations are allowed because of the special
layout of well taps on the right side of a group of cells that borrow from the left side of the next
cell. That is, you cannot place an N and FN cell against each other in one row because only
N cells are allowed in an N row. In this case, the SITE symmetry should not be defined, and
the MACRO symmetry should be X. A MACRO symmetry of X Y can also be defined because
the Y-flipped macros (FN and S orientations) do not match the N or FS rows. This MACRO
symmetry also works if there are no flipped rows, and only N rows.

Example 1-22 Vertical Rows

Vertical rows use N or FN row and site orientations. The flipped, abutted vertical row
orientation is N and FN, rather than the horizontal row orientation of N and FS. Otherwise, the
meaning of the site symmetries and macro symmetries is the same as those for horizontal
rows.

Single-height sites are normally given symmetry X, and single-height cells are normally given
symmetry X Y. Example d in Figure 1-80 on page 187 shows the legal placement for a site
with symmetry X, and the typical standard cell MACRO symmetry X Y.

Single N row

Single FS row

Double-height rows

Double N row

Double N row
Single FS row

Single N row

Single-height rows

Note: The single-height rows are shifted slightly to the left of the double-height rows in the
above figure for illustration purposes. In a real design, they should be aligned.

FN
S

SFS

N

FNN

SFS

FN

S

N

FS

FS

FNN

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 187 Product Version 5.7

Figure 1-80 Legal Placements for Vertical Row Sites With Symmetry X

Layer Geometries

 { LAYER layerName
 [EXCEPTPGNET]
 [SPACING minSpacing | DESIGNRULEWIDTH value] ;
 [WIDTH width ;]
 { PATH pt ... ;
 | PATH ITERATE pt ... stepPattern ;
 | RECT pt pt ;
 | RECT ITERATE pt pt stepPattern ;
 | POLYGON pt pt pt pt ... ;
 | POLYGON ITERATE pt pt pt pt ... stepPattern ;
 } ...
| VIA pt viaName ;
| VIA ITERATE pt viaName stepPattern ;
} ...

Used in the macro obstruction (OBS) and pin port (PIN) statements to define layer geometries
in the design.

DESIGNRULEWIDTH value

N row FN row

N

FS

N row FN row

N FN

N row FN row

N

FS

FN

S

a) Macro has
no symmetry

b) Macro has X
symmetry

c) Macro has Y
symmetry

d) Macro has X Y
symmetry

N row FN row

N

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 188 Product Version 5.7

Specifies the effective design rule width. If specified, the
obstruction or pin is treated as a shape of this width for all
spacing checks. If you specify DESIGNRULEWIDTH, you
cannot specify the SPACING argument.
Type: Float

EXCEPTPGNET Indicates that the obstruction shapes block signal routing, but
do not block power or ground routing. This can be used to
block signal routes that might cause noise, but allow
connections to power and ground pins.

ITERATE Creates an array of the PATH, RECT, POLYGON, or VIA
geometry, as specified by the given step pattern. ITERATE
specifications simplify the definitions of cover macros. The
syntax for stepPattern is defined as follows:

DO numX BY numY STEP spaceX spaceY

numX Specifies the number of columns of
points.

numY Specifies the number of rows of
points.

spaceX spaceY Specifies the spacing, in distance
units, between the columns and rows
of points.

LAYER layerName Specifies the layer on which to place the geometry.

Note: For macro obstructions, you can specify cut, implant, or
overlap layers.

PATH pt Creates a path between the specified points, such as pt1
pt2 pt3. The path automatically extends the length by half of
the current width on both endpoints to form a rectangle. (A
previous WIDTH statement is required.) The line between
each pair of points must be parallel to the x or y axis (45-
degree angles are not allowed).

You can also specify a path with a single coordinate, in which
case a square whose side is equal to the current width is
placed with its center at pt.

POLYGON pt pt pt pt

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 189 Product Version 5.7

Example 1-23 Layer Geometries

The following example shows how to define a set of geometries, first by using ITERATE
statements, then by using individual PATH, VIA and RECT statements.

The following two sets of statements are equivalent:
PATH ITERATE 532.0 534 1999.2 534

DO 1 BY 2 STEP 0 1446 ;

VIA ITERATE 470.4 475 VIABIGPOWER12

DO 2 BY 2 STEP 1590.4 1565 ;

RECT ITERATE 24.1 1.5 43.5 16.5

DO 2 BY 1 STEP 20.0 0 ;

Specifies a sequence of at least three points to generate a
polygon geometry. Every polygon edge must be parallel to the
x or y axis, or at a 45-degree angle. Each POLYGON statement
defines a polygon generated by connecting each successive
point, and then by connecting the first and last points.

RECT pt pt Specifies a rectangle, where the two points specified are
opposite corners of the rectangle. There is no functional
difference between a geometry specified using PATH and a
geometry specified using RECT.

SPACING minSpacing Specifies the minimum spacing allowed between this
particular obstruction or pin and any other shape. This value
overrides the normal LAYER-based spacing rules, including
wide wire spacing rules. Therefore, a SPACING value of 0.1
µm specifies that all other shapes must be spaced at least 0.1
µm away, including large width objects that might normally
require even more spacing.

If you specify SPACING, you cannot specify the
DESIGNRULEWIDTH argument.

VIA pt viaName Specifies the via to place, and the placement location.

WIDTH width Specifies the width that the PATH statements use. If you do
not specify width, the default width for that layer is used.
When you specify a width, that width remains in effect until the
next WIDTH or LAYER statement. When another LAYER
statement is given, the WIDTH is automatically reset to the
default width for that layer.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 190 Product Version 5.7

PATH 532.0 534 1999.2 534 ;

PATH 532.0 1980 1999.2 1980 ;

VIA 470.4 475 VIABIGPOWER12 ;

VIA 2060.8 475 VIABIGPOWER12;

VIA 470.4 2040 VIABIGPOWER12;

VIA 2060.8 2040 VIABIGPOWER12;

RECT 24.1 1.5 43.5 16.5 ;

RECT 44.1 1.5 63.5 16.5 ;

Macro Obstruction Statement

[OBS
{ LAYER layerName
 [EXCEPTPGNET]
 [SPACING minSpacing | DESIGNRULEWIDTH value] ;
 [WIDTH width ;]
 { PATH pt ... ;
 | PATH ITERATE pt ... stepPattern ;
 | RECT pt pt ;
 | RECT ITERATE pt pt stepPattern ;
 | POLYGON pt pt pt pt ... ;
 | POLYGON ITERATE pt pt pt pt ... stepPattern ;
 } ...
| VIA pt viaName ;
| VIA ITERATE pt viaName stepPattern ;
} ...

END]

Defines a set of obstructions (also called blockages) on the macro. You specify obstruction
geometries using the layer geometry syntax. See “Layer Geometries” on page 187 for syntax
information.

Normally, obstructions block routing, except for when a pin port overlaps an obstruction (a
port geometry overrules an obstruction). For example, you can define a large rectangle for a
metal1 obstruction and have metal1 port in the middle of the obstruction. The port can still
be accessed by a via, if the via is entirely inside the port.

In Figure 1-81 on page 191, the router can only access the metal1 port from the right. If the
metal2 obstruction did not exist, the router could connect to the port with a metal12 via, as
long as the metal1 part of the via fit entirely inside the metal1 port.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 191 Product Version 5.7

Figure 1-81

Routing can also connect to such a port on the same layer if the routing does not cross any
obstruction by more than a distance of the total of minimum width plus minimum spacing
before reaching the pin. This is because the port geometry is known to be “real,” and any
obstruction less than a distance of minimum width plus minimum spacing away from the port
is not a real obstruction. If the pin is more than minimum width plus minimum spacing away
from the obstruction edge, the router can only route to the pin from the layer above or below
using a via (see Figure 1-82 on page 191).

Figure 1-82

If a port is on the edge of the obstruction, a wire can be routed to the port without violations.
Pins that are partially covered with obstructions or in apparent violation with nearby

metal1 obstruction

metal2 obstruction

metal1 port

metal1 wire

metal1 port

metal1 obstruction

metal2 obstruction

Can be connected by metal1 wire
from the right side.

If port is less than minimum width plus
minimum spacing from obstruction edge, it
can still be connected by metal1 wire from
the right. It can also be connected by a
metal12 via.

Can only be connected by a metal12
via.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 192 Product Version 5.7

obstructions can limit routing options. Even though the violations are not real, the router
assumes they are. In these cases, extend each obstruction to cover the pin. The router then
accesses the pin as described above.

Benefits of Combining Obstructions

Significant routing time can be saved if obstructions are simplified. Especially in metal1,
construct obstructions so that free tracks on the layer are accessible to the router. If most of
the routing resource is obstructed, simplify the obstruction modeling by combining small
obstructions into a single large obstruction. For example, use the bounding box of all metal1
objects in the cell, rather than many small obstructions, as the bounding box of the
obstruction.

You must be sure to model via obstructions over the rest of the cell properly. A single, large
cut12 obstruction over the rest of the cell can do this in some cases, as when metal1
resource exists within the cell outside the power buses.

Rectilinear Blocks

Normally, footprint descriptions in LEF are rectangular. However, it is possible to describe
rectilinear footprints using an overlap layer. The overlap layer is defined specifically for this
purpose and does not contain any routing.

Describe a rectilinear footprint by setting the SIZE of the macro as a whole to a rectangular
bounding box, then defining obstructions within the bounding box on the overlap layer. The
obstructions on the overlap layer indicate areas within the bounding box which no other macro
should overlap. The obstructions should completely cover the rectilinear shape of the macro,
but not the portion of the bounding box that might overlap with other macros during
placement.

Note: Specify the overlaps for the macro using the OBS statement. To do this, specify a layer
of type OVERLAP and then give the overlap geometries, as shown in Figure 1-83 on page 193.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 193 Product Version 5.7

Figure 1-83

Macro Pin Statement

[PIN pinName
[TAPERRULE ruleName ;]
[DIRECTION {INPUT | OUTPUT [TRISTATE] | INOUT | FEEDTHRU} ;]
[USE { SIGNAL | ANALOG | POWER | GROUND | CLOCK } ;]
[NETEXPR "netExprPropName defaultNetName" ;]
[SUPPLYSENSITIVITY powerPinName ;]
[GROUNDSENSITIVITY groundPinName ;]
[SHAPE {ABUTMENT | RING | FEEDTHRU} ;]
[MUSTJOIN pinName ;]
{PORT
 [CLASS {NONE | CORE | BUMP} ;]
 {layerGeometries} ...
 END} ...
[PROPERTY propName propVal ;] ...
[ANTENNAPARTIALMETALAREA value [LAYER layerName] ;] ...
[ANTENNAPARTIALMETALSIDEAREA value [LAYER layerName] ;] ...
[ANTENNAPARTIALCUTAREA value [LAYER layerName] ;] ...
[ANTENNADIFFAREA value [LAYER layerName] ;] ...
[ANTENNAMODEL {OXIDE1 | OXIDE2 | OXIDE3 | OXIDE4} ;] ...
[ANTENNAGATEAREA value [LAYER layerName] ;] ...
[ANTENNAMAXAREACAR value LAYER layerName ;] ...
[ANTENNAMAXSIDEAREACAR value LAYER layerName ;] ...
[ANTENNAMAXCUTCAR value LAYER layerName ;] ...

END pinName]

Defines pins for the macro. PIN statements must be included in the LEF specification for each
macro. All pins, including VDD and VSS, must be specified. The first pin listed becomes the
first pin in the database. List the pins in the following order:

Available for
placement

Obstructed

Bounding box

OBS
LAYER OVERLAP ;
RECT 0 0 500 1000 ;
RECT 500 0 1000 500 ;

END

0

1000

1000

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 194 Product Version 5.7

■ Netlist pins, including inout pins, output pins, and input pins

■ Power and ground pins

■ Mustjoin pins

ANTENNADIFFAREA value [LAYER layerName]
Specifies the diffusion (diode) area, in micron-squared units, to which the pin is
connected on a layer. If you do not specify a layer name, the value applies to all layers.
For more information on process antenna calculation, see Appendix C, “Calculating and
Fixing Process Antenna Violations,”

ANTENNAGATEAREA value [LAYER layerName]
Specifies the gate area, in micron-squared units, to which the pin is connected on a layer.
If you do not specify a layer name, the value applies to all layers. For more information
on process antenna calculation, see Appendix C, “Calculating and Fixing Process
Antenna Violations,”

ANTENNAMAXAREACAR value LAYER layerName
For hierarchical process antenna effect calculation, specifies the maximum cumulative
area ratio value on the specified layerName, using the metal area at or below the
current pin layer, excluding the pin area itself. This is used to calculate the actual
cumulative antenna ratio on the pin layer, or the layer above it.
For more information on process antenna calculation, see Appendix C, “Calculating and
Fixing Process Antenna Violations,”

ANTENNAMAXCUTCAR value LAYER layerName
For hierarchical process antenna effect calculation, specifies the maximum cumulative
antenna ratio value on the specified layerName, using the cut area at or below the
current pin layer, excluding the pin area itself. This is used to calculate the actual
cumulative antenna ratio for the cuts above the pin layer.
For more information on process antenna calculation, see Appendix C, “Calculating and
Fixing Process Antenna Violations,”

ANTENNAMAXSIDEAREACAR value LAYER layerName
For hierarchical process antenna effect calculation, specifies the maximum cumulative
antenna ratio value on the specified layerName, using the metal side wall area at or
below the current pin layer, excluding the pin area itself. This is used to calculate the
actual cumulative antenna ratio on the pin layer or the layer above it.
For more information on process antenna calculation, see Appendix C, “Calculating and
Fixing Process Antenna Violations,”

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 195 Product Version 5.7

ANTENNAMODEL {OXIDE1 | OXIDE2 | OXIDE3 | OXIDE4}

Specifies the oxide model for the pin. If you specify an ANTENNAMODEL statement, the
value affects all ANTENNAGATEAREA and ANTENNA*CAR statements for the pin that
follow it until you specify another ANTENNAMODEL statement. The ANTENNAMODEL
statement does not affect ANTENNAPARTIAL*AREA and ANTENNADIFFAREA
statements because they refer to the total metal, cut, or diffusion area connected to the
pin, and do not vary with each oxide model.
Default: OXIDE1, for a new PIN statement
Because LEF is often used incrementally, if an ANTENNA statement occurs twice for the
same oxide model, the last value specified is used.
For most standard cells, there is only one value for the ANTENNAPARTIAL*AREA and
ANTENNADIFFAREA values per pin; however, for a block with six routing layers, it is
possible to have six different ANTENNAPARTIAL*AREA values and six different
ANTENNAPINDIFFAREA values per pin. It is also possible to have six different
ANTENNAPINGATEAREA and ANTENNAPINMAX*CAR values for each oxide model on
each pin.

Example 1-24 Pin Antenna Model

The following example describes oxide model information for pins IN1 and IN2.
MACRO GATE1

PIN IN1

ANTENNADIFFAREA 1.0 ; #not affected by ANTENNAMODEL

...

ANTENNAMODELOXIDE OXIDE1 ; #OXIDE1 not required, but is good

 #practice

ANTENNAGATEAREA 1.0 ; #OXIDE1 gate area

ANTENNAMAXAREACAR 50.0 LAYER m1 ; #metal1 CAR value

...

ANTENNAMODEL OXIDE2 ; #OXIDE2 starts here

ANTENNAGATEAREA 3.0 ; #OXIDE2 gate area

...

PIN IN2

ANTENNADIFFAREA 2.0 ; #not affected by ANTENNAMODEL

ANTENNAPARTIALMETALAREA 2.0 LAYER m1 ;

...

#no OXIDE1 specified for this pin

ANTENNAMODEL OXIDE2 ;

ANTENNAGATEAREA 1.0 ;

...

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 196 Product Version 5.7

ANTENNAPARTIALCUTAREA value [LAYER layerName]
Specifies the partial cut area above the current pin layer and inside the macro cell on the
layer. For a hierarchical design, only the cut layer above the I/O pin layer is needed for
partial antenna ratio calculation. If you do not specify a layer name, the value applies to
all layers.
For more information on process antenna calculation, see Appendix C, “Calculating and
Fixing Process Antenna Violations,”

ANTENNAPARTIALMETALAREA value [LAYER layerName]
Specifies the partial metal area connected directly to the I/O pin and the inside of the
macro cell on the layer. For a hierarchical design, only the same metal layer as the I/O
pin, or the layer above it, is needed for partial antenna ratio calculation. If you do not
specify a layer name, the value applies to all layers.
For more information on process antenna calculation, see Appendix C, “Calculating and
Fixing Process Antenna Violations,”
Note: Metal area is calculated by adding the pin’s geometric metal area and the
ANTENNAPARTIALMETALAREA value.

ANTENNAPARTIALMETALSIDEAREA value [LAYER layerName]
Specifies the partial metal side wall area connected directly to the I/O pin and the inside
of the macro cell on the layer. For a hierarchical design, only the same metal layer as the
I/O pin or the layer above is needed for partial antenna ratio calculation. If you do not
specify a layer name, the value applies to all layers.
For more information on process antenna calculation, see Appendix C, “Calculating and
Fixing Process Antenna Violations,”
DIRECTION {INPUT | OUTPUT [TRISTATE] | INOUT | FEEDTHRU}
Specifies the pin type. Most current tools do not usually use this keyword. Typically, pin
directions are defined by timing library data, and not from LEF.
Default: INPUT
Value: Specify one of the following:

 INPUT Pin that accepts signals coming into the cell.

 OUTPUT
[TRISTATE]

Pin that drives signals out of the cell. The
optional TRISTATE argument indicates tristate
output pins for ECL designs.

 INOUT Pin that can accept signals going either in or out
of the cell.

 FEEDTHRU Pin that goes completely across the cell.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 197 Product Version 5.7

GROUNDSENSITIVITY groundPinName

Specifies that if this pin is connected to a tie-low connection (such as 1’b0 in Verilog), it
should connect to the same net to which groundPinName is connected.
groundPinName must match a pin on this macro that has a USE GROUND attribute.
The ground pin definition can follow later in this MACRO statement; it does not have to be
defined before this pin definition. For an example, see Example 1-25 on page 198.
Note: GROUNDSENSITIVITY is useful only when there is more than one ground pin in
the macro. By default, if there is only one USE GROUND pin, then the tie-low connections
are already implicitly defined (that is, tie-low connections are connected to the same net
as the one ground pin).

MUSTJOIN pinName
Specifies the name of another pin in the cell that must be connected with the pin being
defined. MUSTJOIN pins provide connectivity that must be made by the router. In the LEF
file, each pin referred to must be defined before the referring pin. The remaining
MUSTJOIN pins in the set do not need to be defined contiguously.
Note: MUSTJOIN pin names are never written to the DEF file; they are only used by
routers to add extra connection points during routing.

Schematic and nonschematic MUSTJOIN pins are handled in slightly different ways. For
schematic MUSTJOIN pins, the pins are added to the pin set for the (unique) net
associated with the ring for each component instance of the macro. The net is routed in
the usual manner, and routing data for the MUSTJOIN pins are included in routing data
for the net.
The mustjoin routing is not necessarily performed before the rest of the net. Timing
relations should not be given for MUSTJOIN pins, and internal mustjoin routing is
modeled as lumped capacitance at the schematic pin.
Nonschematic MUSTJOIN pin sets get routed in the usual manner. However, when the
DEF file is outputted, routing data is reported in the NETS section of the file as follows:

 MUSTJOIN compName pinName + regularWiring ;
Here, compName is the component and pinName is an arbitrary pin in the set. You can
also use the preceding to input prewiring for the MUSTJOIN pin, using FIXED or COVER.

MUSTJOIN pins have the following restrictions:

■ A set of MUSTJOIN pins cannot have more than one
schematic pin.

■ Nonschematic MUSTJOIN pins must be defined after all
other pins.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 198 Product Version 5.7

NETEXPR "netExprPropName defaultNetName"

Specifies a net expression property name (such as power1 or power2) and a default
net name. If netExprPropName matches a net expression property in the netlist (such
as in Verilog, VHDL, or OpenAccess), then the property is evaluated, and the software
identifies a net to which to connect this pin. If this property does not exist,
defaultNetName is used for the net name.
netExprPropName must be a simple identifier in order to be compatible with other
languages, such as Verilog and CDL. Therefore, it can only contain alphanumeric
characters, and the first character cannot be a number. For example, power2 is a legal
name, but 2power is not. You cannot use characters such as $ and !. The
defaultName can be any legal DEF net name.

Example 1-25 Net Expression and Supply Sensitivity

The following statement defines sensitivity and net expression values for four pins on the
macro myMac:
MACRO myMac

...

PIN in1

...

SUPPLYSENSITIVITY vddpin1 ; #If in1 is 1’b1, use net connected to vddpin1.
 #Note that no GROUNDSENSITIVITY is needed
 #because only one ground pin exists.
 #Therefore, 1’b0 implicitly means net from
 #pin gndpin.

...

END in1

PIN vddpin1

...

NETEXPR "power1 VDD1" ; #If power1 net expression is defined in the
 #netlist, use it to find the net connection. If
 #not, use net VDD1.

...

END vddpin1

PIN vddpin2

...

NETEXPR "power2 VDD2" ; #If power2 net expression is defined in the
 #netlist, use it to find the net connection.If
 #not, use net VDD2.

...

END vddpin2

PIN gndpin

...

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 199 Product Version 5.7

NETEXPR "gnd1 GND" ; #If gnd1 net expression is defined in the
 #netlist, use it to find the net connection. If
 #not, use net GND.

...

END gndpin

...

END myMac

PIN pinName
Specifies the name for the library pin.

PORT

Starts a pin port statement that defines a collection of geometries that are electrically
equivalent points (strongly connected). A pin can have multiple ports. Each PORT of the
same PIN is considered weakly connected to the other PORTs, and should already be
connected inside the MACRO (often through a resistive path).
Strongly connected shapes (that is, multiple shapes of one PORT) indicate that a signal
router is allowed to connect to one shape of the PORT, and continue routing from another
shape of the same PORT.
Weakly connected shapes (that is, separate PORTs of the same PIN) are assumed to be
connected through resistive paths inside the MACRO that should not be used by routers.
The signal router should connect to one or the other PORT, but not both.
Power routers should connect to every PORT statement, if there is more than one for a
given PIN. For example, if a block has several PORTs on the boundary for the VSS PIN,
each PORT should be connected by the power router.
The syntax for describing pin port statements is defined as follows:
{PORT
 [CLASS {NONE | CORE | BUMP} ;]
 {layerGeometries} ...
END} ...

 CLASS {NONE | CORE | BUMP}

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 200 Product Version 5.7

PROPERTY propName propVal

Specifies a numerical or string value for a pin property defined in the
PROPERTYDEFINITIONS statement. The propName you specify must match the
propName listed in the PROPERTYDEFINITIONS statement.

SHAPE

Specifies a pin with special connection requirements because of its shape.
Value: Specify one of the following:

 Specifies the port type.
Default: NONE

A port can be one of the following:

BUMP—Specifies the port is a bump connection point. A bump port
should only be connected by routing to a bump (normally a MACRO
CLASS COVER BUMP cell).

CORE—Specifies the port is a core ring connection point. A core
port is used only on power and ground I/O drivers used around the
periphery. The core port indicates which power or ground port to
connect to a core ring for the chip (inside the I/O pads).

NONE—Specifies the port is a default port that is connected by
normal “default” routing. NONE is the default value if no PORT
CLASS statement is specified.

 layerGeometries

Defines port geometries for the pin. You specify port geometries
using layer geometries syntax. See “Layer Geometries” on
page 187 for syntax information.

 ABUTMENT Pin that goes straight through cells with a regular shape and
connects to pins on adjoining cells without routing.

 RING Pin on a large block that forms a ring around the block to allow
connection to any point on the ring. Cover macro special pins also
typically have shape RING.

 FEEDTHRU Pin with an irregular shape with a jog or neck within the cell.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 201 Product Version 5.7

Figure 1-84

SUPPLYSENSITIVITY powerPinName

Specifies that if this pin is connected to a tie-high connection (such as 1’b1 in Verilog),
it should connect to the same net to which powerPinName is connected.
powerPinName must match a pin on this macro that has a USE POWER attribute. The
power pin definition can follow later in this MACRO statement; it does not have to be
defined before this pin definition. For an example, see Example 1-25 on page 198.
Note: SUPPLYSENSITIVITY is useful only when there is more than one power pin in
the macro. By default, if there is only one USE POWER pin, then the tie-high connections
are already implicitly defined (that is, tie-high connections are connected to the same net
as the one power pin).

TAPERRULE ruleName
Specifies the nondefault rule to use when tapering wires to the pin.

Figure 1-84 on page 201 shows an example of an abutment and a feedthrough pin.

Note: When you define feedthrough and abutment pins for use with power routing, you
must do the following:

■ Feedthrough pin widths must be the same on both edges and consistent with the
routing width used with the power route commands.

■ Feedthrough pin centers on both edges must align for successful routing.

■ Power pins in fork shapes must be represented in two ports and be defined as a
feedthrough shape. In most other cases, power pin geometries do not represent
more than one port.

■ An abutment pin must have at least one geometric rectangle with layer and width
consistent with the values specified in the power route commands.

Macro

Abutment
Feedthrough

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 202 Product Version 5.7

USE {ANALOG | CLOCK | GROUND | POWER | SIGNAL}

Specifies how the pin is used. Pin use is required for timing analysis.
Default: SIGNAL
Value: Specify one of the following:

Manufacturing Grid
[MANUFACTURINGGRID value ;]

Defines the manufacturing grid for the design. The manufacturing grid is used for geometry
alignment. When specified, shapes and cells are placed in locations that snap to the
manufacturing grid.

value

Specifies the value for the manufacturing grid, in microns. value must be a positive
number.
Type: Float

Maximum Via Stack
[MAXVIASTACK value [RANGE bottomLayer topLayer] ;]

Specifies the maximum number of single-cut stacked vias that are allowed on top of each
other (that is, in one continuous stack). A via is considered to be in a stack with another via if
the cut of the first via overlaps any part of the cut of the second via. A double-cut or larger via
interrupts the stack. For example, a via stack consisting of single via12, single via23, double-
cut via34, and single via45 has a single-cut stack of height 2 for via12 and via23, and a
single-cut stack of height 1 for via45 because the full stack is broken up by double-cut via34.

The MAXVIASTACK statement should follow the LAYER statements in the LEF file; however,
it is not attached to any particular layer. You can specify only one MAXVIASTACK statement
in a LEF file.

 ANALOG Pin is used for analog connectivity.

 CLOCK Pin is used for clock net connectivity.

 GROUND Pin is used for connectivity to the chip-level ground distribution
network.

 POWER Pin is used for connectivity to the chip-level power distribution
network.

SIGNAL Pin is used for regular net connectivity.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 203 Product Version 5.7

RANGE bottomLayer topLayer

Specifies a range of layers for which the maximum stacked via rule applies. If you do not
specify a range, the value applies for all layers.

value

Specifies the maximum allowed number of single-cut stacked vias.
Type: Integer

Example 1-26 Maximum Via Stack Statement

The following MAXVIASTACK statement specifies that only four stacked vias are allowed on
top of each other. This rule applies to all layers.
LAYER metal9

...

END LAYER

MAXVIASTACK 4 ;

If you specify the following statement instead, the stacked via limit applies only to layers
metal1 through metal7.
MAXVIASTACK 4 RANGE m1 m7 ;

Nondefault Rule
[NONDEFAULTRULE ruleName

[HARDSPACING ;]
{LAYER layerName
 WIDTH width ;
 [DIAGWIDTH diagWidth ;]
 [SPACING minSpacing ;]
 [WIREEXTENSION value ;]
END layerName} ...
[VIA viaStatement] ...
[USEVIA viaName ;] ...
[USEVIARULE viaRuleName ;] ...
[MINCUTS cutLayerName numCuts ;] ...
[PROPERTY propName propValue ;] ...

END ruleName]

Defines the wiring width, design rule spacing, and via size for regular (signal) nets. You do not
need to define cut layers for the nondefault rule.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 204 Product Version 5.7

Some tools have limits on the total number of nondefault rules they can store. This limit can
be as low as 30; however most tools that support 90 nanometer rules (that is, LEF 5.5 and
newer) can handle at least 255.

Note: Use the VIA statement to define vias for nondefault wiring.

DIAGWIDTH diagWidth

Specifies the diagonal width for layerName, when 45-degree routing is used.
Default: The minimum width value (WIDTH minWidth)
Type: Float, specified in microns

HARDSPACING

Specifies that any spacing values that exceed the LEF LAYER spacing requirements are
“hard” rules instead of “soft” rules. By default, routers treat extra spacing requirements
as soft rules that are high cost to violate, but not real spacing violations. However, in
certain situations, the extra spacing should be treated as a hard, or real, spacing
violation, such as when the route will be modified with a post-process that replaces some
of the extra space with metal.

LAYER layerName ... END layerName
Specifies the layer for the various width and spacing values. This layer must be a routing
layer. Every routing layer must have a WIDTH keyword and value specified. All other
keywords are optional.

MINCUTS cutLayerName numCuts

Specifies the minimum number of cuts allowed for any via using the specified cut layer.
Routers should only use vias (generated or predefined fixed vias) that have at least
numCuts cuts in the via.
Type: (numCuts) Positive integer

NONDEFAULTRULE ruleName
Specifies a name for the new routing rule. The name DEFAULT is reserved for the default
routing rule used by most nets. The default routing rule is constructed automatically from
the LEF LAYER statement WIDTH, DIAGWIDTH, SPACING, and WIREEXTENSION values,
from the LEF VIA statement (any vias with the DEFAULT keyword), and from the LEF
VIARULE statement (any via rules with the DEFAULT keyword). If you specify DEFAULT
for ruleName, the automatic creation is overridden, and the default routing rule is
defined directly from this rule definition.

PROPERTY propName propValue

Specifies a numerical or string value for a nondefault rule property defined in the
PROPERTYDEFINITIONS statement. The propName you specify must match the
propName listed in the PROPERTYDEFINITIONS statement.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 205 Product Version 5.7

SPACING minSpacing

Specifies the recommended minimum spacing for layerName of routes using this
NONDEFAULTRULE to other geometries. If the spacing is given, it must be at least as
large as the foundry minimum spacing rules defined in the LAYER definitions. Routers
should attempt to meet this recommended spacing rule; however, the spacing rule can
be relaxed to the foundry spacing rules along some parts of the wire if the routing is very
congested, or if it is difficult to reach a pin.
Adding extra space to a nondefault rule allows a designer to reduce cross-coupling
capacitance and noise, but a clean route with no actual foundry spacing violations will
still be allowed, unless the HARDSPACING statement is specified.
Type: Float, specified in microns

USEVIA viaName

Specifies a previously defined via from the LEF VIA statement, or a previously defined
NONDEFAULTRULE via to use with this routing rule.

USEVIARULE viaRuleName

Specifies a previously defined VIARULE GENERATE rule to use with this routing rule. You
cannot specify a rule from a VIARULE without a GENERATE keyword.

VIA viaStatement

Defines a new via. You define nondefault vias using the same syntax as default vias. For
syntax information, see “Via” on page 215. All vias, default and nondefault, must have
unique via names. If you define more than one via for a rule, the router chooses which
via to use.
Note: Defining a new via is no longer recommended, and is likely to become obsolete.
Instead, vias should be predefined in a LEF VIA statement, then added to the nondefault
rule using the USEVIA keyword.

WIDTH width

Specifies the required minimum width for layerName.
Type: Float, specified in microns

WIREEXTENSION value

Specifies the distance by which wires are extended at vias. Enter 0 (zero) to specify no
extension. Values other than 0 must be greater than or equal to half of the routing width
for the layer, as defined in the nondefault rule.
Default: Wires are extended half of the routing width
Type: Float, specified in microns

Example 1-27 Nondefault Rule Statement

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 206 Product Version 5.7

Assume two default via rules were defined:
VIARULE via12rule GENERATE DEFAULT

LAYER metal1 ;

...

END via12rule

VIARULE via23rule GENERATE DEFAULT

LAYER metal2 ;

...

END via23rule

■ Assuming the minimum width is 1.0 µm, the following nondefault rule creates a 1.5x
minimum width wire using default spacing:

NONDEFAULTRULE wide1_5x

LAYER metal1

WIDTH 1.5 ; #metal1 has a 1.5 um width

END metal1

LAYER metal2

WIDTH 1.5 ;

END metal2

LAYER metal3

WIDTH 1.5 ;

END metal3

END wide1_5x

Note: If there were no default via rules, then a VIA, USEVIA, or USEVIARULE keyword would
be required. Because there are none defined, the default via rules are implicitly inherited for
this nondefault rule; therefore, via12rule and via23rule would be used for this routing
rule.

■ The following nondefault rule creates a 3x minimum width wire using default spacing with
at least two-cut vias:

NONDEFAULTRULE wide3x

LAYER metal1

WIDTH 3.0 ; #metal1 has 3.0 um width

END metal1

LAYER metal2

WIDTH 3.0 ;

END metal2

LAYER metal3

WIDTH 3.0 ;

END metal3

#viarule12 and viarule23 are used implicitly

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 207 Product Version 5.7

MINCUTS cut12 2 ; #at least two-cut vias are required for cut12

MINCUTS cut23 2 ;

END wide3x

■ The following nondefault rule creates an “analog” rule with its own special vias, and with
hard extra spacing:

NONDEFAULTRULE analog_rule

HARDSPACING ; #do not let any other signal close to this one

LAYER metal1

WIDTH 1.5 ; #metal1 has 1.5 um width

SPACING 3.0 ; #extra spacing of 3.0 um

END metal1

LAYER metal2

WIDTH 1.5

SPACING 3.0

END metal2

LAYER metal3

WIDTH 1.5

SPACING 3.0

END metal3

#Use predefined "analog vias"

#The DEFAULT VIARULES will not be inherited.

USEVIA via12_fixed_analog_via ;

USEVIA via_23_fixed_analog_via ;

END analog_rule

Property Definitions
[PROPERTYDEFINITIONS

[objectType propName propType [RANGE min max]
 [value | "stringValue"]
;] ...

END PROPERTYDEFINITIONS]

Lists all properties used in the LEF file. You must define properties in the
PROPERTYDEFINITIONS statement before you can refer to them in other sections of the LEF
file.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 208 Product Version 5.7

objectType

Specifies the object type being defined. You can define properties for the following object
types:

propName

Specifies a unique property name for the object type.

propType

Specifies the property type for the object type. You can specify one of the following
property types:

RANGE min max

Limits real number and integer property values to a specified range. That is, the value
must be greater than or equal to min and less than or equal to max.

value | "stringValue"

Assigns a numeric value or a name to a LIBRARY object type.
Note: Assign values to other properties in the section of the LEF file that describes the
object to which the property applies.

Example 1-28 Property Definitions Statement

The following example shows library, via, and macro property definitions.
PROPERTYDEFINITIONS

 LAYER

 LIBRARY

 MACRO

 NONDEFAULTRULE

 PIN

 VIA

 VIARULE

 INTEGER

 REAL

 STRING

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 209 Product Version 5.7

LIBRARY versionNum INTEGER 12;
LIBRARY title STRING "Cadence96";
VIA count INTEGER RANGE 1 100;
MACRO weight REAL RANGE 1.0 100.0;
MACRO type STRING;

END PROPERTYDEFINITIONS

Site
SITE siteName

CLASS {PAD | CORE} ;
[SYMMETRY {X | Y | R90} ... ;]
[ROWPATTERN {previousSiteName siteOrient} ... ;]
SIZE width BY height ;

END siteName

Defines a placement site in the design. A placement site gives the placement grid for a family
of macros, such as I/O, core, block, analog, digital, short, tall, and so forth. SITE definitions
can be used in DEF ROW statements.

Example 1-29 Site Row Pattern Statement

CLASS {PAD | CORE} Specifies whether the site is an I/O pad site or a core site.

ROWPATTERN {previousSiteName siteOrient}

Specifies a set of previously defined sites and their orientations
that together form siteName.

 previousSiteName

 Specifies the name of a previously defined site. The
height of each previously defined site must be the
same as the height specified for siteName, and the
sum of the widths of the previously defined sites must
equal the width specified for siteName.

 siteOrient

 Specifies the orientation for the previously defined
site. This value must be one of N, S, E, W, FN, FS, FE,
and FW. For more information on orientations, see
“Specifying Orientation” in the DEF COMPONENT
section.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 210 Product Version 5.7

The following example defines three sites: Fsite; Lsite; and mySite, which consists of a
pattern of Fsite and Lsite sites:
SITE Fsite

CLASS CORE ;

SIZE 4.0 BY 7.0 ; #4.0 um width, 7.0 um height

END Fsite

SITE Lsite

CLASS CORE ;

SIZE 6.0 BY 7.0 ; #6.0 um width, 7.0 um height

END Lsite

SITE mySite

ROWPATTERN Fsite N Lsite N Lsite FS ; #Pattern of F + L + flipped L

SIZE 16.0 BY 7.0 ; #Width = width(F + L + L)

END mySite

Figure 1-85 on page 210 illustrates some DEF rows made up of mySite sites.

Figure 1-85

SITE siteName Specifies the name for the placement site.

SIZE width BY height

Specifies the dimensions of the site in normal (or north)
orientation, in microns.

SYMMETRY {X | Y | R90}

...

...

1 mySite SITE statement

100 mySite SITE statements

ROW_1

ROW_0

ROW ROW_0 mySite 1000 1000 N DO 100 BY 1 STEP 1600 0 ;
ROW ROW_1 mySite 1000 1700 FS DO 100 BY 1 STEP 1600 0 ;

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 211 Product Version 5.7

Units
[UNITS

[TIME NANOSECONDS convertFactor ;]
[CAPACITANCE PICOFARADS convertFactor ;]
[RESISTANCE OHMS convertFactor ;]
[POWER MILLIWATTS convertFactor ;]
[CURRENT MILLIAMPS convertFactor ;]
[VOLTAGE VOLTS convertFactor ;]
[DATABASE MICRONS LEFconvertFactor ;]
[FREQUENCY MEGAHERTZ convertFactor ;]

END UNITS]

Defines the units of measure in LEF. The values tell you how to interpret the numbers found
in the LEF file. Units are fixed with a convertFactor for all unit types, except database
units and capacitance. For more information, see “Convert Factors” on page 213. Currently,
other values for convertFactor appearing in the UNITS statement are ignored.

Indicates which site orientations are equivalent. The sites in a
given row all have the same orientation as the row. Generally,
site symmetry should be used to control the flipping allowed
inside the rows. For more information on defining symmetry,
see “Defining Symmetry” on page 184.

Possible orientations include:

X Site is symmetric about the x axis. This means that N
and FS sites are equivalent, and FN and S sites are
equivalent. A macro with an orientation of N matches
N or FS rows.

Y Site is symmetric about the y axis. This means that N
and FN sites are equivalent, and FS and S sites are
equivalent. A macro with an orientation of N matches
N or FN rows.

X Y Site is symmetric about the x and y axis. This means
that N, FN, FS, and S sites are equivalent. A macro
with orientation N matches N, FN, FS, or S rows.

R90 Site is symmetric when rotated 90 degrees. Typically,
this value is not used.

Note: Typically, a site for single-height standard cells uses
symmetry Y, and a site for double-height standard cells uses
symmetry X Y.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 212 Product Version 5.7

The UNITS statement is optional and, when used, must precede the LAYER statements.

Database Units Information

Database precision is relative to Standard International (SI) units. LEF values are converted
to integer values in the library database as follows.

CAPACITANCE PICOFARADS convertFactor

Interprets one LEF capacitance unit as 1 picofarad.

CURRENT MILLIAMPS convertFactor

Interprets one LEF current unit as 1 milliamp.

DATABASE MICRONS LEFconvertFactor

Interprets one LEF distance unit as multiplied when converted
into database units.

If you omit the DATABASE MICRONS statement, a default value
of 100 is recorded as the LEFconvertFactor in the database.
In this case, one micron would equal 100 database units.

FREQUENCY MEGAHERTZ convertFactor

Interprets one LEF frequency unit as 1 megahertz.

POWER MILLIWATTS convertFactor

Interprets one LEF power unit as 1 milliwatt.

RESISTANCE OHMS convertFactor

Interprets one LEF resistance unit as 1 ohm.

TIME NANOSECONDS convertFactor

Interprets one LEF time unit as 1 nanosecond.

VOLTAGE VOLTS convertFactor

Interprets one LEF voltage unit as 1 volt.

SI unit Database precision

1 nanosecond = 1,000 DBUs

1 picofarad = 1,000,000 DBUs

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 213 Product Version 5.7

Convert Factors

LEF supports values of 100, 200, 1000, 2000, 10,000, and 20,000 for
LEFconvertFactor. The following table illustrates the conversion of LEF distance units
into database units.

The DEF database precision cannot be more precise than the LEF database precision. This
means the DEF convert factor must always be less than or equal to the LEF convert factor.
The following table shows the valid pairings of the LEF convert factor and the corresponding
DEF convert factor.

1 ohm = 10,000 DBUs

1 milliwatt = 10,000 DBUs

1 milliamp = 10,000 DBUs

1 volt = 1,000 DBUs

LEFconvertFactor LEF Database Units

100 1 micron 100

200 1 micron 200

1000 1 micron 1000

2000 1 micron 2000

10,000 1 micron 10,000

20,000 1 micron 20,000

LEFconvertFactor Legal DEFconvertFactors

100 100

200 100, 200

1000 100, 200, 1000

2000 100, 200, 1000, 2000

10,000 100, 200, 1000, 2000, 10,000

20,000 100, 200, 1000, 2000, 10,000, 20,000

SI unit Database precision

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 214 Product Version 5.7

An incremental LEF should have the same value as a previous LEF. An error message warns
you if an incremental LEF has a different value than what is recorded in the database.

Use Min Spacing
[USEMINSPACING OBS { ON | OFF } ;]

Defines how minimum spacing is calculated for obstruction (blockage) geometries.

Version
VERSION number ;

Specifies which version of the LEF syntax is being used. number is a string of the form
major.minor[.subMinor], such as 5.7.

Note: Many applications default to the latest version of LEF/DEF supported by the
application (which depends on how old the application is). The latest version as described by
this document is 5.7. However, a default value of 5.7 is not formally part of the language

OBS {ON | OFF} Specifies how to calculate minimum spacing for obstruction
geometries (MACRO OBS shapes).
Default: ON

OFF Spacing is computed to MACRO OBS
shapes as if they were actual routing
shapes. A wide OBS shape would use
wide wire spacing rules, and a thin OBS
shapes would use thin wire spacing rules.

ON Spacing is computed as if the MACRO OBS
shapes were min-width wires. Some LEF
models abstract many min-width wires as
a single large OBS shape; therefore using
wide wire spacing would be too
conservative.

Note: OFF is the recommended value to specify because it is a
better abstract model for the various wide wire spacing rules that
are more common at process nodes of 130nm and smaller.
Certain older style LEF abstracts use ON, but it can have
unexpected side effects (such as hidden DRC errors) if the
abstracts are not created very carefully. You cannot mix both
types of LEF abstracts at the same time.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 215 Product Version 5.7

definition; therefore, you cannot be sure that all applications use this default value. Also,
because the default value varies with the latest version, you should not depend on this.

Via
VIA viaName [DEFAULT]

{ VIARULE viaRuleName ;
 CUTSIZE xSize ySize ;
 LAYERS botMetalLayer cutLayer topMetalLayer ;
 CUTSPACING xCutSpacing yCutSpacing ;
 ENCLOSURE xBotEnc yBotEnc xTopEnc yTopEnc ;
 [ROWCOL numCutRows numCutCols ;]
 [ORIGIN xOffset yOffset ;]
 [OFFSET xBotOffset yBotOffset xTopOffset yTopOffset ;]
 [PATTERN cutPattern ;]
}
| {[RESISTANCE resistValue ;]
 {LAYER layerName ;
 { RECT pt pt ;
 | POLYGON pt pt pt ...;} ...
 } ...
 }
[PROPERTY propName propVal ;] ...

END viaName

Defines two types of vias: fixed vias and generated vias. All vias consist of shapes on three
layers: a cut layer and two routing (or masterslice) layers that connect through that cut layer.

A fixed via is defined using rectangles or polygons, and does not use a VIARULE. The fixed
via name must mean the same via in all associated LEF and DEF files.

A generated via is defined using VIARULE parameters to indicate that it was derived from a
VIARULE GENERATE statement. For a generated via, the via name is only used locally inside
this LEF file. The geometry and parameters are maintained, but the name can be freely
changed by applications that use this via when writing out LEF and DEF files. For example,
large blocks that include generated vias as part of the LEF MACRO PIN statement can define
generated vias inside the same LEF file without concern about via name collisions in other
LEF files.

Note: Use the VIARULE GENERATE statement to define special wiring.

CUTSIZE xSize ySize

Specifies the required width (xSize) and height (ySize) of the cut layer rectangles.
Type: Float, specified in microns

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 216 Product Version 5.7

CUTSPACING xCutSpacing yCutSpacing

Specifies the required x and y spacing between cuts. The spacing is measured from one
cut edge to the next cut edge.
Type: Float, specified in microns

DEFAULT

Identifies the via as the default via between the defined layers. Default vias are used for
default routing by the signal routers.
If you define more than one default via for a layer pair, the router chooses which via to
use. Some routers limit the number of vias for each layer pair to 30. You must define
default vias between metal1 and masterslice layers if there are pins on the masterslice
layers.
All vias consist of shapes on three layers: a cut layer and two routing (or masterslice)
layers that connect through that cut layer. There should be at least one RECT or POLYGON
on each of the three layers.

ENCLOSURE xBotEnc yBotEnc xTopEnc yTopEnc

Specifies the required x and y enclosure values for the bottom and top metal layers. The
enclosure measures the distance from the cut array edge to the metal edge that encloses
the cut array.
Type: Float, specified in microns
Note: It is legal to specify a negative number, as long as the resulting metal size is
positive.

LAYER layerName
Specifies the layer on which to create the rectangles that make up the via. All vias consist
of shapes on three layers: a cut layer and two routing (or masterslice) layers that connect
through that cut layer. There should be at least one RECT or POLYGON on each of the
three layers.

LAYERS botMetalLayer cutLayer topMetalLayer

Specifies the required names of the bottom routing layer, cut layer, and top routing layer.
These layer names must be previously defined in layer definitions, and must match the
layer names defined in the specified LEF viaRuleName.

OFFSET xBotOffset yBotOffset xTopOffset yTopOffset

Specifies the x and y offset for the bottom and top metal layers. By default, the 0,0 origin
of the via is the center of the cut array, and the enclosing metal rectangles. These values
allow each metal layer to be offset independently. After the non-shifted via is computed,
the metal layer rectangles are offset by adding the appropriate values—the x/y
BotOffset values to the metal layer below the cut layer, and the x/ y TopOffset
values to the metal layer above the cut layer. These offsets are in addition to any offset

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 217 Product Version 5.7

caused by the ORIGIN values.
Default: 0, for all values
Type: Float, specified in microns

ORIGIN xOffset yOffset
Specifies the x and y offset for all of the via shapes. By default, the 0,0 origin of the via
is the center of the cut array, and the enclosing metal rectangles. After the non-shifted
via is computed, all cut and metal rectangles are offset by adding these values.
Default: 0, for both values
Type: Float, specified in microns

PATTERN cutPattern

Specifies the cut pattern encoded as an ASCII string. This parameter is only required
when some of the cuts are missing from the array of cuts, and defaults to “all cuts are
present,” if not specified.
For information on and examples of via cut patterns, see “Creating Via Cut Patterns” on
page 330.
The cutPattern syntax uses “_” as a separator, and is defined as follows:
numRows_rowDefinition
 [_numRows_rowDefinition] ...

The rowDefinition syntax is defined as follows:
{[RrepeatNumber]hexDigitCutPattern} ...

POLYGON pt pt pt

Specifies a sequence of at least three points to generate a polygon geometry. The
polygon edges must be parallel to the x axis, to the y axis, or at a 45-degree angle. Each
POLYGON keyword defines a polygon generated by connecting each successive point,

numRows Specifies a hexadecimal number that indicates how many times
to repeat the following row definition. This number can be more
than one digit.

rowDefinition Defines one row of cuts, from left to right.

hexDigitCutPattern

Specifies a single hexadecimal digit that encodes a 4-bit binary
value, in which 1 indicates a cut is present, and 0 indicates a
cut is not present.

repeatNumber Specifies a single hexadecimal digit that indicates how many
times to repeat hexDigitCutPattern.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 218 Product Version 5.7

and then connecting the first and last points. The pt syntax corresponds to an x y
coordinate pair, such as -0.2 1.0.
Type: Float, specified in microns

Example 1-30 Via Polygon

The following via definition creates a polygon geometry used by X-routing applications:
VIA myVia23

LAYER metal2 ;

POLYGON -2.1 -1.0 -0.2 1.0 2.1 1.0 0.2 -1.0 ;

LAYER cut23 ;

RECT -0.4 -0.4 0.4 0.4 ;

LAYER metal3 ;

POLYGON -0.2 -1.0 -2.1 1.0 0.2 1.0 2.1 -1.0 ;

END myVia23

PROPERTY propName propVal

Specifies a numerical or string value for a via property defined in the
PROPERTYDEFINITIONS statement. The propName you specify
must match the propName listed in the PROPERTYDEFINITIONS
statement.

RECT pt pt Specify the corners of a rectangular shape in the via. The pt syntax
corresponds to an x y coordinate pair, such as -0.4 -4.0. For vias
used only in macros or pins, reference locations and rectangle
coordinates must be consistent.
Type: Float, specified in microns

RESISTANCE resistValue

Specifies the lumped resistance for the via. This is not a resistance
per via-cut value; it is the total resistance of the via. By default, via
resistance is computed from the via LAYER RESISTANCE value;
however, you can override that value with this value. resistValue
is ignored if a via rule is specified, because only the VIARULE
definition or a cut layer RESISTANCE value gives the resistance for
generated vias.
Type: Float, specified in ohms

Note: A RESISTANCE value attached to an individual via is no
longer recommended.

ROWCOL numCutRows numCutCols

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 219 Product Version 5.7

Example 1-31 Generated Via Rule

The following via definition defines a generated via that is used only in this LEF file.
VIA myBlockVia

VIARULE DEFAULT ; #Use existing VIARULE GENERATE rule with
 #the DEFAULT keyword

CUTSIZE 0.1 0.1 ; #Cut is 0.1 x 0.1 um

LAYERS metal1 via12 metal2 ; #Bottom metal, cut, and top metal layers

CUTSPACING 0.1 0.1 ; #Space between cut edges is 0.1 um

ENCLOSURE 0.05 0.01 0.01 0.05 ; #metal1 enclosure is 0.05 in x, 0.01 in y
 #metal2 enclosure is 0.01 in x, 0.05 in y

ROWCOL 1 2 ; #1 row, 2 columns = 2 cuts

END myBlockVia

Specifies the number of cut rows and columns that make up the via
array.
Default: 1, for both values
Type: Positive integer, for both values

viaName Specifies the name for the via.

VIARULE viaRulename

Specifies the name of the LEF VIARULE that produced this via. This
indicates that the via is the result of automatic via generation, and
that the via name is only used locally inside this LEF file. The
geometry and parameters are maintained, but the name can be
freely changed by applications that use this via when writing out LEF
and DEF files.

viaRuleName must be specified before you define any of the other
parameters, and must refer to a previously defined VIARULE
GENERATE rule name. It cannot refer to a VIARULE without a
GENERATE keyword.

Specifying the reserved via rule name of DEFAULT indicates that the
via should use a previously defined VIARULE GENERATE rule with
the DEFAULT keyword that exists for this routing-cut-routing layer
combination. This makes it possible for an IP block user to use
existing via rules from the normal LEF technology section instead of
requiring it to locally create its own via rules for just one LEF file.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 220 Product Version 5.7

Via Rule
VIARULE viaRuleName

LAYER layerName ;
 DIRECTION {HORIZONTAL | VERTICAL} ;
 [WIDTH minWidth TO maxWidth ;]
LAYER layerName ;
 DIRECTION {HORIZONTAL | VERTICAL} ;
 [WIDTH minWidth TO maxWidth ;]
{VIA viaName ;} ...
[PROPERTY propName propVal ;] ...

END viaRuleName

Defines which vias to use at the intersection of special wires of the same net.

Note: You should only use VIARULE GENERATE statements to create a via for the
intersection of two special wires. In earlier versions of LEF, VIARULE GENERATE was not
complete enough to cover all situations. In those cases, a fixed VIARULE (without a
GENERATE keyword) was sometimes used. However, fixed VIARULE statements are no
longer recommended.

DIRECTION {HORIZONTAL | VERTICAL}

Specifies the wire direction. If you specify a WIDTH range, the rule
applies to wires of the specified DIRECTION that fall within the range.
Otherwise, the rule applies to all wires of the specified DIRECTION
on the layer.

LAYER layerName

Specifies the routing layers for the top or bottom of the via.

PROPERTY propName propVal

Specifies a numerical or string value for a via rules property defined
in the PROPERTYDEFINITIONS statement. The propName you
specify must match the propName listed in the
PROPERTYDEFINITIONS statement.

VIA viaName Specifies a previously defined via to test for the current via rule. The
first via in the list that can be placed at the location without design
rule violations is selected. The vias must all have exactly three layers
in them. The three layers must include the same routing layers as
listed in the LAYER statements of the VIARULE, and a cut layer that
is between the two routing layers.

VIARULE viaRuleName

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 221 Product Version 5.7

Example 1-32 Via Rule Statement

In the following example, whenever a metal1 wire with a width between 0.5 and 1.0 intersects
a metal2 wire with a width between 1.0 and 2.0, the via generation code attempts to put a
via12_1 at the intersection first. If the via12_1 causes a DRC violation, a via12_2 is then
tried. If both fail, the default behavior from a VIARULE GENERATE statement for metal1 and
metal2 is used.
VIARULE viaRule1

LAYER metal1 ;

DIRECTION HORIZONTAL ;

WIDTH 0.5 TO 1.0 ;

LAYER metal2 ;

DIRECTION VERTICAL ;

WIDTH 1.0 TO 2.0 ;

VIA via12_1 ;

VIA via12_2 ;

END viaRule1

Via Rule Generate
VIARULE viaRuleName GENERATE [DEFAULT]

LAYER routingLayerName ;
 ENCLOSURE overhang1 overhang2 ;
 [WIDTH minWidth TO maxWidth ;]
LAYER routingLayerName ;
 ENCLOSURE overhang1 overhang2 ;
 [WIDTH minWidth TO maxWidth ;]
LAYER cutLayerName ;
 RECT pt pt ;
 SPACING xSpacing BY ySpacing ;
 [RESISTANCE resistancePerCut ;]

Specifies the name to identify the via rule.

WIDTH minWidth TO maxWidth

Specifies a wire width range. If the widths of two intersecting special
wires fall within the wire width range, the VIARULE is used. To fall
within the range, the widths must be greater than or equal to
minWidth and less than or equal to maxWidth.

Note: WIDTH is defined by wire direction, not by layer. If you specify
a WIDTH range, the rule applies to wires of the specified DIRECTION
that fall within the range.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 222 Product Version 5.7

END viaRuleName

Defines formulas for generating via arrays. You can use the VIARULE GENERATE statement
to cover special wiring that is not explicitly defined in the VIARULE statement.

Rather than specifying a list of vias for the situation, you can create a formula to specify how
to generate the cut layer geometries.

Note: Any vias created automatically from a VIARULE GENERATE rule that appear in the DEF
NETS or SPECIALNETS sections must also appear in the DEF VIA section.

Example 1-33 Via Rule Generate Default

The following example defines a rule for generating vias for the default routing rule:
VIARULE via12 GENERATE DEFAULT

LAYER m1 ;

ENCLOSURE 0.03 0.01 ; #2 sides need >= 0.03, 2 other sides need >= 0.01

LAYER m2 ;

ENCLOSURE 0.05 0.01 ; #2 sides need >= 0.05, 2 other sides need >= 0.01

LAYER cut12 ;

RECT -0.1 -0.1 0.1 0.1 ; # cut is .20 by .20

SPACING 0.40 BY 0.40 ; #center-to-center spacing

RESISTANCE 20 ; #ohms per cut

END via12

DEFAULT Specifies that the via rule can be used to generate vias for the
default routing rule. There can only be one VIARULE GENERATE
DEFAULT for a given routing-cut-routing layer combination.

ENCLOSURE overhang1 overhang2

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 223 Product Version 5.7

Figure 1-86 Overhang

Example 1-34 Via Rule Generate Enclosure

The following example describes a formula for generating via cuts:

Specifies that the via must be covered by metal on two opposite
sides by at least overhang1, and on the other two sides by at
least overhang2 (see Figure 1-86 on page 223). The via
generation code then chooses the direction of overhang that
best maximizes the number of cuts that can fit in the via.

Note: If there are also ENCLOSURE rules for the cut layer that
apply to a given via, the via generation code can choose which
ENCLOSURE rule is best between the VIARULE GENERATION
ENCLOSURE values, or any LAYER ENCLOSURE values that
apply to the same width via being generated.

For example, VIARULE GENERATE ENCLOSURE 0.2 0.0 for
WIDTH 0.0 TO 1.0 combined with a LAYER CUT rule of
ENCLOSURE 0.1 0.1 WIDTH 0.5, would mean that any via
that is greater than or equal to (>=) 0.5 wide, can use the 0.2
0.0 enclosure values, or the 0.1 0.1 enclosure values for that
size via. See the LAYER CUT ENCLOSURE statement for more
information on handling multiple enclosure rule.
Type: Float, specified in microns

overhang2

overhang2

overhang1 overhang1

Required via overhang

xSpacing

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 224 Product Version 5.7

VIARULE via12 GENERATE

LAYER m1 ;

ENCLOSURE 0.05 0.01 ; #2 sides must be >=0.05, 2 other sides must be >=0.01

WIDTH 0.2 TO 100.0 ; #for m1, between 0.2 to 100 microns wide

LAYER m2 ;

ENCLOSURE 0.05 0.01 ; #2 sides must be >=0.05, 2 other sides must be >=0.01

WIDTH 0.2 TO 100.0 ; #for m2, between 0.2 to 100 microns wide

LAYER cut12

RECT -0.07 -0.07 0.07 0.07 ; #cut is .14 by .14

SPACING 0.30 BY 0.30 ; #center-to-center spacing

END via12

The cut layer SPACING ADJACENTCUTS statement can override the VIARULE cut layer
SPACING statements. For example, assume the following cut layer information is also defined
in the LEF file:
LAYER cut12

...
SPACING 0.20 ADJACENTCUTS 3 WITHIN 0.22 ;
...

The 0.20 µm edge-to-edge spacing in the ADJACENTCUTS statement is larger than the
VIARULE GENERATE example spacing of 0.16 (0.30 − 0.14). Whenever the VIARULE
GENERATE rule creates a via that is larger than 2x2 cuts (that is, 2x3, 3x2, 3x3 and so on),
the 0.20 spacing from the ADJACENTCUTS statement is used instead.

Note: The spacing in VIARULE GENERATE is center-to-center spacing, whereas the spacing
in ADJACENTCUTS is edge-to-edge.

GENERATE Defines a formula for generating the appropriate via.

LAYER cutLayerName Specifies the cut layer for the generated via.

LAYER routingLayerName

Specifies the routing layers for the top and bottom of the via.

RECT pt pt

Specifies the location of the lower left contact cut rectangle.

RESISTANCE resistancePerCut

Specifies the resistance of the cut layer, given as the resistance
per contact cut.
Default: The resistance value in the LAYER (Cut) statement
Type: Float

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 225 Product Version 5.7

SPACING xSpacing BY ySpacing

Defines center-to-center spacing in the x and y dimensions to
create an array of contact cuts.The number of cuts of an array in
each direction is the most that can fit within the bounds of the
intersection formed by the two special wires. Cuts are only
generated where they do not violate stacked or adjacent via
design rules.

Note: This value can be overridden by the SPACING
ADJACENTCUTS value in the cut layer statement.

VIARULE viaRuleName

Specifies the name for the rule.

The name DEFAULT is reserved and should not be used for any
via rule name. In the LEF and DEF VIA definitions that use
generated via parameters, the reserved DEFAULT name
indicates the via rule with the DEFAULT keyword.

WIDTH minWidth TO maxWidth

Specifies a wire width range to use for this VIARULE. This
VIARULE can be used for wires with a width greater than or
equal to (>=) minWidth, and less than or equal to (<=)
maxWidth for the given routing layer. If no WIDTH statement is
specified, the VIARULE can be used for all wire widths on the
given routing layer.

LEF/DEF 5.7 Language Reference
LEF Syntax

November 2009 226 Product Version 5.7

LEF/DEF 5.7 Language Reference

November 2009 227 Product Version 5.7

2
ALIAS Statements

This chapter contains information about the following topics.

■ ALIAS Statements on page 227

❑ ALIAS Definition on page 228

❑ ALIAS Examples on page 228

❑ ALIAS Expansion on page 229

ALIAS Statements

You can use alias statements in LEF and DEF files to define commands or parameters
associated with the library or design. An alias statement can appear anywhere in a LEF or
DEF file as follows:

&ALIAS &&aliasName = aliasDefinition &ENDALIAS

&ALIAS and &ENDALIAS are both reserved keywords and are not case sensitive. An alias
statement has the following requirements:

■ &ALIAS must be the first token in the line in which it appears.

■ aliasName is string name and must appear on the same line as &ALIAS. It is case
sensitive based on the value of NAMESCASENSITIVE in the LEF input, or the value of
Input.Lef.Names.Case.Sensitive.

■ aliasName cannot contain any of the following special characters: #, space, tab, or
control characters.

■ &ENDALIAS must be the last token in the line in which it appears.

■ Multiple commands can appear in the alias definition, separated by semicolons.
However, the last command must not be terminated by a semicolon.

LEF/DEF 5.7 Language Reference
ALIAS Statements

November 2009 228 Product Version 5.7

ALIAS Definition

The alias name (aliasName) is an identifier for the associated alias definition
(aliasDefinition). The data reader stores the alias definition in the database. If the
associated alias name already exists in the database, a warning is issued and the existing
definition is replaced.

Alias definitions are text strings with the following properties:

■ aliasDefinition is any text excluding “&ENDALIAS”.

■ All EOL, space, and tab characters are preserved.

■ aliasDefinition text can expand to multiple lines.

ALIAS Examples

The following examples include legal and illegal alias statements:

■ The following statement is legal.
&ALIAS &&MAC = SROUTE ADDCELL AREA &&CORE &ENDALIAS

■ The following statement is illegal because MAC does not start with “&&”.
&ALIAS MAC = SROUTE AREA &&CORE &ENDALIAS

■ The following statement is illegal because &ALIAS is not the first token in this line.
(100 200) &ALIAS &&MAC = SROUTE AREA &&CORE &ENDALIAS

■ The following statement is legal. It contains multiple commands; the last command is not
terminated by a semicolon.
$ALIAS $$ = INPUT LEF myfile.txt;
VERIFY LIBRARY
ENDALIAS

The following examples show legal and illegal alias names:

■ “Engineer_change” is a legal alias name.
&&Engineer_change

■ “&Version&History&&” is a legal alias name.
&&&Version&History&&

■ “design history” is an illegal alias name. It contains a space character and is
considered as two tokens: an aliasName token “&&design,” and a non-aliasName
token “history”.
&&design history

LEF/DEF 5.7 Language Reference
ALIAS Statements

November 2009 229 Product Version 5.7

■ “someName#IO-pin-Num” is an illegal alias name. It contains a “#” character and is
translated as one aliasName token “&&someName”. The “#” is considered a comment
character.
&&someName#IO-pin-Num

ALIAS Expansion

Alias expansion is the reverse operation of alias definition. The following is the syntax for alias
expansion.

&&aliasName

where aliasName is any name previously defined by an alias statement. If an aliasName
does not exist in the database, no substitution occurs.

You use aliases as string expansion parameters for LEF or DEF files. An alias can substitute
for any token of a LEF or DEF file.

LEF/DEF 5.7 Language Reference
ALIAS Statements

November 2009 230 Product Version 5.7

LEF/DEF 5.7 Language Reference

November 2009 231 Product Version 5.7

3
Working with LEF

This chapter contains information about the following topics.

■ Incremental LEF on page 231

■ Error Checking on page 232

Incremental LEF

INPUT LEF can add new data to the current database, providing an incremental LEF
capability. Although it is possible to put an entire LEF library in one file, some systems require
that you put certain data in separate files.

This feature also is useful, for example, when combined with the INPUT GDSII command,
to extract geometric data from a GDSII-format file and add the data to the database.

When using INPUT LEF on a database that has been modified previously, save the previous
version before invoking INPUT LEF. This provides a backup in case the library information
has problems and the database gets corrupted or lost.

Important

The original LEF file, created with FINPUT LEF (or with INPUT LEF when no
database is loaded), must contain all the layers.

Adding Objects to the Library

INPUT LEF can add the following objects to the database:

■ New via

■ New via rule

■ Samenet spacings (if none have been specified previously)

■ New macro

LEF/DEF 5.7 Language Reference
Working with LEF

November 2009 232 Product Version 5.7

If geometries have not been specified for an existing via, INPUT LEF can add layers and
associated rectangle geometries. If not specified previously for a macro, INPUT LEF can add
the following:

■ FOREIGN statement

■ EEQ

■ LEQ

■ Size

■ Overlap geometries

■ Obstruction geometries

If not previously specified for an existing macro pin, INPUT LEF can add the following:

■ Mustjoins

■ Ports and geometries

The database created by INPUT LEF can contain a partial library. Run VERIFY LIBRARY
before proceeding.

If new geometries are added to a routed database, run VERIFY GEOMETRY and VERIFY
CONNECTIVITY to identify new violations.

Important

When defining a pin with no port geometries with the intent of incrementally adding
them, do not include an empty PORT statement as shown below.

MACRO abc
...
PIN a
 ...
 PORT # dummy pin-port, do not
 END # include these two lines
END a
...

Error Checking

To help develop, test, and debug generic libraries and parametric macros, LEF and DEF have
a user-defined error checking facility. This facility consists of seven utilities that you can use

LEF/DEF 5.7 Language Reference
Working with LEF

November 2009 233 Product Version 5.7

from within a LEF or DEF file during the scanning phase of LEF/DEF readers. These utilities
have the following features:

■ A message facility that writes to one or more text files during LEF or DEF input

■ An error handling facility that logs user detected warnings, errors, and fatal errors

The error checking utilities have the following syntax:
&CREATEFILE &fileAlias =

{ stringExpression
| stringIF-ELSEexpression } ;

&OPENFILE &fileAlias ;

&CLOSEFILE &fileAlias ;

&MESSAGE
{&fileAlias | &MSGWINDOW} = message;

&WARNING
{&fileAlias | &MSGWINDOW} = message ;

&ERROR
{&fileAlias | &MSGWINDOW} = message ;

&FATALERROR
{&fileAlias | &MSGWINDOW} = message;

message =
{ &fileAlias | stringExpression
| stringIF-ELSEexpression
| stringIFexpression }

Message Facility

The message facility outputs user-defined messages during the scanning phase of LEF and
DEF input. These messages can be directed to the message window.

&CREATEFILE

The &CREATEFILE utility first assigns a token (&fileAlias) to represent a named file. The file
name is derived from a previously defined string, a quoted string, or an IF-ELSE expression
that evaluates to a string. The following example illustrates these three cases.
&DEFINES &messagefile = "demo1.messages" ;
&CREATEFILE &outfile = &messagefile ;
&CREATEFILE &msgs =

"/usr/asics/cmos/fif4/errors.txt" ;
&CREATEFILE &messages =

IF &errortrap
THEN "errs.txt"
ELSE "/dev/null" ;

The derived file name must be a legal file name in the host environment. The default directory
is the current working directory. The file names are case sensitive.

LEF/DEF 5.7 Language Reference
Working with LEF

November 2009 234 Product Version 5.7

&CREATEFILE creates an empty file with the given name and opens the file. If the token is
already bound to another open file, a warning is issued, the file is closed, and the new file is
opened. If the file already exists, the version number is incremented.

&CLOSEFILE and &OPENFILE

The &CLOSEFILE utility closes the file bound to a given token; &OPENFILE opens the file
bound to a given token. &CLOSEFILE and &OPENFILE control the number of open files.
Each operating system has a limit for the number of open files. Therefore, &CLOSEFILE might
be needed to free up extra file descriptors.

Files are closed in the following ways.

■ All user files are closed at the end of the scanning phase of the LEF and DEF readers.

■ All user files are closed if the scanning phase aborts.

■ If &CREATEFILE is invoked with a token that is already bound to an open file, that file is
closed before opening the new file.

&MESSAGE

The &MESSAGE utility appends text to the file represented by the &fileAlias token, or to the
message window if &MSGWINDOW is specified.

&MSGWINDOW is a special file alias that is not created, opened, or closed. The assigned
expression (right side of the statement) can be one of the following:

&fileAlias Must correspond to a valid file that has been successfully
opened. The contents of the file are appended to the target file
(or message window).

stringExpression
Either a string or a string token.

For example:
&DEFINES &romword16 =

"ROM word size = 16 bits" ;
&MESSAGE &mesgs = "ROM size = 256" ;
&MESSAGE &mesgs = &romword16 ;

stringIF-ELSEexpression
String IF-ELSE expressions evaluate a Boolean expression and
then branch to string values, for example:

LEF/DEF 5.7 Language Reference
Working with LEF

November 2009 235 Product Version 5.7

&&MESSAGE &mesgs =
IF (&&c_flag = 0)

THEN "FLAG C set to 0"
ELSE IF (&&c_flag = 1)

THEN "FLAG C set to 1"
ELSE "FLAG C set to 2" ;

As shown in this example, IF-ELSE expressions can be nested.

stringIFexpression
A string IF expression is an IF-ELSE expression without the
ELSE phrase. The Boolean expression is evaluated, and if true,
the THEN string is sent to the target file; if false, no string is sent,
for example,

&MESSAGE &mesgs =
IF (&&buf = "INV_BIG")

THEN "INV_BIG buffers" ;

Neither the file alias token nor &MSGWINDOW can be part of the assigned expression.

Error-Checking Facility

In addition to the message facility, you have partial control of the error checking facility of the
LEF and DEF readers. When scanning LEF or DEF input, the readers record warnings,
errors, and fatal errors. At the end of the scan, the total number of each is sent to the message
window before proceeding with the reader phase.

If a fatal error is detected, input is aborted after the scanning phase.

With the user interface to the error checking facility, the LEF and DEF files can include custom
error checking. User detected warnings, errors, and fatal errors, can be logged, thereby
incrementing the DEF/LEF reader’s warning, error, and fatal error counts.

A user-detected fatal error terminates input just as with the resident error checking facility. In
addition, the user defined error checking facility utilities can send message strings to the
message window.

&WARNING, &ERROR, and &FATALERROR

The &WARNING, &ERROR, and &FATALERROR utilities use the same syntax as the &MESSAGE
utility. These utilities can send message strings to files and to the message window in the
same manner as &MESSAGE. In addition, when the assigned expression is a string IF
expression, or a string IF-ELSE expression, then the associated counter (warnings, errors,
or fatal errors) is incremented by 1 if any IF condition evaluates to true.

LEF/DEF 5.7 Language Reference
Working with LEF

November 2009 236 Product Version 5.7

LEF/DEF 5.7 Language Reference

November 2009 237 Product Version 5.7

4
DEF Syntax

This chapter contains information about the following topics:

■ About Design Exchange Format Files on page 238

❑ General Rules on page 239

❑ Name Escaping Semantics for LEF/DEF Files on page 239

❑ Order of DEF Statements on page 241

■ DEF Statement Definitions on page 242

❑ Blockages on page 242

❑ Bus Bit Characters on page 246

❑ Components on page 246

❑ Design on page 251

❑ Die Area on page 251

❑ Divider Character on page 252

❑ Extensions on page 252

❑ Fills on page 252

❑ GCell Grid on page 254

❑ Groups on page 256

❑ History on page 256

❑ Nets on page 257

❍ Regular Wiring Statement on page 263

❑ Nondefault Rules on page 268

❑ Pins on page 271

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 238 Product Version 5.7

❑ Pin Properties on page 286

❑ Property Definitions on page 287

❑ Regions on page 288

❑ Rows on page 289

❑ Scan Chains on page 290

❑ Slots on page 296

❑ Special Nets on page 298

❍ Special Wiring Statement on page 302

❑ Styles on page 310

❑ Technology on page 322

❑ Tracks on page 322

❑ Units on page 323

❑ Version on page 324

❑ Vias on page 325

About Design Exchange Format Files

A Design Exchange Format (DEF) file contains the design-specific information of a circuit and
is a representation of the design at any point during the layout process. The DEF file is an
ASCII representation using the syntax conventions described in “Typographic and Syntax
Conventions” on page 7.

DEF conveys logical design data to, and physical design data from, place-and-route tools.
Logical design data can include internal connectivity (represented by a netlist), grouping
information, and physical constraints. Physical data includes placement locations and
orientations, routing geometry data, and logical design changes for backannotation. Place-
and-route tools also can read physical design data, for example, to perform ECO changes.

For standard-cell-based/ASIC flow tools, floorplanning is part of the design flow. You typically
use the various floorplanning commands to interactively create a floorplan. This data then
becomes part of the physical data output for the design using the ROWS, TRACKS,
GCELLGRID, and DIEAREA statements. You also can manually enter this data into DEF to
create the floorplan.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 239 Product Version 5.7

It is legal for a DEF file to contain only floorplanning information, such as ROWS. In many
cases, the DEF netlist information is in a separate format, such as Verilog, or in a separate
DEF file. It is also common to have a DEF file that only contains a COMPONENTS section to
pass placement information.

General Rules

Note the following information about creating DEF files:

■ Indentifiers like net names and cell names are limited to 2,048 characters.

■ DEF statements end with a semicolon (;). You must leave a space before the
semicolon.

■ Each section can be specified only once. Sections end with END SECTION.

■ You must define all objects before you reference them except for the + ORIGINAL
argument in the NETS section.

■ No regular expressions or wildcard characters are recognized except for
(* pinName) in the SPECIALNETS section.

Name Escaping Semantics for LEF/DEF Files

You can use the backslash (\) as an escape character before special characters, such as, /
, -, +, (,), etc. When the backslash precedes a character that has a special meaning in LEF
or DEF, the special meaning of the character is ignored. The following characters have
special meanings that can be escaped:

For example:
DIVIDERCHAR "/" ; # default value

BUSBITCHARS "[]" ; # default value

The net, pin, or component (instance) names that contain unescaped special characters
cannot use simple "string" equivalence between files and other formats.

BUSBITCHARS delimiterPair The characters you specify to enclose bus
bits

DIVIDERCHAR character The character you specify to express
hierarchy

\ The backslash character

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 240 Product Version 5.7

Examples:

■ A DEF file specifying BUSBITCHARS "[]" and net name A<0> indicates that the net,
pin, or instance name is a simple scalar name A<0>. A DEF file specifying
BUSBITCHARS "<>" and net name A<0> indicates that bus A is the 0th member.

■ In a LEF/DEF file, having DIVIDERCHAR "/" and BUSBITCHARS "[]", a name A<0>
does not contain any special characters and is therefore treated as a scalar (non-bus bit)
name.

Note: You cannot use the escape character with the pound sign (#).

LEF/DEF to LEF/DEF Equivalence

In DEF syntax, \ is only used to escape characters that have a special meaning if they are
not escaped.

Consider the following LEF/DEF header specification:

❑ LEFDEF/[] is equivalent to LEF or DEF with DIVIDERCHAR "/" and
BUSBITCHARS "[]"

❑ LEFDEF|<> is equivalent to LEF or DEF with DIVIDERCHAR "|" and
BUSBITCHARS "<>"

In the following examples, <> are not special characters for LEFDEF/[] files and [] are not
special characters for LEFDEF|<> files. Observe how the header settings (listed above) affect
the semantic meaning of the names:

■ A<0> with LEFDEF/[] is not equivalent to A<0> with LEFDEF|<>

■ A<0> with LEFDEF/[] is equivalent to A\<0\> with LEFDEF|<>

■ A[0] with LEFDEF/[] is equivalent to A<0> with LEFDEF|<>

Verilog and DEF Equivalence

For Verilog and DEF equivalence, consider the following DEF header specification:

❑ DEF/[] is equivalent to DEF with DIVIDERCHAR "/" and BUSBITCHARS "[]"

❑ DEF|<> is equivalent to DEF with DIVIDERCHAR "|" and BUSBITCHARS "<>"

In the following examples (showing net names), <> are not special characters for DEF/[]
files and [] are not special characters for DEF|<> files:

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 241 Product Version 5.7

■ A<0> in DEF/[] is equivalent to \A<0> in Verilog

A<0> in DEF|<> is equivalent to A[0] in Verilog (bit 0 of bus A)

■ A[0] in DEF/[] is equivalent to A[0] in Verilog (bit 0 of bus A)

A[0] in DEF|<> is equivalent to \A[0] in Verilog

■ A\<0\> in DEF/[] is equivalent to \A<0> in Verilog

A\<0\> in DEF|<> is equivalent to \A<0> in Verilog

■ A\[0\] in DEF/[] is equivalent to \A[0] in Verilog

A\[0\] in DEF|<> is equivalent to \A[0] in Verilog *

The following example shows instance path names for Verilog and DEF equivalence:

■ A/B in DEF/[] represents instance path A.B (instance A in the top module, with
instance B inside the module referenced by instance A) in Verilog.

■ A\/B in DEF/[] represents instance \A/B in Verilog.

■ A\/B/C in DEF/[] represents \A/B .C in Verilog (escaped instance \A/B in the top
module, with instance C inside the module referenced by instance \A/B).

■ The net and instance path A\/B/C/D[0] in DEF/[] will represent \A/B .C.D[0] in
Verilog (escaped instance \A/B in the top module, with instance C inside the module
referenced by instance \A/B, and bus D in that module with bit 0 being specified).

Comparison of DEF and Verilog Escaping Semantics

The DEF escape \ applies only to the next character and prevents the character from having
a special meaning.

The Verilog escape \ affects the complete "token" and is terminated by a trailing white space
(" ", Tab, Enter, etc.).

Order of DEF Statements

Standard DEF files can contain the following statements and sections. You can define the
statements and sections in any order; however, data must be defined before it is used. For
example, you must specify the UNITS statement before any statements that use values
dependent on UNITS values, and VIAS statements must be defined before statements that
use via names. If you specify statements and sections in the following order, all data is defined
before being used.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 242 Product Version 5.7

 [VERSION statement]
[DIVIDERCHAR statement]
[BUSBITCHARS statement]
DESIGN statement
[TECHNOLOGY statement]
[UNITS statement]
[HISTORY statement] ...
[PROPERTYDEFINITIONS section]
[DIEAREA statement]
[ROWS statement] ...
[TRACKS statement] ...
[GCELLGRID statement] ...
[VIAS statement]
[STYLES statement]
[NONDEFAULTRULES statement]
[REGIONS statement]
[COMPONENTS section]
[PINS section]
[PINPROPERTIES section]
[BLOCKAGES section]
[SLOTS section]
[FILLS section]
[SPECIALNETS section]
[NETS section]
[SCANCHAINS section]
[GROUPS section]
[BEGINEXT section] ...
END DESIGN statement

DEF Statement Definitions

The following definitions describe the syntax arguments for the statements and sections that
make up a DEF file. The statements and sections are listed in alphabetical order, not in the
order they must appear in a DEF file. For the correct order, see Order of DEF Statements on
page 241.

Blockages
[BLOCKAGES numBlockages ;

[- LAYER layerName
 [+ COMPONENT compName | + SLOTS | + FILLS | + PUSHDOWN
 | + EXCEPTPGNET]
 [+ SPACING minSpacing | + DESIGNRULEWIDTH effectiveWidth]
 {RECT pt pt | POLYGON pt pt pt ...} ...
;] ...
[- PLACEMENT
 [+ SOFT

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 243 Product Version 5.7

 | + PARTIAL maxDensity
 | + COMPONENT compName
 | + PUSHDOWN]
 {RECT pt pt} ...
;] ...

END BLOCKAGES]

Defines placement and routing blockages in the design. You can define simple blockages
(blockages specified for an area), or blockages that are associated with specific instances
(components). You can only associate blockages with placed instances. If you move the
instance, its blockage moves with it.

COMPONENT compName Specifies a component with which to associate a blockage.
Specify with LAYER layerName to create a routing blockage
associated with a component. Specify with PLACEMENT to create
a placement blockage associated with a component.

DESIGNRULEWIDTH effectiveWidth

Specifies that the blockage has a width of effectiveWidth
for the purposes of spacing calculations. If you specify
DESIGNRULEWIDTH, you cannot specify SPACING.
Type: DEF database units

EXCEPTPGNET Indicates that the blockage only blocks signal net routing, and
does not block power or ground net routing.

This can be used above noise sensitive blocks, to prevent signal
routing on specific layers above the block, but allow power
routing connections.

FILLS Creates a blockage on the specified layer where metal fills
cannot be placed.

LAYER layerName Specifies the cut layer or routing layer on which to create a
blockage.

Note: Placing vias using the cut layer where a cut layer
obstruction (OBS) or blockage exists will cause a violation.

numBlockages Specifies the number of blockages in the design specified in the
BLOCKAGES section.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 244 Product Version 5.7

PARTIAL maxDensity Indicates that the initial placement should not use more than
maxDensity percentage of the blockage area for standard
cells. Later placement of clock tree buffers, or buffers added
during timing optimization ignore this blockage. The
maxDensity value is calculated as:

standard cell area in blockage area/blockage area <= maxDensity

This can be used to reduce the density in a locally congested
area, and preserve it for buffer insertion.
Type: Float
Value: Between 0.0 and 100.0

PLACEMENT Creates a placement blockage. You can create a simple
placement blockage, or a placement blockage attached to a
specific component.

POLYGON pt pt pt Specifies a sequence of at least three points to generate a
polygon geometry. The polygon edges must be parallel to the x
axis, the y axis, or at a 45-degree angle. Each POLYGON
statement defines a polygon generated by connecting each
successive point, and then the first and last points. The pt
syntax corresponds to a coordinate pair, such as x y. Specify an
asterisk (*) to repeat the same value as the previous x or y value
from the last point.

PUSHDOWN Specifies that the blockage was pushed down into the block from
the top level of the design.

RECT pt pt Specifies the coordinates of the blockage geometry. The
coordinates you specify are absolute. If you associate a blockage
with a component, the coordinates are not relative to the
component’s origin.

SOFT Indicates that the initial placement should not use the area, but
later phases, such as timing optimization or clock tree synthesis,
can use the blockage area. This can be used to preserve certain
areas (such as small channels between blocks) for buffer
insertion after the initial placement.

SLOTS Creates a blockage on the specified layer where slots cannot be
placed.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 245 Product Version 5.7

SPACING minSpacing Specifies the minimum spacing allowed between the blockage
and any other routing shape. If you specify SPACING, you cannot
specify DESIGNRULEWIDTH.
Type: Integer, specified in DEF database units

Example 4-1 Blockages Statements

■ The following BLOCKAGES section defines eight blockages in the following order: two
metal2 routing blockages, a pushed down routing blockage, a routing blockage attached
to component |i4, a floating placement blockage, a pushed down placement blockage,
a placement blockage attached to component |i3, and a fill blockage.

BLOCKAGES 7 ;

- LAYER metal1
 RECT (-300 -310) (320 330)

 RECT (-150 -160) (170 180) ;

- LAYER metal1 + PUSHDOWN

 RECT (-150 -160) (170 180) ;

- LAYER metal1 + COMPONENT |i4

 RECT (-150 -160) (170 180) ;

- PLACEMENT

 RECT (-150 -160) (170 180) ;

- PLACEMENT + PUSHDOWN

 RECT (-150 -160) (170 180) ;

- PLACEMENT + COMPONENT |i3

 RECT (-150 -160) (170 180) ;

- LAYER metal1 + FILLS

 RECT (-160 -170) (180 190) ;

END BLOCKAGES

■ The following BLOCKAGES section defines two blockages. One requires minimum
spacing of 1000 database units for its rectangle and polygon. The other requires that its
rectangle’s width be treated as 1000 database units for DRC checking.

BLOCKAGES 2 ;

- LAYER metal1

+ SPACING 1000 #RECT and POLYGON require at least 1000 dbu spacing

RECT (-300 -310) (320 300)

POLYGON (0 0) (* 100) (100 *) (200 200) (200 0) ; #Has 45-degree
 #edge

- LAYER metal1

+ DESIGNRULEWIDTH 1000 #Treat the RECT as 1000 dbu wide for DRC checking

RECT (-150 -160) (170 180) ;

END BLOCKAGES

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 246 Product Version 5.7

Bus Bit Characters
BUSBITCHARS "delimiterPair" ;

Specifies the pair of characters used to specify bus bits when DEF names are mapped to or
from other databases. The characters must be enclosed in double quotation marks. For
example:

 BUSBITCHARS "()" ;

If one of the bus bit characters appears in a DEF name as a regular character, you must use
a backslash (\) before the character to prevent the DEF reader from interpreting the character
as a bus bit delimiter.

If you do not specify the BUSBITCHARS statement in your DEF file, the default value is “[]”.

Components
COMPONENTS numComps ;

[– compName modelName
 [+ EEQMASTER macroName]
 [+ SOURCE {NETLIST | DIST | USER | TIMING}]
 [+ {FIXED pt orient | COVER pt orient | PLACED pt orient
 | UNPLACED}]
 [+ HALO [SOFT] left bottom right top]
 [+ ROUTEHALO haloDist minLayer maxLayer]
 [+ WEIGHT weight]
 [+ REGION regionName]
 [+ PROPERTY {propName propVal} ...]...
;] ...

END COMPONENTS

Defines design components, their location, and associated attributes.

compName modelName Specifies the component name in the design, which is an
instance of modelName, the name of a model defined in the
library. A modelName must be specified with each compName.

COVER pt orient Specifies that the component has a location and is a part of a
cover macro. A COVER component cannot be moved by
automatic tools or interactive commands. You must specify the
component’s location and its orientation.

EEQMASTER macroName Specifies that the component being defined should be
electrically equivalent to the previously defined macroName.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 247 Product Version 5.7

FIXED pt orient Specifies that the component has a location and cannot be
moved by automatic tools, but can be moved using interactive
commands. You must specify the component’s location and
orientation.

HALO [SOFT] left bottom right top

Specifies a placement blockage around the component. The
halo extends from the LEF macro’s left edge(s) by left, from
the bottom edge(s) by bottom, from the right edge(s) by
right, and from the top edge(s) by top. The LEF macro edges
are either defined by the rectangle formed by the MACRO SIZE
statement, or, if OVERLAP obstructions exist (OBS shapes on a
layer with TYPE OVERLAP), the polygon formed by merging the
OVERLAP shapes.

If SOFT is specified, the placement halo is honored only during
initial placement; later phases, such as timing optimization or
clock tree synthesis, can use the halo area. This can be used to
preserve certain areas (such as small channels between blocks)
for buffer insertion.
Type: Integer, specified in DEF database units

Example 4-2 Component Halo

The following statement creates a placement blockage for a “U-shaped” LEF macro, as
illustrated in Figure 4-1 on page 248:

- i1/i2

+ PLACED (0 0) N

+ HALO 100 0 50 200 ;

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 248 Product Version 5.7

Figure 4-1 Component Halo

numComps Specifies the number of components defined in the
COMPONENTS section.

PLACED pt orient Specifies that the component has a location, but can be moved
using automatic layout tools. You must specify the component’s
location and orientation.

PROPERTY propName propVal

Specifies a numerical or string value for a component property
defined in the PROPERTYDEFINITIONS statement. The
propName you specify must match the propName listed in the
PROPERTYDEFINITIONS statement.

REGION regionName Specifies a region in which the component must lie.
regionName specifies a region already defined in the
REGIONS section. If the region is smaller than the bounding
rectangle of the component itself, the DEF reader issues an error
message and ignores the argument. If the region does not
contain a legal location for the component, the component
remains unplaced after the placement step.

ROUTEHALO haloDist minLayer maxLayer

Left edges halo = 100

Bottom edge halo = 0

Top edges halo = 200

Right edges halo = 50

LEF MACRO has three OBS RECTs
on the OVERLAP layer

LEF MACRO SIZE

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 249 Product Version 5.7

Specifies that signal routing only should be perpendicular to the
block edge in order to reach pins within haloDist of the block
boundary. This can be used to minimize cross coupling between
routing at the current level of the design, and routing inside the
block. It has no effect on power routing.

The routing halo exists for the routing layers between
minLayer and maxLayer. The layer you specify for
minLayer must be a lower routing layer than maxLayer.
Type: Integer, specified in DEF database units (haloDist);
string that matches a LEF routing layer name (minLayer and
maxLayer)

Example 4-3 Route Halo Example

For a U-shaped macro, the following component description results in the halo shown in
Figure 4-2 on page 249.

- il/i2

+ PLACED (0 0) N

+ ROUTEHALO 100 metal1 metal3 ;

Figure 4-2 Route Halo

LEF MACRO has three
OBS RECTs on the
OVERLAP layer

LEF MACRO SIZE boundary
boundary

route halo = 100

Okay: route is
perpendicular to block.

Violation: route is
parallel to block
inside the halo.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 250 Product Version 5.7

SOURCE {NETLIST | DIST | USER | TIMING}
Specifies the source of the component.
Value: Specify one of the following:

UNPLACED Specifies that the component does not have a location.

WEIGHT weight Specifies the weight of the component, which determines
whether or not automatic placement attempts to keep the
component near the specified location. weight is only
meaningful when the component is placed. All non-zero weights
have the same effect during automatic placement.
Default: 0

Specifying Orientation

If a component has a location, you must specify its location and orientation. A component can
have any of the following orientations: N, S, W, E, FN, FS, FW, or FE.

Orientation terminology can differ between tools. The following table maps the orientation
terminology used in LEF and DEF files to the OpenAccess database format.

 DIST Component is a physical component (that is,
it only connects to power or ground nets),
such as filler cells, well-taps, and decoupling
caps.

 NETLIST Component is specified in the original netlist.
This is the default value, and is normally not
written out in the DEF file.

 TIMING Component is a logical rather than physical
change to the netlist, and is typically used as
a buffer for a clock-tree, or to improve timing
on long nets.

 USER Component is generated by the user for
some user-defined reason.

LEF/DEF OpenAccess Definition

N (North) R0

S (South) R180

W (West) R90

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 251 Product Version 5.7

Components are always placed such that the lower left corner of the cell is the origin (0,0)
after any orientation. When a component flips about the y axis, it flips about the component
center. When a component rotates, the lower left corner of the bounding box of the
component’s sites remains at the same placement location.

Design
DESIGN designName ;

Specifies a name for the design. The DEF reader reports a warning if this name is different
from that in the database. In case of a conflict, the just specified name overrides the old name.

Die Area
[DIEAREA pt pt [pt] ... ;]

If two points are defined, specifies two corners of the bounding rectangle for the design. If
more than two points are defined, specifies the points of a polygon that forms the die area.
The edges of the polygon must be parallel to the x or y axis (45-degree shapes are not
allowed), and the last point is connected to the first point. All points are integers, specified as
DEF database units.

Geometric shapes (such as blockages, pins, and special net routing) can be outside of the
die area, to allow proper modeling of pushed down routing from top-level designs into sub
blocks. However, routing tracks should still be inside the die area.

Example 4-4 Die Area Statements

The following statements show various ways to define the die area.
DIEAREA (0 0) (100 100) ; #Rectangle from 0,0 to 100,100

DIEAREA (0 0) (0 100) (100 100) (100 0) ; #Same rectangle as a polygon

DIEAREA (0 0) (0 100) (50 100) (50 50) (100 50) (100 0) ; #L-shaped polygon

E (East) R270

FN (Flipped North) MY

FS (Flipped South) MX

FW (Flipped West) MX90

FE (Flipped East) MY90

LEF/DEF OpenAccess Definition

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 252 Product Version 5.7

Divider Character
DIVIDERCHAR "character" ;

Specifies the character used to express hierarchy when DEF names are mapped to or from
other databases. The character must be enclosed in double quotation marks. For example:

DIVIDERCHAR "/" ;

If the divider character appears in a DEF name as a regular character, you must use a
backslash (\) before the character to prevent the DEF reader from interpreting the character
as a hierarchy delimiter.

If you do not specify the DIVIDERCHAR statement in your LEF file, the default value is “/”.

Extensions
[BEGINEXT "tag"

extensionText

ENDEXT]

Adds customized syntax to the DEF file that can be ignored by tools that do not use that
syntax. You can also use extensions to add new syntax not yet supported by your version of
LEF/DEF, if you are using version 5.1 or later. Add extensions as separate sections.

extensionText Defines the contents of the extension.

“tag” Identifies the extension block. You must enclose tag in quotes.

Example 4-5 Extension Statement
BEGINEXT "1VSI Signature 1.0"

CREATOR "company name"

DATE "timestamp"

REVISION "revision number"

ENDEXT

Fills
[FILLS numFills ;

[- LAYER layerName [+ OPC]
 {RECT pt pt | POLYGON pt pt pt ...} ... ;] ...
[- VIA viaName [+ OPC] pt ... ;] ...

END FILLS]

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 253 Product Version 5.7

Defines the rectangular shapes that represent metal fills in the design. Each fill is defined as
an individual rectangle.

LAYER layerName Specifies the layer on which to create the fill.

numFills Specifies the number of LAYER statements in the FILLS
statement, not the number of rectangles.

OPC Indicates that the FILL shapes require OPC correction during
mask generation.

POLYGON pt pt pt Specifies a sequence of at least three points to generate a
polygon geometry. The polygon edges must be parallel to the x
axis, the y axis, or at a 45-degree angle. Each POLYGON
statement defines a polygon generated by connecting each
successive point, and then the first and last points. The pt
syntax corresponds to a coordinate pair, such as x y. Specify an
asterisk (*) to repeat the same value as the previous x or y value
from the last point.

RECT pt pt Specifies the lower left and upper right corner coordinates of the
fill geometry.

VIA viaName pt Places the via named viaName at the specified (x y) location
(pt). viaName must be a previously defined via in the DEF
VIAS or LEF VIA section.
Type: (pt) Integers, specified in DEF database units

Example 4-6 Fill Statements

■ The following FILLS statement defines fill geometries for layers metal1 and metal2:
FILLS 2 ;

- LAYER metal1

 RECT (1000 2000) (1500 4000)

 RECT (2000 2000) (2500 4000)

 RECT (3000 2000) (3500 4000) ;

- LAYER metal2

 RECT (1000 2000) (1500 4000)

 RECT (1000 4500) (1500 6500)

 RECT (1000 7000) (1500 9000)

 RECT (1000 9500) (1500 11500) ;

END FILLS

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 254 Product Version 5.7

■ The following FILLS statement defines two rectangles and one polygon fill geometries:
FILLS 1 ;

-LAYER metal1

 RECT (100 200) (150 400)

 POLYGON (100 100) (200 200) (300 200) (300 100)

 RECT (300 200) (350 400) ;

END FILLS

■ The following FILLS statement defines two rectangles and two via fill geometries for
layer metal1. The rectangles and one of the via fill shapes require OPC correction.
FILLS 3 ;

-LAYER metal1 + OPC

 RECT (0 0) (100 100)

 RECT (200 200) (300 300) ;

-VIA via26

 (500 500)

 (800 800) ;

-VIA via28 + OPC

 (900 900) ;

END FILLS

GCell Grid
[GCELLGRID

{X start DO numColumns+1 STEP space} ...
{Y start DO numRows+1 STEP space ;} ...]

Defines the gcell grid for a standard cell-based design. Each GCELLGRID statement specifies
a set of vertical (x) and horizontal (y) lines, or tracks, that define the gcell grid.

Typically, the GCELLGRID is automatically generated by a particular router, and is not
manually created by the designer.

DO numColumns+1 Specifies the number of columns in the grid.

DO numRows+1 Specifies the number of rows in the grid.

STEP space Specifies the spacing between tracks.

X start, Y start Specify the location of the first vertical (x) and first horizontal (y)
track.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 255 Product Version 5.7

GCell Grid Boundary Information

The boundary of the gcell grid is the rectangle formed by the extreme vertical and horizontal
lines. The gcell grid partitions the routing portion of the design into rectangles, called gcells.
The lower left corner of a gcell is the origin. The x size of a gcell is the distance between the
upper and lower bounding vertical lines, and the y size is the distance between the upper and
lower bounding horizontal lines.

For example, the grid formed by the following two GCELLGRID statements creates gcells that
are all the same size (100 x 200 in the following):

GCELLGRID X 1000 DO 101 STEP 100 ;

GCELLGRID Y 1000 DO 101 STEP 200 ;

A gcell grid in which all gcells are the same size is called a uniform gcell grid. Adding
GCELLGRID statements can increase the granularity of the grid, and can also result in a
nonuniform grid, in which gcells have different sizes.

For example, adding the following two statements to the above grid generates a nonuniform
grid:

GCELLGRID X 3050 DO 61 STEP 100 ;

GCELLGRID Y 5100 DO 61 STEP 200 ;

When a track segment is contained inside a gcell, the track segment belongs to that gcell. If
a track segment is aligned on the boundary of a gcell, that segment belongs to the gcell only
if it is aligned on the left or bottom edges of the gcell. Track segments aligned on the top or
right edges of a gcell belong to the next gcell.

GCell Grid Restrictions

Every track segment must belong to a gcell, so gcell grids have the following restrictions:

■ The x coordinate of the last vertical track must be less than, and not equal to, the x
coordinate of the last vertical gcell line.

■ The y coordinate of the last horizontal track must be less than, and not equal to, the y
coordinate of the last horizontal gcell line.

Gcells grids also have the following restrictions:

■ Each GCELLGRID statement must define two lines.

■ Every gcell need not contain the vertex of a track grid. But, those that do must be at least
as large in both directions as the default wire widths on all layers.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 256 Product Version 5.7

Groups
[GROUPS numGroups ;

[– groupName compNamePattern ...
 [+ REGION regionNam]
 [+ PROPERTY {propName propVal} ...] ...
;] ...

END GROUPS]

Defines groups in a design.

compNamePattern Specifies the components that make up the group. Do not assign
any component to more than one group. You can specify any of
the following:

groupName Specifies the name for a group of components.

numGroups Specifies the number of groups defined in the GROUPS section.

PROPERTY propName propVal

Specifies a numerical or string value for a group property defined
in the PROPERTYDEFINITIONS statement. The propName you
specify must match the propName listed in the
PROPERTYDEFINITIONS statement.

REGION regionName Specifies a rectangular region in which the group must lie.
regionName specifies a region previously defined in the
REGIONS section. If region restrictions are specified in both
COMPONENT and GROUP statements for the same component,
the component restriction overrides the group restriction.

History
[HISTORY anyText ;] ...

■ A component name, for example C3205

■ A list of component names separated by spaces, for
example, I01 I02 C3204 C3205

■ A pattern for a set of components, for example, IO* and
C320*

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 257 Product Version 5.7

Lists a historical record about the design. Each line indicates one record. Any text excluding
a semicolon (;) can be included in anyText. The semicolon terminates the HISTORY
statement. Linefeed and Return do not terminate the HISTORY statement. Multiple
HISTORY lines can appear in a file.

Nets
NETS numNets ;

[– { netName
 [({compName pinName | PIN pinName} [+ SYNTHESIZED])] ...
 | MUSTJOIN (compName pinName) }
 [+ SHIELDNET shieldNetName] ...
 [+ VPIN vpinName [LAYER layerName] pt pt
 [PLACED pt orient | FIXED pt orient | COVER pt orient]] ...
 [+ SUBNET subnetName
 [({compName pinName | PIN pinName | VPIN vpinName})] ...
 [NONDEFAULTRULE rulename]
 [regularWiring] ...] ...
 [+ XTALK class]
 [+ NONDEFAULTRULE ruleName]
 [regularWiring] ...
 [+ SOURCE {DIST | NETLIST | TEST | TIMING | USER}]
 [+ FIXEDBUMP]
 [+ FREQUENCY frequency]
 [+ ORIGINAL netName]
 [+ USE {ANALOG | CLOCK | GROUND | POWER | RESET | SCAN | SIGNAL
 | TIEOFF}]
 [+ PATTERN {BALANCED | STEINER | TRUNK | WIREDLOGIC}]
 [+ ESTCAP wireCapacitance]
 [+ WEIGHT weight]
 [+ PROPERTY {propName propVal} ...] ...
;] ...

END NETS

Defines netlist connectivity for nets containing regular pins. The default design rules apply to
these pins, and the regular routers route to these pins. The SPECIALNETS statement defines
netlist connectivity for nets containing special pins.

Input arguments for a net can appear in the NETS section or the SPECIALNETS section. In
case of conflicting values, the DEF reader uses the last value encountered. NETS and
SPECIALNETS statements can appear more than once in a DEF file. If a particular net has
mixed wiring or pins, specify the special wiring and pins first.

compName pinName Specifies the name of a regular component pin on a net or a
subnet. LEF MUSTJOIN pins, if any, are not included; only the
master pin (that is, the one without the MUSTJOIN statement) is

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 258 Product Version 5.7

included. If a subnet includes regular pins, the regular pins must
be included in the parent net.

COVER pt orient Specifies that the pin has a location and is a part of the cover
macro. A COVER pin cannot be moved by automatic tools or by
interactive commands. You must specify the pin’s location and
orientation.

ESTCAP wireCapacitance

Specifies the estimated wire capacitance for the net. ESTCAP
can be loaded with simulation data to generate net constraints for
timing-driven layout.

FIXED pt orient Specifies that the pin has a location and cannot be moved by
automatic tools, but can be moved by interactive commands. You
must specify the pin’s location and orientation.

FIXEDBUMP Indicates that the bump net cannot be reassigned to a different
pin.

It is legal to have a pin without geometry to indicate a logical
connection, and to have a net that connects that pin to two other
instance pins that have geometry. Area I/Os have a logical pin
that is connected to a bump and an input driver cell. The bump
and driver cell have pin geometries (and, therefore, should be
routed and extracted), but the logical pin is the external pin name
without geometry (typically the Verilog pin name for the chip).

Because bump nets are usually routed with special routing, they
also can be specified in the SPECIALNETS statement. If a net
name appears in both the NETS and SPECIALNETS statements,
the FIXEDBUMP keyword also should appear in both statements.
However, the value only exists once within a given application’s
database for the net name.

Because DEF is often used incrementally, the last value read in
is used. Therefore, in a typical DEF file, if the same net appears
in both statements, the FIXEDBUMP keyword (or lack of it) in the
NETS statement is the value that is used, because the NETS
statement is defined after the SPECIALNETS statement.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 259 Product Version 5.7

For an example specifying the FIXEDBUMP keyword, see “Fixed
Bump” on page 299.

FREQUENCY frequency

Specifies the frequency of the net, in hertz. The frequency value
is used by the router to choose the correct number of via cuts
required for a given net, and by validation tools to verify that the
AC current density rules are met. For example, a net described
with + FREQUENCY 100 indicates the net has 100 rising and 100
falling transitions in 1 second.
Type: Float

LAYER layerName Specifies the layer on which the virtual pin lies.

MUSTJOIN (compName pinName)

Specifies that the net is a mustjoin. If a net is designated
MUSTJOIN, its name is generated by the system. Only one net
should connect to any set of mustjoin pins. Mustjoin pins for
macros are defined in LEF. The only reason to specify a
MUSTJOIN net in DEF (identified arbitrarily by one of its pins) is
to specify prewiring for the MUSTJOIN connection.

Otherwise, nets are generated automatically where needed for
mustjoin connections specified in the library. If the input file
specifies that a mustjoin pin is connected to a net, the DEF
reader connects the set of mustjoin pins to the same net. If the
input file does not specify connections to any of the mustjoin
pins, the DEF reader creates a local MUSTJOIN net.

netName Specifies the name for the net. Each statement in the NETS
section describes a single net. There are two ways of identifying
the net: netName or MUSTJOIN. If the netName is given, a list
of pins to connect to the net also can be specified. Each pin is
identified by a component name and pin name pair (compName
pinName) or as an I/O pin (PIN pinName). Parentheses
ensure readability of output. The keyword MUSTJOIN cannot be
used as a netName.

NONDEFAULTRULE ruleName

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 260 Product Version 5.7

Specifies the LEF-defined nondefault rule to use when creating
the net and wiring. When specified with SUBNET, identifies the
nondefault rule to use when creating the subnet and its wiring.

numNets Specifies the number of nets defined in the NETS section.

ORIGINAL netName Specifies the original net partitioned to create multiple nets,
including the net being defined.

PATTERN {BALANCED | STEINER | TRUNK | WIREDLOGIC}

Specifies the routing pattern used for the net.
Default: STEINER
Value: Specify one of the following:

PIN pinName Specifies the name of an I/O pin on a net or a subnet.

PLACED pt orient Specifies that the pin has a location, but can be moved during
automatic layout. You must specify the pin’s location and
orientation.

PROPERTY propName propVal

Specifies a numerical or string value for a net property defined in
the PROPERTYDEFINITIONS statement. The propName you
specify must match the propName listed in the
PROPERTYDEFINITIONS statement.

regularWiring Specifies the regular physical wiring for the net or subnet. For
regular wiring syntax, see “Regular Wiring Statement” on
page 263.

SHIELDNET shieldNetName

 BALANCED Used to minimize skews in timing delays
for clock nets.

 STEINER Used to minimize net length.

 TRUNK Used to minimize delay for global nets.

 WIREDLOGIC Used in ECL designs to connect output
and mustjoin pins before routing to the
remaining pins.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 261 Product Version 5.7

Specifies the name of a special net that shields the regular net
being defined. A shield net for a regular net is defined earlier in
the DEF file in the SPECIALNETS section.

SOURCE {DIST | NETLIST | TEST | TIMING | USER}

Specifies the source of the net. The value of this field is
preserved when input to the DEF reader.
Value: Specify one of the following:

 DIST Net is the result of adding physical components
(that is, components that only connect to power
or ground nets), such as filler cells, well-taps, tie-
high and tie-low cells, and decoupling caps.

 NETLIST Net is defined in the original netlist. This is the
default value, and is not normally written out in
the DEF file.

 TEST Net is part of a scanchain.

 TIMING Net represents a logical rather than physical
change to netlist, and is used typically as a buffer
for a clock-tree, or to improve timing on long nets.

 USER Net is user defined.

TAPER

M1M2

X VDD
M2_TURN (turn via)

my_net

X VSS

MET2

M2_TURN
(turn via)

NOSHIELD

M1M2
MET1

M1M2_ND

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 262 Product Version 5.7

SUBNET subnetName Names and defines a subnet of the regular net netName. A
subnet must have at least two pins. The subnet pins can be
virtual pins, regular pins, or a combination of virtual and regular
pins. A subnet pin cannot be a mustjoin pin.

SYNTHESIZED Used by some tools to indicate that the pin is part of a
synthesized scan chain.

USE {ANALOG | CLOCK | GROUND | POWER | RESET | SCAN | SIGNAL | TIEOFF}

Specifies how the net is used.
Value: Specify one of the following:

VPIN vpinName pt pt Specifies the name of a virtual pin, and its physical geometry.
Virtual pins can be used only in subnets. A SUBNET statement
refers to virtual pins by the vpinName specified here. You must
define each virtual pin in a + VPIN statement before you can list
it in a SUBNET statement.

Example 4-7 Virtual Pin

The following example defines a virtual pin:
+ VPIN M7K.v2 LAYER MET2 (-10 -10) (10 10) FIXED (10 10)

+ SUBNET M7K.2 (VPIN M7K.v2) (/PREG_CTRL/I$73/A I)

 NONDEFAULTRULE rule1

 ROUTED MET2 (27060 341440) (26880 *) (* 213280)

 M1M2 (95040 *) (* 217600) (95280 *)

 NEW MET1 (1920 124960) (87840 *)

 COVER MET2 (27060 341440) (26880 *)

 ANALOG Used as an analog signal net.

 CLOCK Used as a clock net.

 GROUND Used as a ground net.

 POWER Used as a power net.

 RESET Used as a reset net.

 SCAN Used as a scan net.

 SIGNAL Used as a digital signal net.

 TIEOFF Used as a tie-high or tie-low net.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 263 Product Version 5.7

WEIGHT weight Specifies the weight of the net. Automatic layout tools attempt to
shorten the lengths of nets with high weights. A value of 0
indicates that the net length for that net can be ignored. The
default value of 1 specifies that the net should be treated
normally. A larger weight specifies that the tool should try harder
to minimize the net length of that net.

For normal use, timing constraints are generally a better method
to use for controlling net length than net weights. For the best
results, you should typically limit the maximum weight to 10, and
not add weights to more than 3 percent of the nets.
Default: 1
Type: Integer

XTALK class Specifies the crosstalk class number for the net. If you specify
the default value (0), XTALK will not be written to the DEF file.
Default: 0
Type: Integer
Value: 0 to 200

Regular Wiring Statement

{+ COVER | + FIXED | + ROUTED | + NOSHIELD}
layerName [TAPER | TAPERRULE ruleName] [STYLE styleNum]
 routingPoints
[NEW layerName [TAPER | TAPERRULE ruleName] [STYLE styleNum]
 routingPoints
] ...

Specifies regular wiring for the net.

COVER Specifies that the wiring cannot be moved by either automatic
layout or interactive commands. If no wiring is specified for a
particular net, the net is unrouted. If you specify COVER, you must
also specify layerName.

FIXED Specifies that the wiring cannot be moved by automatic layout,
but can be changed by interactive commands. If no wiring is
specified for a particular net, the net is unrouted. If you specify
FIXED, you must also specify layerName.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 264 Product Version 5.7

layerName Specifies the layer on which the wire lies. You must specify
layerName if you specify COVER, FIXED, ROUTED, or NEW.
Specified layers must be routable; reference to a cut layer
generates an error.

NEW layerName Indicates a new wire segment (that is, there is no wire segment
between the last specified coordinate and the next coordinate),
and specifies the name of the layer on which the new wire lies.
Noncontinuous paths can be defined in this manner.

NOSHIELD Specifies that the last wide segment of the net is not shielded. If
the last segment is not shielded, and is tapered, specify TAPER
under the LAYER argument, instead of NOSHIELD.

ROUTED Specifies that the wiring can be moved by the automatic layout
tools. If no wiring is specified for a particular net, the net is
unrouted. If you specify ROUTED, you must also specify
layerName.

routingPoints Defines the center line coordinates of the route on layerName.
For information about using routing points, see “Defining Routing
Points” on page 266.

The routingPoints syntax is defined as follows:

(x y [extValue])
{ (x y [extValue]) | viaName [orient]} ...

 extValue Specifies the amount by which the wire is
extended past the endpoint of the segment.
The extension value must be greater than or
equal to 0 (zero).
Default: Half the wire width
Type: Integer, specified in database units

Note: Some tools only allow 0 or the
WIREEXTENSION value from the LAYER or
NONDEFAULTRULE statement.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 265 Product Version 5.7

STYLE styleNum Specifies a previously defined style from the STYLES section in
this DEF file. If a style is specified, the wire’s shape is defined by
the center line coordinates and the style.

TAPER Specifies that the next contiguous wire segment on layerName
is created using the default rule.

TAPERRULE ruleName Specifies that the next contiguous wire segment on layerName
is created using the specified nondefault rule.

orient Specifies the orientation of the viaName
that precedes it, using the standard DEF
orientation values of N, S, E, W, FN, FS, FE,
and FW (See “Specifying Orientation” on
page 250).

If you do not specify orient, N (North) is
the default non-rotated value used. All other
orientation values refer to the flipping or
rotation around the via origin (the 0,0 point
in the via shapes). The via origin is still
placed at the (x y) value given in the
routing statement just before the viaName.

Note: Some tools do not support orientation
of vias inside their internal data structures;
therefore, they are likely to translate vias with
an orientation into a different but equivalent
via that does not require an orientation.

 viaName Specifies a via to place at the last point. If
you specify a via, layerName for the next
routing coordinates (if any) is implicitly
changed to the other routing layer for the via.
For example, if the current layer is metal1, a
via12 changes the layer to metal2 for the
next routing coordinates.

 (x y) Specifies the route coordinates. You cannot
specify a route with zero length.

For more information, see “Specifying
Coordinates” on page 266.
Type: Integer, specified in database units

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 266 Product Version 5.7

Defining Routing Points

Routing points define the center line coordinates of the route for a specified layer. Routes that
are 90 degrees, have a width defined by the routing rule for this wire, and extend from one
coordinate (x y) to the next coordinate.

If either endpoint has an extension value (extValue), the wire is extended by that amount
past the endpoint. Some applications require the extension value to be 0, half of the wire
width, or the same as the routing rule wire extension value. If you do not specify an extension
value, the default value of half of the wire width is used.

If a coordinate with an extension value is specified after a via, the wire extension is added to
the beginning of the next wire segment after the via (zero-length wires are not allowed).

If the wire segment is a 45-degree edge, and no STYLE is specified, the default octagon style
is used for the endpoints. The routing rule width must be an even multiple of the
manufacturing grid in order to keep all of the coordinates of the resulting outer wire boundary
on the manufacturing grid.

If a STYLE is defined for 90-degree or 45-degree routes, the routing shape is defined by the
center line coordinates and the style. No corrections, such as snapping to manufacturing grid,
can be applied, and any extension values are ignored. The DEF file should contain values
that are already snapped, if appropriate. The routing rule width indicates the desired user
width, and represents the minimum allowed width of the wire that results from the style when
the 45-degree edges are properly snapped to the manufacturing grid.

Specifying Coordinates

To maximize compactness of the design files, the coordinates allow for the asterisk (*)
convention. Here, (x *) indicates that the y coordinate last specified in the wiring

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 267 Product Version 5.7

specification is used; (* y) indicates that the x coordinate last specified is used. Use
 (* * extValue) to specify a wire extension at a via.

Each coordinate sequence defines a connected orthogonal path through the points. The first
coordinate in a sequence must not have an * element.

Because nonorthogonal segments are not allowed, subsequent points in a connected
sequence must create orthogonal paths. For example, the following sequence is a valid path:

(100 200) (200 200) (200 500)

The following sequence is an equivalent path:
(100 200) (200 *) (* 500)

The following sequence is not valid because it represents a nonorthogonal segment.
(100 200) (300 500)

Specifying Orientation

If you specify the pin’s placement status, you must specify its location and orientation. A pin
can have any of the following orientations: N, S, W, E, FN, FS, FW, or FE.

Orientation terminology can differ between tools. The following table maps the orientation
terminology used in LEF and DEF files to the OpenAccess database format.

LEF/DEF OpenAccess Definition

N (North) R0

S (South) R180

ROUTED M1 (0 50) (50 * 20) VIA12 (* * 15) (* 0)

0

50

50

VIA12

70

65

m1 extends past VIA12 by 2o

m2 extends past VIA12 by 15

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 268 Product Version 5.7

Example 4-8 Shielded Net

The following example defines a shielded net:
NETS 1 ;

- my_net (I1 CLK) (BUF OUT)

+ SHIELDNET VSS

+ SHIELDNET VDD

 ROUTED

MET2 (14000 341440) (9600 *) (* 282400)

M1M2 (2400 *)

+ NOSHIELD MET2 (14100 341440) (14000 *)

+ TAPER MET1 (2400 282400) (240 *)

END NETS

Nondefault Rules
NONDEFAULTRULES numRules ;

{- ruleName
 [+ HARDSPACING]
 {+ LAYER layerName
 WIDTH minWidth
 [DIAGWIDTH diagWidth]
 [SPACING minSpacing]
 [WIREEXT wireExt]
 } ...
 [+ VIA viaName] ...
 [+ VIARULE viaRuleName] ...
 [+ MINCUTS cutLayerName numCuts] ...
 [+ PROPERTY {propName propVal} ...] ...
;} ...

END NONDEFAULTRULES

W (West) R90

E (East) R270

FN (Flipped North) MY

FS (Flipped South) MX

FW (Flipped West) MX90

FE (Flipped East) MY90

LEF/DEF OpenAccess Definition

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 269 Product Version 5.7

Defines any nondefault rules used in this design that are not specified in the LEF file. This
section can also contain the default rule and LEF nondefault rule definitions for reference.
These nondefault rule names can be used anywhere in the DEF NETS section that requires
a nondefault rule name.

If a nondefault rule name collides with an existing LEF or DEF nondefault rule name that has
different parameters, the application should use the DEF definition when reading this DEF
file, though it can change the DEF nondefault rule name to make it unique. This is typically
done by adding a unique extension, such as _1 or _2 to the rule name.

All vias must be previously defined in the LEF VIA or DEF VIAS sections. Every nondefault
rule must specify a width for every layer. If a nondefault rule does not specify a via or via rule
for a particular routing-cut-routing layer combination, then there must be a VIARULE
GENERATE DEFAULT rule that it inherited for that combination.

DIAGWIDTH diagWidth Specifies the diagonal width for layerName, when 45-degree
routing is used.
Default: 0 (no diagonal routing allowed)
Type: Integer, specified in DEF database units

HARDSPACING Specifies that any spacing values that exceed the LEF LAYER
ROUTING spacing requirements are “hard” rules instead of “soft”
rules. By default, routers treat extra spacing requirements as soft
rules that are high cost to violate, but not real spacing violations.
However, in certain situations, the extra spacing should be
treated as a hard, or real, spacing violation, such as when the
route will be modified with a post-process that replaces some of
the extra space with metal.

LAYER layerName Specifies the layer for the various width and spacing values.
layerName must be a routing layer. Each routing layer must
have at least a minimum width specified.

MINCUTS cutLayerName numCuts

 Specifies the minimum number of cuts allowed for any via using
the specified cut layer. All vias (generated or fixed vias) used for
this nondefault rule must have at least numCuts cuts in the via.
Type: (numCuts) Positive integer

numRules Specifies the number of nondefault rules defined in the
NONDEFAULTRULES section.

PROPERTY propName propValue

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 270 Product Version 5.7

Specifies a property for this nondefault rule. The propName
must be defined as a NONDEFAULTRULE property in the
PROPERTYDEFINITIONS section, and the propValue must
match the type for propName (that is, integer, real, or string).

rulename Specifies the name for this nondefault rule. This name can be
used in the NETS section wherever a nondefault rule name is
allowed. The reserved name DEFAULT can be used to indicate
the default routing rule used in the NETS section.

SPACING minSpacing Specifies the minimum spacing for layerName. The LEF
LAYER SPACING or SPACINGTABLE definitions always apply;
therefore it is only necessary to add a SPACING value if the
desired spacing is larger than the LAYER rules already require.
Type: Integer, specified in DEF database units.

VIA viaName Specifies a previously defined LEF or DEF via to use with this
rule.

VIARULE viaRuleName Specifies a previously defined LEF VIARULE GENERATE to use
with this routing rule. If no via or via rule is specified for a given
routing-cut-routing layer combination, then a VIARULE
GENERATE DEFAULT via rule must exist for that combination,
and it is implicitly inherited.

WIDTH minWidth Specifies the required minimum width allowed for layerName.
Type: Integer, specified in DEF database units

WIREEXT wireExt Specifies the distance by which wires are extended at vias on
layerName.
Default: 0
Type: Integer, specified in DEF database units

Example 4-9 Nondefault Rules

The following NONDEFAULTRULES statement is based on the assumption that there are
VIARULE GENERATE DEFAULT rules for each routing-cut-routing combination, and that the
default width is 0.3 µm.
NONDEFAULTRULES 5 ;

- doubleSpaceRule #Needs extra space, inherits default via rules

+ LAYER metal1 WIDTH 200 SPACING 1000

+ LAYER metal2 WIDTH 200 SPACING 1000

+ LAYER metal3 WIDTH 200 SPACING 1000 ;

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 271 Product Version 5.7

- lowerResistance #Wider wires and double cut vias for lower resistance
 #and higher current capacity. No special spacing rules,
 #therefore the normal LEF LAYER specified spacing rules
 #apply. Inherits the default via rules.

+ LAYER metal1 WIDTH 600 #Metal1 is thinner, therefore a little wider

+ LAYER metal2 WIDTH 500

+ LAYER metal3 WIDTH 500

+ MINCUTS cut12 2 #Requires at least two cuts

+ MINCUTS cut23 2 ;

- myRule #Use default width and spacing, change via rules. The
#default via rules are not inherited.

+ LAYER metal1 WIDTH 200

+ LAYER metal2 WIDTH 200

+ LAYER metal3 WIDTH 200

+ VIARULE myvia12rule

+ VIARULE myvia23rule ;

- myCustomRule #Use new widths, spacing and fixed vias. The default
#via rules are not inherited because vias are defined.

+ LAYER metal1 WIDTH 500 SPACING 1000

+ LAYER metal2 WIDTH 500 SPACING 1000

+ LAYER metal3 WIDTH 500 SPACING 1000

+ VIA myvia12_custom1

+ VIA myvia12_custom2

+ VIA myvia23_custom1

+ VIA myvia23_custom2 ;

END NONDEFAULTRULES

Pins
[PINS numPins ;

[[– pinName + NET netName]
 [+ SPECIAL]
 [+ DIRECTION {INPUT | OUTPUT | INOUT | FEEDTHRU}]
 [+ NETEXPR "netExprPropName defaultNetName"]
 [+ SUPPLYSENSITIVITY powerPinName]
 [+ GROUNDSENSITIVITY groundPinName]
 [+ USE {SIGNAL | POWER | GROUND | CLOCK | TIEOFF | ANALOG
 | SCAN | RESET}]
 [+ ANTENNAPINPARTIALMETALAREA value [LAYER layerName]] ...
 [+ ANTENNAPINPARTIALMETALSIDEAREA value [LAYER layerName]] ...
 [+ ANTENNAPINPARTIALCUTAREA value [LAYER layerName]] ...
 [+ ANTENNAPINDIFFAREA value [LAYER layerName]] ...
 [+ ANTENNAMODEL {OXIDE1 | OXIDE2 | OXIDE3 | OXIDE4}] ...
 [+ ANTENNAPINGATEAREA value [LAYER layerName]] ...
 [+ ANTENNAPINMAXAREACAR value LAYER layerName] ...
 [+ ANTENNAPINMAXSIDEAREACAR value LAYER layerName] ...

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 272 Product Version 5.7

 [+ ANTENNAPINMAXCUTCAR value LAYER layerName] ...
 [[+ PORT]
 [+ LAYER layerName
 [SPACING minSpacing | DESIGNRULEWIDTH effectiveWidth]
 pt pt
 | + POLYGON layerName
 [SPACING minSpacing | DESIGNRULEWIDTH effectiveWidth]
 pt pt pt ...
 | + VIA viaName pt] ...
 [+ COVER pt orient | FIXED pt orient | PLACED pt orient]
]...
;] ...

END PINS]

Defines external pins. Each pin definition assigns a pin name for the external pin and
associates the pin name with a corresponding internal net name. The pin name and the net
name can be the same.

When the design is a chip rather than a block, the PINS statement describes logical pins,
without placement or physical information.

ANTENNAMODEL {OXIDE1 | OXIDE2 | OXIDE3 | OXIDE4}

Specifies the oxide model for the pin. If you specify an
ANTENNAMODEL statement, that value affects all
ANTENNAGATEAREA and ANTENNA*CAR statements for the pin
that follow it until you specify another ANTENNAMODEL statement.
The ANTENNAMODEL statement does not affect
ANTENNAPARTIAL*AREA and ANTENNADIFFAREA statements
because they refer to the total metal, cut, or diffusion area
connected to the pin, and do not vary with each oxide model.
Default: OXIDE1, for a new PIN statement

Because DEF is often used incrementally, if an ANTENNA
statement occurs twice for the same oxide model, the last value
specified is used.

Usually, you only need to specify a few ANTENNA values;
however, for a block with six routing layers, it is possible to have
six different ANTENNAPARTIAL*AREA values and six different
ANTENNAPINDIFFAREA values per pin. It is also possible to
have six different ANTENNAPINGATEAREA and
ANTENNAPINMAX*CAR values for each oxide model on each pin.

Example 4-10 Antenna Model Statement

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 273 Product Version 5.7

The following example describes the OXIDE1 and OXIDE2 models for pin clock1. Note that
the ANTENNAPINPARTIALMETALAREA and ANTENNAPINDIFFAREA values are not affected
by the oxide values.
PINS 100 ;

 - clock1 + NET clock1

 ...

 + ANTENNAPINPARTIALMETALAREA 1000 LAYER m1

 + ANTENNAPINDIFFAREA 500 LAYER m1

 ...

 + ANTENNAMODEL OXIDE1 #not required, but good practice

 + ANTENNAPINGATEAREA 1000

 + ANTENNAMAXAREACAR 300 LAYER m1

 ...

 + ANTENNAMODEL OXIDE2 #start of OXIDE2 values

 + ANTENNAPINGATEAREA 2000

 + ANTENNAMAXAREACAR 100 LAYER m1

 ...

ANTENNAPINDIFFAREA value [LAYER layerName]

Specifies the diffusion (diode) area to which the pin is connected
on a layer. If you do not specify layerName, the value applies
to all layers. This is not necessary for output pins.
Type: Integer
Value: Area specified in (DEF database units)2

 For more information on process antenna calculation, see
Appendix C, “Calculating and Fixing Process Antenna
Violations.”

ANTENNAPINGATEAREA value [LAYER layerName]

Specifies the gate area to which the pin is connected on a layer.
If you do not specify layerName, the value applies to all layers.
This is not necessary for input pins.
Type: Integer
Value: Area specified in (DEF database units)2

 For more information on process antenna calculation, see
Appendix C, “Calculating and Fixing Process Antenna
Violations.”

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 274 Product Version 5.7

ANTENNAPINMAXAREACAR value LAYER layerName

For hierarchical process antenna effect calculation, specifies the
maximum cumulative antenna ratio value, using the metal area
at or below the current pin layer, excluding the pin area itself. Use
this to calculate the actual cumulative antenna ratio on the pin
layer, or the layer above it.
Type: Integer

 For more information on process antenna calculation, see
Appendix C, “Calculating and Fixing Process Antenna
Violations.”

ANTENNAPINMAXCUTCAR value LAYER layerName

For hierarchical process antenna effect calculation, specifies the
maximum cumulative antenna ratio value, using the cut area at
or below the current pin layer, excluding the pin area itself. Use
this to calculate the actual cumulative antenna ratio for the cuts
above the pin layer.
Type: Integer

 For more information on process antenna calculation, see
Appendix C, “Calculating and Fixing Process Antenna
Violations.”

ANTENNAPINMAXSIDEAREACAR value LAYER layerName

For hierarchical process antenna effect calculation, specifies the
maximum cumulative antenna ratio value, using the metal side
wall area at or below the current pin layer, excluding the pin area
itself. Use this to calculate the actual cumulative antenna ratio on
the pin layer, or the layer above it.
Type: Integer

 For more information on process antenna calculation, see
Appendix C, “Calculating and Fixing Process Antenna
Violations.”

ANTENNAPINPARTIALCUTAREA value [LAYER cutLayerName]

Specifies the partial cut area above the current pin layer and
inside the macro cell on a layer. If you do not specify

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 275 Product Version 5.7

layerName, the value applies to all layers. For hierarchical
designs, only the cut layer above the I/O pin layer is needed for
partial antenna ratio calculation.
Type: Integer
Value: Area specified in (DEF database units)2

 For more information on process antenna calculation, see
Appendix C, “Calculating and Fixing Process Antenna
Violations.”

ANTENNAPINPARTIALMETALAREA value [LAYER layerName]

Specifies the partial metal area connected directly to the I/O pin
and the inside of the macro cell on a layer. If you do not specify
layerName, the value applies to all layers. For hierarchical
designs, only the same metal layer as the I/O pin, or the layer
above it, is needed for partial antenna ratio calculation.
Type: Integer
Value: Area specified in (DEF database units)2

 For more information on process antenna calculation, see
Appendix C, “Calculating and Fixing Process Antenna
Violations.”

ANTENNAPINPARTIALMETALSIDEAREA value [LAYER layerName]

Specifies the partial metal side wall area connected directly to
the I/O pin and the inside of the macro cell on a layer. If you do
not specify layerName, the value applies to all layers. For
hierarchical designs, only the same metal layer as the I/O pin, or
the layer above it, is needed for partial antenna ratio calculation.
Type: Integer
Value: Area specified in (DEF database units)2

 For more information on process antenna calculation, see
Appendix C, “Calculating and Fixing Process Antenna
Violations.”

COVER pt orient Specifies the pin’s location, orientation, and that it is a part of the
cover macro. A COVER pin cannot be moved by automatic tools
or by interactive commands. If you specify a placement status for
a pin, you must also include a LAYER statement.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 276 Product Version 5.7

DIRECTION {INPUT | OUTPUT | INOUT | FEEDTHRU}

Specifies the pin type. Most current tools do not usually use this
keyword. Typically, pin directions are defined by timing library
data, and not from DEF.
Value: Specify one of the following:

FIXED pt orient Specifies the pin’s location, orientation, and that it’s location
cannot be moved by automatic tools, but can be moved by
interactive commands. If you specify a placement status for a
pin, you must also include a LAYER statement.

GROUNDSENSITIVITY groundPinName

Specifies that if this pin is connected to a tie-low connection
(such as 1’b0 in Verilog), it should connect to the same net to
which groundPinName is connected.

groundPinName must match another pin in this PINS section
that has a + USE GROUND attribute. The ground pin definition can
follow later in this PINS section; it does not have to be defined
before this pin definition. It is a semantic error to put this attribute
on an existing ground pin. For an example, see Example 4-11 on
page 277.

Note: GROUNDSENSITIVITY is useful only when there is more
than one ground net connected to pins in the PINS section. By
default, if there is only one net connected to all + USE GROUND
pins, the tie-low connections are already implicitly defined (that
is, tie-low connections are connected to the same net as any
ground pin).

NETEXPR "netExprPropName defaultNetName"

 INPUT Pin that accepts signals coming into the cell.

 OUTPUT Pin that drives signals out of the cell.

 INOUT Pin that can accept signals going either in or out
of the cell.

 FEEDTHRU Pin that goes completely across the cell.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 277 Product Version 5.7

Specifies a net expression property name (such as power1 or
power2) and a default net name. If netExprPropName
matches a net expression property higher up in the netlist (for
example, in Verilog, VHDL, or OpenAccess), then the property is
evaluated, and the software identifies a net to which to connect
this pin. If the property does not exist, defaultNetName is
used for the net name.

netExprPropName must be a simple identifier in order to be
compatible with other languages, such as Verilog and CDL.
Therefore, it can only contain alphanumeric characters, and the
first character cannot be a number. For example, power2 is a
legal name, but 2power is not. You cannot use characters such
as $ and !. The defaultName can be any legal DEF net
name.

If more than one pin connects to the same net, only one pin
should have a NETEXPR added to it. It is redundant and
unnecessary to add NETEXPR to every ground pin connected to
one ground net, and it is illegal to have different NETEXPR values
for pins connected to the same net.

Example 4-11 Net Expression and Supply Sensitivity

The following PINS statement defines sensitivity and net expression values for five pins in the
design myDesign:
DESIGN myDesign

...

PINS 4 ;

- in1 + NET myNet

...

+ SUPPLYSENSITIVITY vddpin1 ; #If in1 is connected to 1’b1, use
 #net that is connected to vddpin1.
 #No GROUNDSENSITIVITY is needed because
 #only one ground net is used by PINS.
 #Therefore, 1’b0 implicitly means net
 #from any +USE GROUND pin.

- vddpin1 + NET VDD1 + USE POWER

...

+ NETEXPR "power1 VDD1" ; #If an expression named power1 is defined in
 #the netlist, use it to fine the net.
 #Otherwise, use net VDD1.

- vddpin2 + NET VDD2 + USE POWER

...

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 278 Product Version 5.7

+ NETEXPR "power2 VDD2" ; #If an expression named power2 is defined in
 #the netlist, use it to find the net.
 # Otherise, use net VDD2.

- gndpin1 + NET GND + USE GROUND

...

+ NETEXPR "gnd1 GND" ; #If an expression named gnd1 is defined in
 #the netlist, use it to find net
 #connection. Otherwise, use net GND.

END PINS

numPins Specifies the number of pins defined in the PINS section.

pinName + NET netName

Specifies the name for the external pin, and the corresponding
internal net (defined in NETS or SPECIALNETS statements).

PLACED pt orient Specifies the pin’s location, orientation, and that it’s location is
fixed, but can be moved during automatic layout. If you specify a
placement status for a pin, you must also include a LAYER
statement.

PORT Indicates that the following LAYER, POLYGON, and VIA
statements are all part of one PORT connection, until another
PORT statement occurs. If this statement is missing, all of the
LAYER, POLYGON, and VIA statements are part of a single
implicit PORT for the PIN.

This commonly occurs for power and ground pins. All of the
shapes of one port (rectangles, polygons, and vias) should
already be connected with just the port shapes; therefore, the
router only needs to connect to one of the shapes for the port.
Separate ports should each be connected by routing inside the
block (and each DEF PORT should map to a single LEF PORT in
the equivalent LEF abstract for this block).

The syntax for describing PORT statements is defined as follows:

[[+ PORT]
 [+ LAYER layerName
 [SPACING minSpacing
 | DESIGNRULEWIDTH effectiveWidth]
 pt pt

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 279 Product Version 5.7

 | + POLYGON layerName
 [SPACING minSpacing
 | DESIGNRULEWIDTH effectiveWidth]
 pt pt pt
 | + VIA viaName pt
] ...
]

 LAYER layerName pt pt

 Specifies the routing layer used for the pin, and
the pin geometry on that layer. If you specify a
placement status for a pin, you must include a
LAYER statement.

POLYGON layerName pt pt pt

Specifies the layer and a sequence of at least
three points to generate a polygon for this pin.
The polygon edges must be parallel to the x
axis, the y axis, or at a 45-degree angle.

Each POLYGON statement defines a polygon
generated by connecting each successive point,
and then the first and last points. The pt syntax
corresponds to a coordinate pair, such as x y.
Specify an asterisk (*) to repeat the same value
as the previous x or y value from the last point.
(See Example 4-13 on page 281.)

 SPACING minSpacing

 Specifies the minimum spacing allowed
between this pin and any other routing shape.
This distance must be greater than or equal to
minSpacing. If you specify SPACING, you
cannot specify DESIGNRULEWIDTH. (See
Example 4-14 on page 281.
Type: Integer, specified in DEF database units

DESIGNRULEWIDTH effectiveWidth

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 280 Product Version 5.7

Example 4-12 Port Example

Assume a block that is 5000 x 5000 database units with a 0,0 origin in the middle of the block.
If you have the following pins defined, Figure 4-3 on page 281 illustrates how pin BUSA[0] is
created for two different placement locations and orientations:
PINS 2 ;

- BUSA[0] + NEY BUSA[0] + DIRECTION IN{UT + USE SIGNAL

 + LAYER M1 (-25 0) (25 50) #m1, m2, and via12

 + LAYER M2 (-10 0) (10 75)

 + VIA via12 (0 25)

 + PLACED (0 -2500) N ; #middle of bottom side

- VDD + NET VDD + DIRECTION INOUT + USE POWER + SPECIAL

 + PORT

 + LAYER M2 (-25 0) (25 50)

 + PLACED (0 2500) S #middle of top side

+ PORT

 + LAYER M1 (-25 0) (25 50)

 + PLACED (-2500 0) E #middle of left side

+ PORT

 + LAYER M1 (-25 0) (25 50)

 + PLACED (2500 0) W ; #middle of right side

END PINS

Specifies that this pin has a width of
effectiveWidth for the purpose of spacing
calculations. If you specify DESIGNRULEWIDTH,
you cannot specify SPACING. (See Example 4-
14 on page 281.
Type: Integer, specified in DEF database units

VIA viaName pt

Places the via named viaName at the specified
(x y) location (pt). viaName must be a
previously defined via in the DEF VIAS or LEF
VIA section.
Type: (pt) Integers, specified in DEF database
units

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 281 Product Version 5.7

Figure 4-3 Port Illustration

Example 4-13 Port Statement With Polygon

The following PINS statement creates a polygon with a 45-degree angle:
PINS 2 ;

- myPin3 + NET myNet1 + DIRECTION INPUT

+ PORT

 + POLYGON metal1 (0 0) (100 100) (200 100) (200 0) #45-degree angle

 + FIXED (10000 5000) N ;

...

END PINS

Example 4-14 Design Rule Width and Spacing Rules

The following statements create spacing rules using the DESIGNRULEWIDTH and SPACING
statements:
PINS 3 ;

- myPin1 + NET myNet1 + DIRECTION INPUT

m1 rect: LAYER M1
(-25 0) (25 50)

50

50

(0,0) (0,0)

75

20

m2 rect: LAYER M2
(-10 0) (10 75)

(0,-2500)

Block boundary

BUSA[0] with
+ PLACED (0 -2500) N
(N orientation at middle of
bottom-side of block.

(-2500 0)

Block boundary

BUSA[0] with
+ PLACED (-2500 0) E
(E orientation at middle of
left-side of block.

(0,0)

via12: VIA via12 (0 25)

40

40 Via origin
offset
by (0 25)

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 282 Product Version 5.7

+ LAYER metal1

 DESIGNRULEWIDTH 1000 #Pin is effectively 1000 dbu wide

 (-100 0) (100 200) #Pin is 200 x 200 dbu

+ FIXED (10000 5000) S ;

- myPin2 + NET myNet2 + DIRECTION INPUT

+ LAYER metal1

 SPACING 500 #Requires >= 500 dbu spacing

 (-100 0) (100 200) #Pin is 200 x 200 dbu

+ COVER (10000 5000) S ;

- myPin3 + NET myNet1 #Pin with two shapes

+ DIRECTION INPUT

+ LAYER metal2 (200 200) (300 300) #100 x 100 dbu shape

+ POLYGON metal1 (0 0) (100 100) (200 100) (200 0) #Has 45-degree edge

+ FIXED (10000 5000) N ;

END PINS

SPECIAL Identifies the pin as a special pin. Regular routers do not route to
special pins. The special router routes special wiring to special
pins.

SUPPLYSENSITIVITY powerPinName

Specifies that if this pin is connected to a tie-high connection
(such as 1’b1 in Verilog), it should connect to the same net to
which powerPinName is connected.

powerPinName must match another pin in this PINS section
that has a + USE POWER attribute. The power pin definition can
follow later in this PINS section; it does not have to be defined
before this pin definition. It is a semantic error to put this attribute
on an existing power pin. For an example, see Example 4-11 on
page 277.

Note: POWERSENSITIVITY is useful only when there is more
than one power net connected to pins in the PINS section. By
default, if there is only one net connected to all + USE POWER
pins, the tie-high connections are already implicitly defined (that
is, tie-high connections are connected to the same net as the
single power pin).

USE {ANALOG | CLOCK | GROUND | POWER | RESET | SCAN | SIGNAL | TIEOFF}

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 283 Product Version 5.7

Specifies how the pin is used.
Default: SIGNAL
Value: Specify one of the following:

Extra Physical PIN(S) for One Logical PIN

In the design of place and route blocks, you sometimes want to add extra physical connection
points to existing signal ports (usually to enable the signal to be accessed from two sides of
the block). One pin has the same name as the net it is connected to. Any other pins added to
the net must use the following naming conventions.

For extra non-bus bit pin names, use the following syntax:

pinname.extraN N is a positive integer, incremented as the physical pins are
added

For example:
PINS n ;

- a + NET a ;

- a.extra1 + NET a ... ;

For extra bus bit pin names, use the following syntax:

basename.extraN[index]

basename is simple part of bus bit pin/net name. N is a positive
integer, incremented as the physical pins are added. [index]
identifies the specific bit of the bus, if it is a bus bit.

 ANALOG Pin is used for analog connectivity.

 CLOCK Pin is used for clock net connectivity.

 GROUND Pin is used for connectivity to the chip-
level ground distribution network.

 POWER Pin is used for connectivity to the chip-
level power distribution network.

 RESET Pin is used as reset pin.

 SCAN Pin is used as scan pin.

 SIGNAL Pin is used for regular net connectivity.

 TIEOFF Pin is used as tie-high or tie-low pin.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 284 Product Version 5.7

For example:
PINS n ;

- a[0] + net a[0] ... ;

- a.extra1[0] + net a[0] ... ;

Note: The brackets [] are the BUSBITCHARS as defined in the DEF BUSBITCHARS
statement.

Specifying Orientation

If you specify the pin’s placement status, you must specify its location and orientation. A pin
can have any of the following orientations: N, S, W, E, FN, FS, FW, or FE.

Orientation terminology can differ between tools. The following table maps the orientation
terminology used in LEF and DEF files to the OpenAccess database format.

Example 4-15 Pin Statements

The following example describes a physical I/O pin.
M1 width = 50, track spacing = 120

M2 width = 60, track spacing = 140

DIEAREA (-5000 -5000) (5000 5000) ;

TRACKS Y -4900 DO 72 STEP 140 LAYER M2 M1 ;

TRACKS X -4900 DO 84 STEP 120 LAYER M1 M2 ;

PINS 4 ;

Pin on the left side of the block

LEF/DEF OpenAccess Definition

N (North) R0

S (South) R180

W (West) R90

E (East) R270

FN (Flipped North) MY

FS (Flipped South) MX

FW (Flipped West) MX90

FE (Flipped East) MY90

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 285 Product Version 5.7

- BUSA[0]+ NET BUSA[0] + DIRECTION INPUT

 + LAYER M1 (-25 0) (25 165) # .5 M1 W + 1 M2 TRACK

 + PLACED (-5000 2500) E ;

Pin on the right side of the block

- BUSA[1] + NET BUSA[1] + DIRECTION INPUT

 + LAYER M1 (-25 0) (25 165) # .5 M1 W + 1 M2 TRACK

 + PLACED (5000 -2500) W ;

Pin on the bottom side of the block

- BUSB[0] + NET BUSB[0] + DIRECTION INPUT

 + LAYER M2 (-30 0) (30 150) # .5 M2 W + 1 M1 TRACK

 + PLACED (-2100 -5000) N ;

Pin on the top side of the block

- BUSB[1] + NET BUSB[1] + DIRECTION INPUT

 + LAYER M2 (-30 0) (30 150) # .5 M2 W + 1 M1 TRACK

 + PLACED (2100 5000) S ;

END PINS

The following example shows how a logical I/O pin would appear in the DEF file. The pin is
first defined in Verilog for a chip-level design.
module chip (OUT, BUSA, BUSB) ;

input [0:1] BUSA, BUSB;

output OUT;

....

endmodule

The following description for this pin is in the PINS section in the DEF file:
PINS 5 ;

- BUSA[0] + NET BUSA[0] + DIRECTION INPUT ;

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 286 Product Version 5.7

- BUSA[1] + NET BUSA[1] + DIRECTION INPUT ;

- BUSB[0] + NET BUSB[0] + DIRECTION INPUT ;

- BUSB[1] + NET BUSB[1] + DIRECTION INPUT ;

- OUT + NET OUT + DIRECTION OUTPUT ;

END PINS

Pin Properties
[PINPROPERTIES num;

[- {compName pinName | PIN pinName}
 [+ PROPERTY {propName propVal} ...] ...
;] ...

END PINPROPERTIES]

Defines pin properties in the design.

compName pinName Specifies a component pin. Component pins are identified by the
component name and pin name.

num Specifies the number of pins defined in the PINPROPERTIES
section.

PIN pinName Specifies an I/O pin.

PROPERTY propName propVal

Specifies a numerical or string value for a pin property defined in
the PROPERTYDEFINITIONS statement. The propName you
specify must match the propName listed in the
PROPERTYDEFINITIONS statement.

Example 4-16 Pin Properties Statement
PINPROPERTIES 3 ;

- CORE/g76 CKA + PROPERTY CLOCK "FALLING" ;

- comp1 A + PROPERTY CLOCK "EXCLUDED" ;

- rp/regB clk + PROPERTY CLOCK "INSERTION" ;

END PINPROPERTIES

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 287 Product Version 5.7

Property Definitions
[PROPERTYDEFINITIONS

[objectType propName propType [RANGE min max]
 [value | stringValue]
;] ...

END PROPERTYDEFINITIONS]

Lists all properties used in the design. You must define properties in the
PROPERTYDEFINITIONS statement before you can refer to them in other sections of the
DEF file.

objectType Specifies the object type being defined. You can define
properties for the following object types:

propName Specifies a unique property name for the object type.

propType Specifies the property type for the object type. You can specify
one of the following property types:

RANGE min max Limits real number and integer property values to a specified
range.

value | stringValue

 COMPONENT

 COMPONENTPIN

 DESIGN

 GROUP

 NET

 NONDEFAULTRULE

 REGION

 ROW

 SPECIALNET

 INTEGER

 REAL

 STRING

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 288 Product Version 5.7

Assigns a numeric value or a name to a DESIGN object.

Note: Assign values to properties for component pins in the
PINPROPERTIES section. Assign values to other properties in
the section of the LEF file that describes the object to which the
property applies.

Regions
[REGIONS numRegions ;

[- regionName {pt pt} ...
 [+ TYPE {FENCE | GUIDE}]
 [+ PROPERTY {propName propVal} ...] ...
;] ...

END REGIONS]

Defines regions in the design. A region is a physical area to which you can assign a
component or group.

numRegions Specifies the number of regions defined in the design.

PROPERTY propName propVal

Specifies a numerical or string value for a region property
defined in the PROPERTYDEFINITIONS statement. The
propName you specify must match the propName listed in the
PROPERTYDEFINITIONS statement.

regionName pt pt Names and defines a region. You define a region as one or more
rectangular areas specified by pairs of coordinate points.

TYPE {FENCE | GUIDE}

Specifies the type of region.
Default: All instances assigned to the region are placed inside
the region boundaries, and other cells are also placed inside the
region.
Value: Specify one of the following:

 FENCE All instances assigned to this type of region must
be exclusively placed inside the region
boundaries. No other instances are allowed inside
this region.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 289 Product Version 5.7

Example 4-17 Regions Statement
REGIONS 1 ;

- REGION1 (0 0) (1200 1200)

+ PROPERTY REGIONORDER 1 ;

Rows
[ROW rowName siteName origX origY siteOrient

 [DO numX BY numY [STEP stepX stepY]]
 [+ PROPERTY {propName propVal} ...] ... ;] ...

Defines rows in the design.

DO numX BY numY Specifies a repeating set of sites that create the row. You must
specify one of the values as 1. If you specify 1 for numY, then the
row is horizontal. If you specify 1 for numX, the row is vertical.
Default: Both numX and numY equal 1, creating a single site at
this location (that is, a horizontal row with one site).

origX origY Specifies the location of the first site in the row.
Type: Integer, specified in DEF database units

PROPERTY propName propVal

Specifies a numerical or string value for a row property defined
in the PROPERTYDEFINITIONS statement. The propName you
specify must match the propName listed in the
PROPERTYDEFINITIONS statement.

rowName Specifies the row name for this row.

siteName Specifies the LEF SITE to use for the row. A site is a placement
location that can be used by LEF macros that match the same
site. siteName can also refer to a site with a row pattern in its
definition, in which case, the row pattern indicates a repeating

 GUIDE All instances assigned to this type of region
should be placed inside this region; however, it is
a preference, not a hard constraint. Other
constraints, such as wire length and timing, can
override this preference.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 290 Product Version 5.7

set of sites that are abutted. For more information, see “Site” and
“Macro” in “LEF Syntax.”

siteOrient Specifies the orientation of all sites in the row. siteOrient
must be one of N, S, E, W, FN, FS, FE, or FW. For more information
on orientations, see “Specifying Orientation” on page 250.

STEP stepX stepY Specifies the spacing between sites in horizontal and vertical
rows.

Example 4-18 Row Statements

Assume siteA is 200 by 900 database units.
ROW row_0 siteA 1000 1000 N ; #Horizontal row is one-site wide at 1000, 1000

ROW row_1 siteA 1000 1000 N DO 1 BY 1 ; #Same as row_0

ROW row_2 siteA 1000 1000 N DO 1 BY 1 STEP 200 0 ; #Same as row_0

ROW row_3 siteA 1000 1000 N DO 10 BY 1 ; #Horizontal row is 10 sites wide,

 #so row width is 200*10=2000 dbu

ROW row_4 siteA 1000 1000 N DO 10 BY 1 STEP 200 0 ; #Same as row_3

ROW row_5 siteA 1000 1000 N DO 1 BY 10 ; #Vertical row is 10 sites high, so

 #total row height is 900*10=9000 dbu

ROW row_6 siteA 1000 1000 N DO 1 BY 10 STEP 0 900 ; #Same as row_5

Scan Chains
[SCANCHAINS numScanChains ;

[- chainName
 [+ PARTITION partitionName [MAXBITS maxbits]]
 [+ COMMONSCANPINS [(IN pin)] [(OUT pin)]]
 + START {fixedInComp | PIN} [outPin]
 [+ FLOATING
 {floatingComp [(IN pin)] [(OUT pin)] [(BITS numBits)]} ...]
 [+ ORDERED
 {fixedComp [(IN pin)] [(OUT pin)] [(BITS numBits)]} ...
] ...
 + STOP {fixedOutComp | PIN} [inPin]]
;] ...

END SCANCHAINS]

Defines scan chains in the design. Scan chains are a collection of cells that contain both
scan-in and scan-out pins. These pins must be defined in the PINS section of the DEF file
with + USE SCAN.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 291 Product Version 5.7

chainName Specifies the name of the scan chain. Each statement in the
SCANCHAINS section describes a single scan chain.

COMMONSCANPINS [(IN pin)] [(OUT pin)]

Specifies the scan-in and scan-out pins for each component that
does not have a scan-in and scan-out pin specified. You must
specify either common scan-in and scan-out pins, or individual
scan-in and scan-out pins for each component.

FLOATING {floatingComp [(IN pin)] [(OUT pin)] [(BITS numBits)]}

Specifies the floating list. You can have one or zero floating lists.
If you specify a floating list, it must contain at least one
component.

Note: Scan chain reordering commands can use floating
components in any order to synthesize a scan chain. Floating
components cannot be shared with other scan chains unless

 fixedComp Specifies the component name.

 (IN pin) Specifies the scan-in pin. If you do not
specify a scan-in pin, the router uses the
pin you specified for the common scan
pins.

 (OUT pin) Specifies the scan-out pin. If you do not
specify a scan-out pin, the router uses the
pin you specified for the common scan
pins.

 BITS numBits Specifies the sequential bit length of any
chain element. This allows application
tools that do not have library access to
determine the sequential bit length
contribution of any chain element to ensure
the MAXBITS constraints are not violated
for chains in a given partition. You can
specify 0 to indicate when elements are
nonsequential.
Default: 1
Type: Integer

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 292 Product Version 5.7

they are in the same PARTITION. Each component should only
be used once in synthesizing a scan chain.

MAXBITS maxBits When specified with chains that include the PARTITION
keyword, sets the maximum bit length (flip-flop bit count) that the
chain can grow to in the partition.
Default: 0 (tool-specific defaults apply, which is probably the
highest bit length of any chain in the partition
Type: Integer
Value: Specify a value that is at least as large as the size of the
current chain.

numScanChains Specifies the number of scan chains to synthesize.

ORDERED {fixedComp [(IN pin)] [(OUT pin)] [(BITS numBits)]}

Specifies an ordered list. You can specify none or several
ordered lists. If you specify an ordered list, you must specify at
least two fixed components for each ordered list.

 fixedComp Specifies the component name.

 (IN pin) Specifies the scan-in pin. If you do not
specify a scan-in pin, the router uses the
pin you specified for the common scan
pins.

 (OUT pin) Specifies the scan-out pin. If you do not
specify a scan-out pin, the router uses the
pin you specified for the common scan
pins.

 BITS numBits Specifies the sequential bit length of any
chain element. This allows application
tools that do not have library access to
determine the sequential bit length
contribution of any chain element to ensure
the MAXBITS constraints are not violated
for chains in a given partition. You can
specify 0 to indicate when elements are
nonsequential.
Default: 1
Type: Integer

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 293 Product Version 5.7

Note: Scan chain reordering commands should synthesize
these components in the same order that you specify them in the
list. Ordered components cannot be shared with other scan
chains unless they are in the same PARTITION. Each
component should only be used once in synthesizing a scan
chain.

PARTITION partitionName

Specifies a partition name. This statement allows reordering
tools to determine inter-chain compatibility for element swapping
(both FLOATING elements and ORDERED elements). It
associates each chain with a partition group, which determines
their compatibility for repartitioning by swapping elements
between them.

Chains with matching PARTITION names constitute a swap-
compatible group. You can change the length of chains included
in the same partition (up to the MAXBITS constraint on the
chain), but you cannot eliminate chains or add new ones; the
number of chains in the partition is always preserved.

If you do not specify the PARTITION keyword, chains are
assumed to be in their own single partition, and reordering can
be performed only within that chain.

Example 4-19 Partition Scanchain

In the following definition, chain chain1_clock1 is specified without a MAXBITS keyword.
The maximum allowed bit length of the chain is assumed to be the sequential length of the
longest chain in any clock1 partition.
SCANCHAINS 77 ;

- chain1_clock1

+ PARTITION clock1

+ START block1/bsr_reg_0 Q

+ FLOATING

 block1/pgm_cgm_en_reg_reg (IN SD) (OUT QZ)

 ...

 block1/start_reset_dd_reg (IN SD) (OUT QZ)

+ STOP block1/start_reset_d_reg SD ;

In the following definition, chain chain2_clock2 is specified with a PARTITION statement
that associates it with clock2, and a maximum bit length of 1000. The third element

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 294 Product Version 5.7

statement in the FLOATING list is a scannable register bank that has a sequential bit length
of 4. The ORDERED list element statements have total bit lengths of 1 each because the
muxes are specified with a maximum bit length of 0.

- chain2_clock2

+ PARTITION clock2

 MAXBITS 1000

+ START block1/current_state_reg_0_QZ

+ FLOATING

 block1/port2_phy_addr_reg_0_ (IN SD) (OUT QZ)

 block1/port2_phy_addr_reg_4_ (IN SD) (OUT QZ)

 block1/port3_intfc (IN SD) (OUT MSB) (BITS 4)

 ...

+ ORDERED

 block1/mux1 (IN A) (OUT X) (BITS 0)

 block1/ff1 (IN SD) (OUT Q)

+ ORDERED

 block1/mux2 (IN A) (OUT X) (BITS 0)

 block1/ff2 (IN SD) (OUT Q) ;

In the following definition, chain chain3_clock2 is also specified with a PARTITION
statement that associates it with clock2. This means it is swap-compatible with
chain2_clock2. The specified maximum bit length for this chain is 1200.

- chain3_clock2

+ PARTITION clock2

 MAXBITS 1200

+ START block1/LV_testpoint_0_Q_reg Q

+ FLOATING

 block1/LV_testpoint_0_Q_reg (IN SE) (OUT Q)

 block1/tm_state_reg_1_ (IN SD) (OUT QZ)

 ...

In the following definition, chain chain4_clock3 is specified with a PARTITION statement
that associates it with clock3. The second element statement in the FLOATING list is a
scannable register bank that has a sequential bit length of 8, and default pins. The ORDERED
list element statements have total bit lengths of 2 each because the mux is specified with a
maximum bit length of 0.

- chain4_clock3

+ PARTITION clock3

+ START block1/prescaler_IO/lfsr_reg1

+ FLOATING

 block1/dp1_timers

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 295 Product Version 5.7

 block1/bus8 (BITS 8)

 ...

+ ORDERED

 block1/ds1/ff1 (IN SD) (OUT Q)

 block1/ds1/mux1 (IN B) (OUT Y) (BITS 0)

 block1/ds1/ff2 (IN SD) (OUT Q)

 ...

START {fixedInComp | PIN} [outPin]

Specifies the start point of the scan chain. You must specify this
point. The starting point can be either a component,
fixedInComp, or an I/O pin, PIN. If you do not specify
outPin, the router uses the pin specified for common scan
pins.

STOP {fixedOutComp | PIN} [inPin]

Specifies the endpoint of the scan chain. You must specify this
point. The stop point can be either a component,
fixedOutComp, or an I/O pin, PIN. If you do not specify
inPin, the router uses the pin specified for common scan pins.

Scan Chain Rules

Note the following when defining scan chains.

■ Each scan-in/scan-out pin pair of adjacent components in the ordered list cannot have
different owning nets.

■ No net can connect a scan-out pin of one component to the scan-in pin of a component
in a different scan chain.

■ For incremental DEF, if you have a COMPONENTS section and a SCANCHAINS section in
the same DEF file, the COMPONENTS section must appear before the SCANCHAINS
section. If the COMPONENTS section and SCANCHAINS section are in different DEF files,
you must read the COMPONENTS section or load the database before reading the
SCANCHAINS section.

Example 4-20 Scan Chain Statements
Nets 100; #Number of nets resulting after scan chain synthesis

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 296 Product Version 5.7

- SCAN-1 (C1 SO + SYNTHESIZED)

 (C4 SI + SYNTHESIZED) + SOURCE TEST ;

- ...

- N1 (C3 SO + SYNTHESIZED)
 (C11 SI + SYNTHESIZED) (AND1 A) ;

- ...

END NETS

SCANCHAINS 2; #Specified before scan chain ordering

- S1

+ COMMONSCANPINS (IN SI) (OUT SO)

+ START SIPAD OUT

+ FLOATING C1 C2 (IN D) (OUT Q) C3 C4 C5...CN

+ ORDERED A1 (OUT Q) A2 (IN D) (OUT Q) ...

AM (N D)

+ ORDERED B1 B2 ... BL

+ STOP SOPAD IN ;

- S2 ... ;

END SCANCHAINS

SCANCHAINS 2 ; #Specified after scan chain ordering

- S1

+ START SIPAD OUT

+ FLOATING C1 (IN SI) (OUT SO)

 C2 (IN D) (OUT Q)

 C3 (IN SI (OUT SO) ... CN (IN SI) (OUT SO)

+ ORDERED A1 (IN SI) (OUT Q)

 A2 (IN D) (OUT Q) ... AM (IN D) (OUT SO)

+ ORDERED B1 (IN SI) (OUT SO)

 B2 (IN SI) (OUT SO) ...

+ STOP SOPAD IN ;

- S2 ... ;

END SCANCHAINS

Slots
[SLOTS numSlots ;

[- LAYER layerName
 {RECT pt pt | POLYGON pt pt pt ... } ...
;] ...

END SLOTS]

Defines the rectangular shapes that form the slotting of the wires in the design. Each slot is
defined as an individual rectangle.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 297 Product Version 5.7

LAYER layerName Specifies the layer on which to create slots.

 numSlots Specifies the number of LAYER statements in the SLOTS
statement, not the number of rectangles.

POLYGON pt pt pt Specifies a sequence of at least three points to generate a
polygon geometry. The polygon edges must be parallel to the x
axis, the y axis, or at a 45-degree angle. Each POLYGON
statement defines a polygon generated by connecting each
successive point, and then the first and last points. The pt
syntax corresponds to a coordinate pair, such as x y. Specify an
asterisk (*) to repeat the same value as the previous x or y value
from the last point.
Type: DEF database units

RECT pt pt Specifies the lower left and upper right corner coordinates of the
slot geometry.

Example 4-21 Slots Statements

The following statement defines slots for layers MET1 and MET2.
SLOTS 2 ;

- LAYER MET1

 RECT (1000 2000) (1500 4000)

 RECT (2000 2000) (2500 4000)

 RECT (3000 2000) (3500 4000) ;

- LAYER MET2

 RECT (1000 2000) (1500 4000)

 RECT (1000 4500) (1500 6500)

 RECT (1000 7000) (1500 9000)

 RECT (1000 9500) (1500 11500) ;

END SLOTS

The following SLOTS statement defines two rectangles and one polygon slot geometries:
SLOTS 1 ;

- LAYER metal1

RECT (100 200) (150 400)

POLYGON (100 100) (200 200) (300 200) (300 100)

RECT (300 200) (350 400) ;

END SLOTS

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 298 Product Version 5.7

Special Nets
[SPECIALNETS numNets ;

[– netName
 [({compName pinName | PIN pinName} [+ SYNTHESIZED])] ...
 [+ VOLTAGE volts]
 [specialWiring] ...
 [+ SOURCE {DIST | NETLIST | TIMING | USER}]
 [+ FIXEDBUMP]
 [+ ORIGINAL netName]
 [+ USE {ANALOG | CLOCK | GROUND | POWER | RESET | SCAN | SIGNAL | TIEOFF}]
 [+ PATTERN {BALANCED | STEINER | TRUNK | WIREDLOGIC}]
 [+ ESTCAP wireCapacitance]
 [+ WEIGHT weight]
 [+ PROPERTY {propName propVal} ...] ...
;] ...

END SPECIALNETS]

Defines netlist connectivity for nets containing special pins. Each specification in the
SPECIALNETS statement describes a single net, identified by netName and the special pins
on the net. These pins are identified by their pin names and corresponding components.

Input parameters for a net can appear in the NETS section or the SPECIALNETS section. In
case of conflicting values for an argument, the DEF reader uses the last value encountered
for the argument. NETS and SPECIALNETS statements can appear more than once in a DEF
file. If a particular net has mixed wiring or pins, specify the special wiring and pins first.

You can also specify the netlist in the COMPONENTS statement. If the netlist is specified in both
NETS and COMPONENTS statements, and if the specifications are not consistent, an error
message appears. On output, the writer outputs the netlist in either format, depending on the
command arguments of the output command.

compNamePattern pinName

Specifies the name of a special pin on the net and its
corresponding component. You can use a compNamePattern
to specify a set of component names. During evaluation of the
pattern match, components that match the pattern but do not
have a pin named pinName are ignored. The pattern match
character is * (asterisk). For example, a component name of
abc/def would be matched by a*, abc/d*, or abc/def.

ESTCAP wireCapacitance

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 299 Product Version 5.7

Specifies the estimated wire capacitance for the net. ESTCAP
can be loaded with simulation data to generate net constraints for
timing-driven layout.

FIXEDBUMP Indicates that the bump net cannot be reassigned to a different
pin.

It is legal to have a pin without geometry to indicate a logical
connection and to have a net that connects that pin to two other
instance pins that have geometry. Area I/Os have a logical pin
that is connected to a bump and an input driver cell. The bump
and driver cell have pin geometries (and, therefore, should be
routed and extracted), but the logical pin is the external pin name
without geometry (typically the Verilog pin name for the chip).

Bump nets also can be specified in the NETS statement. If a net
name appears in both the NETS and SPECIALNETS statements,
the FIXEDBUMP keyword also should appear in both statements.
However, the value only exists once within a given application’s
database for the net name.

Because DEF is often used incrementally, the last value read in
is used. Therefore, in a typical DEF file, if the same net appears
in both statements, the FIXEDBUMP keyword (or lack of it) in the
NETS statement is the value that is used because the NETS
statement is defined after the SPECIALNETS statement.

Example 4-22 Fixed Bump

The following example describes a logical pin that is connected to a bump and an input driver
cell. The I/O driver cell and bump cells are specified in the COMPONENTS statement. Bump
cells are usually placed with + COVER placement status so they cannot be moved manually
by mistake.
COMPONENTS 200

- driver1 drivercell + PLACED (100 100) N ;

...

- bumpa1 bumpcell + COVER (100 100) N ;

- bumpa2 bumpcell + COVER (200 100) N ;

The pin is assigned in the PIN statement.
PINS 100

- n1 + NET n1 + SPECIAL + DIRECTION INPUT ;

- n2 + NET n2 + SPECIAL + DIRECTION INPUT ;

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 300 Product Version 5.7

In the SPECIALNETS statement, the net n1 is assigned to bumpa1 and cannot be reassigned.
Note that another net n2 is assigned to bumpa2; however, I/O optimization commands are
allowed to reassign bumpa2 to a different net.
SPECIALNETS 100

- n1 (driver1 in) (bumpa1 bumpin) + FIXEDBUMP ;

- n2 (driver2 in) (bumpa2 bumpin) ;

netName Specifies the name of the net.

ORIGINAL netName Specifies the original net partitioned to create multiple nets,
including the current net.

PATTERN {BALANCED | STEINER | TRUNK | WIREDLOGIC}

Specifies the routing pattern used for the net.
Default: STEINER
Value: Specify one of the following:

PIN pinName Specifies the name of an I/O pin on a net or a subnet.

PROPERTY propName propVal

Specifies a numerical or string value for a net property defined in
the PROPERTYDEFINITIONS statement. The propName you
specify must match the propName listed in the
PROPERTYDEFINITIONS statement.

specialWiring Specifies the special wiring for the net. For syntax information,
see “Special Wiring Statement” on page 302.

SOURCE {DIST | NETLIST | TIMING | USER}

 BALANCED Used to minimize skews in timing delays
for clock nets.

 STEINER Used to minimize net length.

 TRUNK Used to minimize delay for global nets.

 WIREDLOGIC Used in ECL designs to connect output
and mustjoin pins before routing to the
remaining pins.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 301 Product Version 5.7

Specifies how the net is created. The value of this field is
preserved when input to the DEF reader.

SYNTHESIZED Used by some tools to indicate that the pin is part of a
synthesized scan chain.

USE {ANALOG | CLOCK | GROUND | POWER | RESET | SCAN | SIGNAL | TIEOFF}

Specifies how the net is used.
Value: Specify one of the following:

VOLTAGE volts Specifies the voltage for the net, as an integer in units of .001
volts. For example, VOLTAGE 1500 in DEF is equal to 1.5 V.

 DIST Net is the result of adding physical components
(that is, components that only connect to power
or ground nets), such as filler cells, well-taps, tie-
high and tie-low cells, and decoupling caps.

 NETLIST Net is defined in the original netlist. This is the
default value, and is not normally written out in
the DEF file.

 TEST Net is part of a scanchain.

 TIMING Net represents a logical rather than physical
change to netlist, and is used typically as a buffer
for a clock-tree, or to improve timing on long nets.

 USER Net is user defined.

 ANALOG Used as an analog signal net.

 CLOCK Used as a clock net.

 GROUND Used as a ground net.

 POWER Used as a power net.

 RESET Used as a reset net.

 SCAN Used as a scan net.

 SIGNAL Used as a digital signal net.

 TIEOFF Used as a tie-high or tie-low net.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 302 Product Version 5.7

WEIGHT weight Specifies the weight of the net. Automatic layout tools attempt to
shorten the lengths of nets with high weights. Do not specify a
net weight larger than 10, or assign weights to more than 3
percent of the nets in a design.

Note: The net constraints method of controlling net length is
preferred over using net weights.

Special Wiring Statement

 [+ POLYGON layerName pt pt pt ...
| + RECT layerName pt pt
| {+ COVER | + FIXED | + ROUTED | + SHIELD shieldNetName}
 layerName routeWidth
 [+ SHAPE
 {RING | PADRING | BLOCKRING | STRIPE | FOLLOWPIN
 | IOWIRE | COREWIRE | BLOCKWIRE | BLOCKAGEWIRE | FILLWIRE
 | FILLWIREOPC | DRCFILL}]
 [+ STYLE styleNum]
 routingPoints
 [NEW layerName routeWidth
 [+ SHAPE
 {RING | PADRING | BLOCKRING | STRIPE | FOLLOWPIN
 | IOWIRE | COREWIRE | BLOCKWIRE | BLOCKAGEWIRE | FILLWIRE
 | FILLWIREOPC | DRCFILL}]
 [+ STYLE styleNum]
 routingPoints
] ...

] ...

Defines the wiring for both routed and shielded nets.

COVER Specifies that the wiring cannot be moved by either automatic
layout or interactive commands. If no wiring is specified for a
particular net, the net is unrouted. If you specify COVER, you must
also specify layerName width.

FIXED Specifies that the wiring cannot be moved by automatic layout,
but can be changed by interactive commands. If no wiring is
specified for a particular net, the net is unrouted. If you specify
FIXED, you must also specify layerName width.

layerName routeWidth

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 303 Product Version 5.7

Specifies the width for wires on layerName. Specified layers
must be routable; reference to a cut layer generates an error. For
more information, see “Defining Routing Points” on page 307.

Vias do not change the route width. When a via is used in special
wiring, the previously established routeWidth is used for the
next wire in the new layer. To change the routeWidth, a new
path must be specified using NEW layerName routeWidth.

Many applications require routeWidth to be an even multiple
of the manufacturing grid in order to be fabricated, and to keep
the center line on the manufacturing grid.
Type: Integer, specified in database units

NEW layerName routewidth

Indicates a new wire segment (that is, that there is no wire
segment between the last specified coordinate and the next
coordinate) on layerName, and specifies the width for the wire.
Noncontinuous paths can be defined in this manner. For more
information, see “Defining Routing Points” on page 307.
Type: Integer, specified in database units

POLYGON layerName pt pt pt

Specifies a sequence of at least three points to generate a
polygon geometry on layerName. The polygon edges must be
parallel to the x axis, the y axis, or at a 45-degree angle. Each
polygon statement defines a polygon generated by connecting
each successive point, then connecting the first and last points.
The pt syntax corresponds to a coordinate pair, such as x y.
Specify an asterisk (*) to repeat the same value as the previous
x or y value from the last point.
Type: (x y) Integer, specified in database units

RECT layerName pt pt

Specifies a rectangle on layer layerName. The two points
define opposite corners of the rectangle. The pt syntax
corresponds to a coordinate pair, such as x y. You cannot define
the same x and y values for both points (that is, a zero-area
rectangle is not legal).
Type: (x y) Integer, specified in database units

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 304 Product Version 5.7

ROUTED Specifies that the wiring can be moved by automatic layout tools.
If no wiring is specified for a particular net, the net is unrouted. If
you specify ROUTED, you must also specify layerName
width.

routingPoints Defines the center line coordinates of the route on layerName.
For information on using routing points, see “Defining Routing
Points” on page 307. For an example of special wiring with
routing points, see Example 4-24 on page 306.

The routingPoints syntax is defined as follows:

(x y [extValue])
 {(x y [extValue])
 | viaName [orient]
 [DO numX BY numY STEP stepX stepY]
 } ...

DO numx BY numY STEP stepX stepY

 Creates an array of power vias of the via
specified with viaName.

numX and numY specify the number of vias
to create, in the x and y directions. Do not
specify 0 as a value.
Type: Integer

stepX and stepY specify the step distance
between vias, in the x and y directions, in
DEF distance database units.
Type: Integer

For an example of a via array, see
Example 4-23 on page 305.

 extValue Specifies the amount by which the wire is
extended past the endpoint of the segment.
Type: Integer, specified in database units
Default: 0

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 305 Product Version 5.7

Example 4-23 Via Arrays

The following example specifies arrays of via VIAGEN21_2 on metal1 and metal2.
SPECIALNETS 2 ;

 -vdd (* vdd)

 + ROUTED metal1 150 (100 100) (200 *)

 NEW metal1 0 (200 100) VIAGEN21_2 DO 10 BY 20 STEP 10000 20000

 NEW metal2 0 (-900 -30) VIAGEN21_2 DO 1000 BY 1 STEP 5000 0

 ...

orient Specifies the orientation of the viaName
that precedes it, using the standard DEF
orientation values of N, S, E, W, FN, FS, FE,
and FW (See “Specifying Orientation” on
page 250).

If you do not specify orient, N (North) is
the default non-rotated value used. All other
orientation values refer to the flipping or
rotation around the via origin (the 0,0 point
in the via shapes). The via origin is still
placed at the (x y) value given in the
routing statement just before the viaName.

Note: Some tools do not support orientation
of vias inside their internal data structures;
therefore, they are likely to translate vias with
an orientation into a different but equivalent
via that does not require an orientation.

 viaName Specifies a via to place at the last point. If
you specify a via, layerName for the next
routing coordinates (if any) is implicitly
changed to the other routing layer for the via.
For example, if the current layer is metal1, a
via12 changes the layer to metal2 for the
next routing coordinates.

 (x y) Specifies the route coordinates. You cannot
specify a route with zero length.

For more information, see “Specifying
Coordinates” on page 308.
Type: Integer, specified in database units

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 306 Product Version 5.7

As with any other VIA statement, the DO statement does not change the previous coordinate.
Therefore, the following statement creates a metal1 wire of width 50 from (200 100) to (200
200) along with the via array that starts at (200 100).

NEW metal1 50 (200 100) VIAGEN21_2 DO 10 BY 20 STEP 1000 2000 (200 200)

Example 4-24 Special Wiring With Routing Points
SPECIALNETS 1 ;

- vdd (*vdd)

+ USE POWER

+ POLYGON metal1 (0 0) (0 100) (100 100) (200 200) (200 0)

+ POLYGON metal2 (100 100) (* 200) (200 *) (300 300) (300 100)

+ RECT metal1 (0 0) (100 200)

+ ROUTED metal1 100 (0 0 50) (100 0 50) via12 (100 100 50)

+ ROUTED metal2 100 + SHAPE RING + STYLE 1 (0 0) (100 100) (200 100)

;

END SPECIALNETS

SHAPE Specifies a wire with special connection requirements because
of its shape. This applies to vias as well as wires.
Value: Specify one of the following:

 RING Used as ring, target for connection

 PADRING Connects padrings

 BLOCKRING Connects rings around the blocks

 STRIPE Used as stripe

 FOLLOWPIN Connects standard cells to power structures.

 IOWIRE Connects I/O to target

 COREWIRE Connects endpoints of followpin to target

 BLOCKWIRE Connects block pin to target

BLOCKAGEWIRE Connects blockages

 FILLWIRE Represents a fill shape that does not require
OPC. It is normally connected to a power or
ground net. Floating fill shapes should be in
the FILL section.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 307 Product Version 5.7

Figure 4-4 Fill Shapes

SHIELD shieldNetName

Specifies the name of a regular net to be shielded by the special
net being defined.

After describing shielded routing for a net, use + ROUTED to
return to the routing of the special net being defined.

STYLE styleNum Specifies a previously defined style from the STYLES section in
this DEF file. The style is used with the endpoints of each routing
segment to define the routing shape, and applies to all routing
segments defined in one routingPoints statement.

Defining Routing Points

Routing points define the center line coordinates of a route. If a route has a 90-degree edge,
it has a width of routeWidth, and extends from one coordinate (x y) to the next coordinate.

 FILLWIREOPC Represents a fill shape that requires OPC. It
is normally connected to a power or ground
net. Floating fill shapes should be in the
FILL section.

 DRCFILL Used as a fill shape to correct DRC errors,
such as SPACING, MINENCLOSEDAREA, or
MINSTEP violations on wires and pins of the
same net (see Figure 4-4 on page 307.)

Examples of fill inside (a) a MINENCLOSEDAREA violation, (b) a SPACING violation, and (c) a MINSTEP
violation.

(a) (b) (c)

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 308 Product Version 5.7

If either endpoint has an optional extension value (extValue), the wire is extended by that
amount past the endpoint. If a coordinate with an extension value is specified after a via, the
wire extension is added to the beginning of the next wire segment after the via (zero-length
wires are not allowed). Some applications convert the extension value to an equivalent route
that has the x and y points already extended, with no extension value. If no extension value
is defined, the wire extension is 0, and the wire is truncated at the endpoint.

The routeWidth must be an even value to ensure that the corners of the route fall on a
legal database coordinate without round off. Because most vendors specify a manufacturing
grid, routeWidth must be an even multiple of the manufacturing grid in order to be
fabricated.

If the wire segment is a 45-degree edge, and no STYLE is specified, the default octagon style
is used for the endpoints. The routeWidth must be an even multiple of the manufacturing
grid in order to keep all of the coordinates of the resulting outer wire boundary on the
manufacturing grid.

If a STYLE is defined for 90-degree or 45-degree routes, the routing shape is defined by the
center line coordinates and the style. No corrections, such as snapping to manufacturing grid,
should be applied, and any extension values are ignored. The DEF file should contain values
that are already snapped, if appropriate. The routeWidth indicates the desired user width,
and represents the minimum allowed width of the wire that results from the style when the 45-
degree edges are snapped to the manufacturing grid. See Figure 4-6 on page 313 through
Figure 4-15 on page 322 for examples.

Specifying Coordinates

To maximize compactness of the design files, the coordinates allow for the asterisk (*)
convention. For example, (x *) indicates that the y coordinate last specified in the wiring
specification is used; (* y) indicates that the x coordinate last specified is used.

Each coordinate sequence defines a connected orthogonal or 45-degree path through the
points. The first coordinate in a sequence must not have an * element.

All subsequent points in a connected sequence must create orthogonal or 45-degree paths.
For example, the following sequence is a valid path:

(100 200) (200 200) (200 500)

The following sequence is an equivalent path:
(100 200) (200 *) (* 500)

The following sequence is not valid because it is not an orthogonal or 45-degree segment.
(100 200) (300 500)

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 309 Product Version 5.7

Special Pins and Wiring

Pins that appear in the SPECIALNETS statement are special pins. Regular routers do not
route to these pins. The special router routes special wiring to special pins. If you use a
component-based format to input the connectivity for the design, special pins to be routed by
the special router also must be specified in the SPECIALNETS statement, because pins
included in the COMPONENTS statement are considered regular.

The following example inputs connectivity in a component-based format, specifies VDD and
VSS pins as special pins, and marks VDD and VSS nets for special routing:

COMPONENTS 3 ;

 C1 AND N1 N2 N3 ;

 C2 AND N4 N5 N6 ;

END COMPONENTS

SPECIALNETS 2 ;

 VDD (* VDD) + WIDTH M1 5 ;

 VSS (* VSS) ;

END SPECIALNETS

Shielded Routing

If, in a non-routed design, a net has + SHIELDNET attributes, the router adds shielded routing
to this net. + NOSHIELD indicates the last wide segment of the net is not shielded. If the last
segment is not shielded and is tapered, use the + TAPER keyword instead of + NOSHIELD.
For example:

+ SHIELDNET VSS # both sides will be shielded with VSS

+ SHIELDNET VDD # one side will be shielded with VDD and

+ SHIELDNET VSS # one side will be shielded with VSS

After you add shielded routing to a special net, it has the following syntax:
+ SHIELD regularNetName

 MET2 regularWidth (x y)

A shield net specified for a regular net should be defined earlier in the DEF file in the
SPECIALNETS section. After describing shielded routing for a net, use + ROUTED to return
to the routing of the current special net.

For example:
SPECIALNETS 2 ;

- VSS

 + ROUTED MET2 200

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 310 Product Version 5.7

...

+ SHIELD my_net MET2 100 (14100 342440) (13920 *)

 M2_TURN (* 263200) M1M2 (2400 *) ;

- VDD

 + ROUTED MET2 200

...

+ SHIELD my_net MET2 100 (14100 340440) (8160 *)

 M2_TURN (* 301600) M1M2 (2400 *);

END SPECIALNETS

Styles
[STYLES numStyles ;

{- STYLE styleNum pt pt ... ;} ...

END STYLES]

Defines a convex polygon that is used at each of the endpoints of a wire to precisely define
the wire’s outer boundary. A style polygon consists of two to eight points. Informally, half of
the style polygon defines the first endpoint wire boundary, and the other half of the style
polygon defines the second endpoint wire boundary. Octagons and squares are the most
common styles.

numStyles Specifies the number of styles specified in the STYLES section.

STYLE styleNum pt pt

Defines a new style. styleNum is an integer that is greater than
or equal to 0 (zero), and is used to reference the style later in the
DEF file. When defining multiple styles, the first styleNum must
be 0 (zero), and any following styleNum should be numbered
consecutively so that a table lookup can be used to find them
easily.

Style numbers are keys used locally in the DEF file to reference
a particular style, but not actual numbers preserved in the
application. Each style number must be unique. Style numbers
can only be used inside the same DEF file, and are not
preserved for use in other DEF files. Because applications are
not required to preserve the style number itself, an application
that writes out an equivalent DEF file might use different style
numbers.
Type: Integer

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 311 Product Version 5.7

The pt syntax specifies a sequence of at least two points to
generate a polygon geometry. The syntax corresponds to a
coordinate pair, such as x y. Specify an asterisk (*) to repeat the
same value as the previous x (or y) value from the last point. The
polygon must be convex. The polygon edges must be parallel to
the x axis, the y axis, or at a 45-degree angle, and must enclose
the point (0 0).
Type: Integer, specified in DEF database units

Example 4-25 Styles Statement

The following STYLES statement defines the basic octagon shown in Figure 4-5 on page 311.
STYLES 1 ;

- STYLE 1 (30 10) (10 30) (-10 30) (-30 10) (-30 -10)
 (-10 -30) (10 -30) (30 -10) ;

END STYLES

Figure 4-5

Defining Styles

A style is defined as a polygon with points P1 through Pn. The center line is given as (X0, Y0)
to (X1, Y1). Two sets of points are built (P0,1 through P0,n and P1,1 through P1,n) as follows:

P0,i = Pi + (X0, Y0) for 1 <= i <= n

P1,i = Pi + (X1, Y1) for 1 <= i <= n

The resulting wire segment shape is a counterclockwise, eight-sided polygon (S1 through S8)
that can be computed in the following way:

-30, -10

30, 10

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 312 Product Version 5.7

S1 = lowest point in (left-most points in (P0,1 through P0,n P1,1 through P1,n))

S2 = left-most point in (lowest points in (P0,1 through P0,n P1,1 through P1,n))

S3 = right-most point in (lowest points in (P0,1 through P0,n P1,1 through P1,n))

S4 = lowest point in (right-most points in (P0,1 through P0,n P1,1 through P1,n))

S5 = highest point in (right-most points in (P0,1 through P0,n P1,1 through P1,n))

S6 = right-most point in (highest points in (P0,1 through P0,n P1,1 through P1,n))

S7 = left-most point in (highest points in (P0,1 through P0,n P1,1 through P1,n))

S8 = highest point in (left-most points in (P0,1 through P0,n P1,1 through P1,n))

When consecutive points are collinear, only one of them is relevant, and the resulting shape
has less than eight sides, as shown in Figure 4-6 on page 313. A more advanced algorithm
can order the points and only have to check a subset of the points, depending on which
endpoint was used, and whether the wire was horizontal, vertical, a 45-degree route, or a
135-degree route.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 313 Product Version 5.7

Figure 4-6

Examples of X Routing with Styles

The following examples illustrate the use of styles for X routing. In two cases, there are
examples of SPECIALNETS syntax and NETS syntax that result in the same geometry.

Example 1

The center line is dashed. The wire
shape is deduced from the center
line and the style.

S3 is redundant and is
ignored.

S6 is redundant and is ignored.

P1,3P4

P6

P5

P1

P2

P3
P1,4

P1,2

P1,1

P1,6

P1,5

P0,3P0,4

P0,2

P0,1

P0,5

P0,6

P0,1

P0,2

P0,3P0,4

P0,5

P0,6

P1,3

P1,2

P1,1

P1,6

P1,5

P1,4

X0,Y0X1,Y1

X0,Y0

X1,Y1X,Y

S1

S2

S3

S4

S5

S6

S7

S8

S3S2

S4

S5

S6
S7

S8

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 314 Product Version 5.7

The following statements define an X wire with octagonal ends, as shown in Figure 4-7 on
page 314.
STYLES 1 ;

- STYLE 0 (30 10) (10 30) (-10 30) (-30 10) (-30 -10) (-10 -30)

 (10 -30) (30 -10) ; #An octagon.

END STYLES

SPECIALNETS 1 ;

- VSS ...

+ ROUTED metal3 50 + STYLE 0 (0 0) (150 150) (300 0) (400 0) ;

 #The style applies to all the segments until a NEW statement or ";"

 #at the end of the net.

END SPECIALNETS

NETS 1 ;

- mySignal ...

+ ROUTED metal3 STYLE 0 (0 0) (150 150) (300 0) (400 0) ;

#The style applies to all the segments in the ROUTED statement

END NETS

Figure 4-7

Example 2

(150, 150)

(0, 0) (300, 0) (400, 0)

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 315 Product Version 5.7

The following statements define the same X wire with mixed octagonal and manhattan styles,
as shown in Figure 4-8 on page 315.
STYLES 2 ;

- STYLE 0 (30 10) (10 30) (-10 30) (-30 10) (-30 -10) (-10 -30)

 (10 -30) (30 -10) ; #An octagon

- STYLE 1 (25 25) (-25 25) (-25 -25) (25 -25) ; #A square

END STYLES

SPECIALNETS 1 ;

- POWER (* power)

+ ROUTED metal3 50 + STYLE 0 (0 0) (150 150)

NEW metal3 50 + STYLE 1 (150 150) (300 0) (400 0) ;

END SPECIALNETS

NETS 1 ;

- mySignal ...

+ ROUTED metal3 STYLE 0 (0 0) (150 150)

NEW metal3 STYLE 1 (150 150) (300 0) (400 0) ;

END NETS

Figure 4-8

Note: The square ends might be necessary for connecting to manhattan wires or pins, or in
cases where vias have a manhattan shape even on X routing layers. In practice, the middle

(150, 150)

(0, 0) (300, 0) (400, 0)

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 316 Product Version 5.7

wire probably would not use a simple square, such as style2; it would use a combination of
an octagon and a square for the middle segment style, in order to smooth out the resulting
outline at the (150,150) point.

Example 3

The following statements define a manhattan wire with a width of 70, as shown in Figure 4-9
on page 316.

This example emphasizes that the style overrides the width of 100 units. In this case, the style
polygon is a square 70 x 70 units wide, and the vias (via12) are 100 x 100 units wide. The
application that creates the styles is responsible for meeting any particular width
requirements. Normally, the resulting style-computed width is equal to or larger than the wire
width given in the routing statement.
STYLES 1 ;

- STYLE 0 (35 35) (-35 35) (-35 -35) (35 -35) ;

END STYLES

SPECIALNETS 1 ;

- POWER ...

+ ROUTED metal1 100 + STYLE 0 (0 0) via12 (600 *) via12 ;

END SPECIALNETS

Figure 4-9

Example 4

The following statements define a similar wire that is offset from the center, as shown in
Figure 4-10 on page 317. Similar to Example 3, the center line in both runs through the
middle of the X in the vias.
STYLES 1 ;

- STYLE 0 (35 20) (-35 20) (-35 -50) (35 -50) ; #70 x 70 offset square

END STYLES

SPECIALNETS 1 ;

- POWER ...

+ ROUTED metal1 100 + STYLE 0 (0 0) via12 (600 *) via12 ;

END SPECIALNETS

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 317 Product Version 5.7

Figure 4-10

Example 5

The following statements define a wire that uses a “2-point line” style, as shown in Figure 4-
11 on page 317.

Note: This example shows the simplest style possible, which is a 2-point line. Generally, it
would be easier to use a normal route without a style.
STYLES 1 ;

- STYLE 0 (0 -10) (0 10) ; #a vertical line

END STYLES

SPECIALNETS 1 ;

- POWER ...

+ ROUTED metal1 20 + STYLE 0 (0 0) (100 0) ;

END SPECIALNETS

Figure 4-11

45-Degree Routing Without Styles

Because many applications only store the wire endpoints and the width of the wire, DEF
includes a specific style default definition. If a style is not explicitly defined, the default style
is implicitly included with any 45-degree routing segment. It is computed directly from the wire
width and endpoints, at the expense of some loss in flexibility.

The default style is an octagon (shown in Figure 4-12 on page 318) whose coordinates are
computed from the wire width and the manufacturing grid.

(0,0) (100, 0)

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 318 Product Version 5.7

Figure 4-12

The octagon is always symmetric about the x and y axis. The coordinates are computed to
be exactly the same wire width as equivalent horizontal or vertical wire widths, and as close
as possible for the diagonal widths (they are always slightly bigger because of rounding of
irrational values), while forcing the coordinates to remain on the manufacturing grid. The wire
width must be an even multiple of the manufacturing grid in order to keep A and B on the
manufacturing grid.

Assume the following rules:

■ W = wire width

■ M = manufacturing grid (mgrid). This is derived from the LEF MANUFACTURINGGRID
statement.

■ D = diagonal width

■ ceiling = round up the result to the nearest integer

The octagon coordinates are computed as:

A = W/2

B = [ceiling(W/(sqrt(2) * M)) * M] - A

The derivation of B can be understood as:

D = sqrt((A + B)2 + (A + B)2) or D = sqrt(2) * (A + B)

Wire width

(-B, A)

(-A, -B) (A, -B)

(-A, B)

(-B, -A) (B, -A)

(A, B)

(B, A)

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 319 Product Version 5.7

The diagonal width (D) must be greater than or equal to the wire width (W), and B must be on
the manufacturing grid, so D must be equal to W, which results in:

D/sqrt(2) = A + B

B = D/sqrt(2) - A or W/sqrt(2) - A

To force B to be on the manufacturing grid, and keep the diagonal width greater than or equal
to the wire width:

B on mgrid = ceiling(B / M) * M

Which results in the computation:

B = [ceiling(W/(sqrt(2) * M)) * M] - A

The following table lists examples coordinate computations:

Table 4-1

The default style only applies to 45-degree route segments; it does not apply to 90-degree
route segments.

Example 1

The following two routes produce identical routing shapes, as shown in Figure 4-13 on
page 320.
SPECIALNETS 1 ;

- POWER (* power)

W =
Width
(µm)

M = mgrid
(µm) D = W/(sqrt(2)*M) ceiling (D) A (µm) B (µm)

Diagonal
width
(µm)

1.0 0.005 141.42 142 0.5 0.21 1.0041

0.5 0.005 70.71 71 0.25 0.105 0.5020

0.15 0.005 21.21 22 0.075 0.035 0.1556

0.155* 0.005 21.92 22 0.0775* 0.0325* 0.1556

* A width of 0.155 is an odd multiple of the manufacturing grid and is not allowed because it
would create coordinates for A and B that are off the manufacturing grid. It is shown for
completeness to illustrate how the result is off grid.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 320 Product Version 5.7

+ ROUTED metal3 80 (0 0) (100 0) (200 100) (300 100) ;

END SPECIALNETS

NETS 1 ;

- mySignal ... #mySignal uses the default routing rule width of 80

+ ROUTED metal3 (0 0 0) (100 0 0) (200 100 0) (300 100 0) ;

#The wire extension was set to 0 for every point. The wire extension

#is ignored for 45-degree route segments; the default octagon

#overrides it.

END NETS

Figure 4-13

Example 2

The following regular route definition, using the traditional default wire extension of 1/2 * width
for the first and last 90-degree endpoints, produces the route shown in Figure 4-14 on
page 321.
SPECIALNETS 1;

- POWER (* power) #The half-width extensions are given for the first and last

+ ROUTED metal3 80 (0 0 40) (100 0) (200 100) (300 100 40) ;

 #The default extension is 0 for SPECIALNETS, so it is not given for

 #two middle points.

END SPECIALNETS

(200, 100)

(0, 0)

(300, 100)

(100, 0)

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 321 Product Version 5.7

NETS 1 ;

- mySignal ... #mySignal uses the default routing rule with width of 80

+ ROUTED metal3 (0 0) (100 0 0) (200 100 0) (300 100) ;

 #The default extension is half the width for NETS, so it is not

 #included for the first and last end-points.

END NETS

Figure 4-14

Example 3

The following definition, using the traditional default wire extension of 1/2 * width for all of the
points, produces the route in Figure 4-15 on page 322.
SPECIALNETS 1 ;

- POWER (* power) #The half-width extensions are given explicitly

+ ROUTED metal3 80 (0 0 40) (100 40) (200 100 40) (300 100 40) ;

END SPECIALNETS

NETS 1 ;

- mySignal ... #mySignal uses the default routing rule width of 80

+ ROUTED metal3 (0 0) (100 0) (200 100) (300 100) ;

 #All points use the implicit default 1/2 * width wire extensions.

(200, 100)

(0, 0)

(300, 100)

(100, 0)

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 322 Product Version 5.7

END NETS

Figure 4-15

Technology
[TECHNOLOGY technologyName ;]

Specifies a technology name for the design in the database. In case of a conflict, the previous
name remains in effect.

Tracks
[TRACKS

[{X | Y} start DO numtracks STEP space
 [LAYER layerName ...]
;] ...]

Defines the routing grid for a standard cell-based design. Typically, the routing grid is
generated when the floorplan is initialized. The first track is located at an offset from the
placement grid set by the OFFSET value for the layer in the LEF file. The track spacing is the
PITCH value for the layer defined in LEF.

(200, 100)

(0, 0)

(300, 100)

(100, 0)

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 323 Product Version 5.7

DO numTracks Specifies the number of tracks to create for the grid. You cannot
specify 0 numtracks.

LAYER layerName Specifies the routing layer used for the tracks. You can specify
more than one layer.

STEP space Specifies the spacing between the tracks.

{X | Y} start Specifies the location and direction of the first track defined. X
indicates vertical lines; Y indicates horizontal lines. start is the
X or Y coordinate of the first line. For example, X 3000 creates
a set of vertical lines, with the first line going through (3000 0).

Units
[UNITS DISTANCE MICRONS dbuPerMicron ;]

Specifies the database units per micron (dbuPerMicron) to convert DEF distance units into
microns.

LEF supports values of 100, 200, 1000, 2000, 10,000, and 20,000 for the LEF dbuPerMicron.

The following table shows the valid pairings of the LEF dbuPerMicron and the corresponding
legal DEF dbuPerMicron values. The LEF dbuPerMicron must be greater than or equal to the
DEF dbuPerMicron, otherwise you can get round-off errors.

LEF dbuPerMicron Legal DEF dbuPerMicron

100 100

200 100, 200

1000 100, 200, 1000

2000 100, 200, 1000, 2000

10,000 100, 200, 1000, 2000, 10,000

20,000 100, 200, 1000, 2000, 10,000, 20,000

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 324 Product Version 5.7

Using DEF Units

The following table shows examples of how DEF units are used:

The DEF reader assumes divisor factors such that DEF data is given in the database units
shown below.

Version
[VERSION versionNumber ;]

Specifies which version of the DEF syntax is being used.

Note: The VERSION statement is not required in a DEF file; however, you should specify it,
because it prevents syntax errors caused by the inadvertent use of new versions of DEF with
older tools that do not support the new version syntax.

Units DEF Units DEF Value Example Real Value

Time .001 nanosecond 1500 1.5 nanoseconds

Capacitance .000001 picofarad 1,500,000 1.5 picofarads

Resistance .ooo1 ohm 15,000 1.5 ohms

Power .0001 milliwatt 15,000 1.5 milliwatts

Current .0001 milliamp 15,000 1.5 milliamps

Voltage .001 volt 1500 1.5 volts

Unit Database Precision

1 nanosecond = 1000 DBUs

1 picofarad = 1,000,000 DBUs

1 ohm = 10,000 DBUs

1 milliwatt = 10,000 DBUs

1 milliampere = 10,000 DBUs

1 volt = 1000 DBUs

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 325 Product Version 5.7

Vias
[VIAS numVias ;

[– viaName
 [+ VIARULE viaRuleName
 + CUTSIZE xSize ySize
 + LAYERS botmetalLayer cutLayer topMetalLayer
 + CUTSPACING xCutSpacing yCutSpacing
 + ENCLOSURE xBotEnc yBotEnc xTopEnc yTopEnc
 [+ ROWCOL numCutRows NumCutCols]
 [+ ORIGIN xOffset yOffset]
 [+ OFFSET xBotOffset yBotOffset xTopOffset yTopOffset]
 [+ PATTERN cutPattern]]
 | [+ RECT layerName pt pt | + POLYGON layerName pt pt pt] ...]
;] ...

END VIAS]

Lists the names and geometry definitions of all vias in the design. Two types of vias can be
listed: fixed vias and generated vias. All vias consist of shapes on three layers: a cut layer and
two routing (or masterslice) layers that connect through that cut layer.

A fixed via is defined using rectangles or polygons, and does not use a VIARULE. The fixed
via name must mean the same via in all associated LEF and DEF files.

A generated via is defined using VIARULE parameters to indicate that it was derived from a
VIARULE GENERATE statement. For a generated via, the via name is only used locally inside
this DEF file. The geometry and parameters are maintained, but the name can be freely
changed by applications that use this via when writing out LEF and DEF files to avoid possible
via name collisions with other DEF files.

CUTSIZE xSize ySize Specifies the required width (xSize) and height (ySize) of the
cut layer rectangles.
Type: Integer, specified in DEF database units

CUTSPACING xCutSpacing yCutSpacing

Specifies the required x and y spacing between cuts. The
spacing is measured from one cut edge to the next cut edge.
Type: Integer, specified in DEF database units

ENCLOSURE xBotEnc yBotEnc xTopEnc yTopEnc

Specifies the required x and y enclosure values for the bottom
and top metal layers. The enclosure measures the distance from
the cut array edge to the metal edge that encloses the cut array

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 326 Product Version 5.7

(see Figure 4-16 on page 329).
Type: Integer, specified in DEF database units

LAYERS botMetalLayer cutLayer TopMetalLayer

Specifies the required names of the bottom routing layer, cut
layer, and top routing layer. These layer names must be
previously defined in layer definitions, and must match the layer
names defined in the specified LEF viaRuleName.

numVias Specifies the number of vias listed in the VIA statement.

OFFSET xBotOffset yBotOffset xTopOffset yTopOffset

Specifies the x and y offset for the bottom and top metal layers.
These values allow each metal layer to be offset independently.

 By default, the 0,0 origin of the via is the center of the cut array,
and the enclosing metal rectangles. After the non-shifted via is
computed, the metal layer rectangles are shifted by adding the
appropriate values—the x/y BotOffset values to the metal
layer below the cut layer, and the x/y TopOffset values to the
metal layer above the cut layer.

These offset values are in addition to any offset caused by the
ORIGIN values. For an example and illustration of this syntax,
see Example 4-26 on page 329.
Default: 0, for all values
Type: Integer, in DEF database units

ORIGIN xOffset yOffset

Specifies the x and y offset for all of the via shapes. By default,
the 0,0 origin of the via is the center of the cut array, and the
enclosing metal rectangles. After the non-shifted via is
computed, all cut and metal rectangles are shifted by adding
these values. For an example and illustration of this syntax, see
Example 4-26 on page 329.
Default: 0, for both values
Type: Integer, in DEF database units

PATTERN cutPattern Specifies the cut pattern encoded as an ASCII string. This
parameter is only required when some of the cuts are missing

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 327 Product Version 5.7

from the array of cuts, and defaults to “all cuts are present,” if not
specified.

For information on and examples of via cut patterns, see
“Creating Via Cut Patterns” on page 330.

The cutPattern syntax is defined as follows:

numRows_rowDefinition
 [_numRows_rowDefinition] ...

The rowDefinition syntax is defined as follows:

{[RrepeatNumber]hexDigitCutPattern} ...

POLYGON layerName pt pt pt

Defines the via geometry for the specified layer. You must specify
at least three points to generate the polygon, and the edges must
be parallel to the x axis, the y axis, or at a 45-degree angle.
Type: (x y) Integer, specified in database units

Each POLYGON statement defines a polygon generated by
connecting each successive point, and then the first and last
points. The pt syntax corresponds to a coordinate pair, such as

numRows Specifies a hexadecimal number that
indicates how many times to repeat the
following row definition. This number
can be more than one digit.

rowDefinition Defines one row of cuts, from left to
right.

hexDigitCutPattern

Specifies a single hexadecimal digit
that encodes a 4-bit binary value in
which 1 indicates a cut is present, and
0 indicates a cut is not present.

repeatNumber Specifies a single hexadecimal digit
that indicates how many times to repeat
hexDigitCutPattern.

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 328 Product Version 5.7

(x y). Specify an asterisk (*) to repeat the same value as the
previous x or y value from the last point.

For example, + POLYGON (0 0) (10 10) (10 0)
creates a triangle shape.

All vias consist of shapes on three layers: a cut layer and two
routing (or masterslice) layers that connect through that cut layer.
There should be at least one RECT or POLYGON on each of the
three layers.

RECT layerName pt pt

Defines the via geometry for the specified layer. The points are
specified with respect to the via origin. In most cases, the via
origin is the center of the via bounding box. All geometries for the
via, including the cut layers, are output by the DEF writer.
Type: (x y) Integer, specified in database units

All vias consist of shapes on three layers: a cut layer and two
routing (or masterslice) layers that connect through that cut layer.
There should be at least one RECT or POLYGON on each of the
three layers.

ROWCOL numCutRows numCutCols

Specifies the number of cut rows and columns that make up the
cut array.
Default: 1, for both values
Type: Positive integer, for both values

viaName Specifies the via name. Via names are generated by appending
a number after the rule name. Vias are numbered in the order in
which they are created.

VIARULE viaRuleName Specifies the name of the LEF VIARULE that produced this via.
This name must be specified before you define any of the other
parameters, and must refer to a VIARULE GENERATE via rule. It
cannot refer to a VIARULE without a GENERATE keyword.

Specifying the reserved via rule name of DEFAULT indicates that
the via should use the previously defined VIARULE GENERATE
rule with the DEFAULT keyword that exists for this routing-cut-

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 329 Product Version 5.7

routing layer combination. This makes it possible for a tool that
does not use the LEF VIARULE technology section to still
generate DEF generated-via parameters by using the default
rule.

Example 4-26 Via Rules

The following via rule describes a non-shifted via (that is, a via with no OFFSET or ORIGIN
parameters). There are two rows and three columns of via cuts. Figure 4-16 on page 329
illustrates this via rule.

- myUnshiftedVia

+ VIARULE myViaRule

+ CUTSIZE 20 20 #xCutSize yCutSize

+ LAYERS metal1 cut12 metal2

+ CUTSPACING 30 30 #xCutSpacing yCutSpacing

+ ENCLOSURE 20 50 50 20 #xBotEnc yBotEnc xTopEnc yTopEnc

+ ROWCOL 2 3 ;

Figure 4-16 Via Rule

The same via rule with the following ORIGIN parameter shifts all of the metal and cut
rectangles by 10 in the x direction, and by -10 in the y direction (see Figure 4-17 on
page 330):

+ ORIGIN 10 -10

(-110, -50)

(110, 50)

Origin (0,0)

xCutSpacing = 30

yBotEnc = 50

yCutSpacing = 30

xBotEnc = 20
Top metal layer

Bottom metal layer
xTopEnc = 50

yTopEnc = 20

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 330 Product Version 5.7

Figure 4-17 Via Rule With Origin

If the same via rule contains the following ORIGIN and OFFSET parameters, all of the
rectangles shift by 10, -10. In addition, the top layer metal rectangle shifts by 20, -20, which
means that the top metal shifts by a total of 30, -30.

+ ORIGIN 10 -10

+ OFFSET 0 0 20 -20

Figure 4-18 Via Rule With Origin and Offset

Creating Via Cut Patterns

Via cuts are defined as a series of rows, starting at the bottom, left corner. Each row definition
defines one row of cuts, from left to right, and rows are numbered from bottom to top.

(120,40)

(-100,-60)

Origin (0,0)

(140,20)

(-80,-80)

Top metal shifted by 30,-30
from old origin (or 20,-20
relative to the cuts).

Origin (0,0)

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 331 Product Version 5.7

The PATTERN syntax that defines rows uses the ROWCOL parameters to specify the cut array.
If the row has more bits than the numCutCols value in the ROWCOL parameter for this via,
the last bits are ignored. The number of rows defined must equal the numCutRows value in
the ROWCOL parameter.

Figure 4-19 on page 331 illustrates the following via cut pattern syntax:
- myVia

+ VIARULE myViaRule

...

+ ROWCOL 5 5

+ PATTERN 2_F0_2_F8_1_78 ;]

The last three bits of F0, F8, and 78 are ignored because only five bits are allowed in a row.
Therefore, the following PATTERN syntax gives the identical pattern:

+ PATTERN 2_F7_2_FF_1_7F

Figure 4-19

Figure 4-20 on page 332 illustrates the following via cut pattern syntax:
- myVia

+ VIARULE myViaRule

...

+ ROWCOL 5 14

+ PATTERN 2_FFE0_3_R4F ;

The R4F value indicates a repeat of four Fs. The last two bits of each row definition are
ignored because only 14 bits allowed in each row.

1 row of 0111, 1xxx = 1_78

2 rows of 1111, 1xxx = 2_F8

2 rows of 1111, 0xxx = 2_F0

{
{

LEF/DEF 5.7 Language Reference
DEF Syntax

November 2009 332 Product Version 5.7

Figure 4-20

3 rows of 4 x 1111 = 3_R4F

2 rows of 2 x 1111, 1110, 00xx = 2_FFE0

{

{

LEF/DEF 5.7 Language Reference

November 2009 333 Product Version 5.7

A
Examples

This appendix contains information about the following topics.

■ LEF on page 333

■ DEF on page 344

■ Scan Chain Synthesis Example on page 349

LEF
DEMO4 CHIP - 1280 ARRAY

NAMESCASESENSITIVE ON
&alias &&area = (73600,74400) (238240,236400) &endalias
&alias &&core = (85080,85500) (226760,224700) &endalias
&alias &&m2stripes = sroute stripe net vss net vdd layer m2

width
320 count 2 pattern 87900 4200 218100
area &&area core &&core &endalias

&alias &&m3stripes = sroute stripe net vss net vdd layer m3
width
600 count 2 pattern 89840 6720 217520
area &&area core &&core &endalias

&alias &&powerfollowpins = sroute follow net vss net vdd layer
m1 width 560

 area &&area core &&core &endalias
&alias &&powerrepair = sroute repair net vss net vdd area

&&area core &&core &endalias
PLACEMENT SITE SECTION
SITE CORE1 SIZE 67.2 BY 6 ; # GCD of all Y sizes of Macros END

CORE1
SITE IOX SIZE 37.8 BY 444 ; # 151.2 / 4 = 37.8 , 4 sites per pad END IOX
SITE IOY SIZE 436.8 BY 30 ; # 150 / 5 = 30 , 5 sites per pad END IOY
SITE SQUAREBLOCK SIZE 268.8 BY 252 ; END SQUAREBLOCK
SITE I2BLOCK SIZE 672 BY 504 ; END I2BLOCK
SITE LBLOCK SIZE 201.6 BY 168 ; END LBLOCK
SITE CORNER SIZE 436.8 BY 444 ; END CORNER
LAYER POLYS TYPE MASTERSLICE ; END POLYS
LAYER PW TYPE MASTERSLICE ; END PW

LEF/DEF 5.7 Language Reference
Examples

November 2009 334 Product Version 5.7

LAYER NW TYPE MASTERSLICE ; END NW
LAYER PD TYPE MASTERSLICE ; END PD
LAYER ND TYPE MASTERSLICE ; END ND
LAYER CUT01 TYPE CUT ; END CUT01
LAYER M1 TYPE ROUTING ; DIRECTION VERTICAL ; PITCH 5.6 ; WIDTH2.6 ;

SPACING 1.5 ;
END M1
LAYER CUT12 TYPE CUT ; END CUT12
LAYER M2 TYPE ROUTING ; DIRECTION HORIZONTAL ; PITCH 6.0 ;

WIDTH 3.2 ;SPACING 1.6 ;
END M2
LAYER CUT23 TYPE CUT ; END CUT23
LAYER M3 TYPE ROUTING ; DIRECTION VERTICAL ; PITCH 5.6 ; WIDTH 3.6;

SPACING 1.6 ;
END M3
LAYER OVERLAP TYPE OVERLAP ; END OVERLAP
VIA C2PW DEFAULT LAYER PW ; RECT -2.0 -2.0 2.0 2.0 ;

LAYER CUT01 ; RECT -0.6 -0.6 0.6 0.6 ;
LAYER M1 ; RECT -2.0 -2.0 2.0 2.0 ;

END C2PW
VIA C2NW DEFAULT LAYER NW ; RECT -2.0 -2.0 2.0 2.0 ;

LAYER CUT01 ; RECT -0.6 -0.6 0.6 0.6 ;
LAYER M1 ; RECT -2.0 -2.0 2.0 2.0 ;

END C2NW
VIA C2PD DEFAULT LAYER PD ; RECT -2.0 -2.0 2.0 2.0 ;

LAYER CUT01 ; RECT -0.6 -0.6 0.6 0.6 ;
LAYER M1 ; RECT -2.0 -2.0 2.0 2.0 ;

END C2PD
VIA C2ND DEFAULT LAYER ND ; RECT -2.0 -2.0 2.0 2.0 ;

LAYER CUT01 ; RECT -0.6 -0.6 0.6 0.6 ;
LAYER M1 ; RECT -2.0 -2.0 2.0 2.0 ;

END C2ND
VIA C2POLY DEFAULT LAYER POLYS ; RECT -2.0 -2.0 2.0 2.0 ;

LAYER CUT01 ; RECT -0.6 -0.6 0.6 0.6 ;
LAYER M1 ; RECT -2.0 -2.0 2.0 2.0 ;

END C2POLY
VIA VIA12 DEFAULT LAYER M1 ; RECT -2.0 -2.0 2.0 2.0 ;

LAYER CUT12 ; RECT -0.7 -0.7 0.7 0.7 ;
LAYER M2 ; RECT -2.0 -2.0 2.0 2.0 ;

END VIA12
VIA VIA23 DEFAULT LAYER M3 ; RECT -2.0 -2.0 2.0 2.0 ;

LAYER CUT23 ; RECT -0.8 -0.8 0.8 0.8 ;
LAYER M2 ; RECT -2.0 -2.0 2.0 2.0 ;

END VIA23
SPACING SAMENET CUT01 CUT12 4.0 ;
SAMENET CUT12 CUT23 4.0 ;

END SPACING
VIA VIACENTER12 LAYER M1 ; RECT -4.6 -2.2 4.6 2.2 ;

LAYER CUT12 ; RECT -3.1 -0.8 -1.9 0.8 ; RECT 1.9 -0.8 3.1 0.8 ;
LAYER M2 ; RECT -4.4 -2.0 4.4 2.0 ;

END VIACENTER12

LEF/DEF 5.7 Language Reference
Examples

November 2009 335 Product Version 5.7

VIA VIATOP12 LAYER M1 ; RECT -2.2 -2.2 2.2 8.2 ;
LAYER CUT12 ; RECT -0.8 5.2 0.8 6.8 ;
LAYER M2 ; RECT -2.2 -2.2 2.2 8.2 ;

END VIATOP12
VIA VIABOTTOM12 LAYER M1 ; RECT -2.2 -8.2 2.2 2.2 ;

LAYER CUT12 ; RECT -0.8 -6.8 0.8 -5.2 ;
LAYER M2 ; RECT -2.2 -8.2 2.2 2.2 ;

END VIABOTTOM12
VIA VIALEFT12 LAYER M1 ; RECT -7.8 -2.2 2.2 2.2 ;

LAYER CUT12 ; RECT -6.4 -0.8 -4.8 0.8 ;
LAYER M2 ; RECT -7.8 -2.2 2.2 2.2 ;

END VIALEFT12
VIA VIARIGHT12 LAYER M1 ; RECT -2.2 -2.2 7.8 2.2 ;

LAYER CUT12 ; RECT 4.8 -0.8 6.4 0.8 ;
LAYER M2 ; RECT -2.2 -2.2 7.8 2.2 ;

END VIARIGHT12
VIA VIABIGPOWER12 LAYER M1 ; RECT -21.0 -21.0 21.0 21.0 ;

LAYER CUT12 ; RECT -2.4 -0.8 2.4 0.8 ;
RECT -19.0 -19.0 -14.2 -17.4 ; RECT -19.0 17.4 -14.2

19.0;
RECT 14.2 -19.0 19.0 -17.4 ; RECT 14.2 17.4 19.0 19.0 ;
RECT -19.0 -0.8 -14.2 0.8 ; RECT -2.4 -19.0 2.4 -17.4 ;
RECT 14.2 -0.8 19 0.8 ; RECT -2.4 17.4 2.4 19.0 ;

LAYER M2 ; RECT -21.0 -21.0 21.0 21.0 ;
END VIABIGPOWER12
VIARULE VIALIST12 LAYER M1 ; DIRECTION VERTICAL ; WIDTH 9.0 TO

9.6;
LAYER M2 ; DIRECTION HORIZONTAL ; WIDTH 3.0 TO 3.0 ;

VIA VIACENTER12 ; VIA VIATOP12 ; VIA VIABOTTOM12 ;
VIA VIALEFT12 ; VIA VIARIGHT12 ;

END VIALIST12
VIARULE VIAGEN12 GENERATE

LAYER M1 ;
 ENCLOSURE 0.01 0.05 ;
LAYER M2 ;
 ENCLOSURE 0.01 0.05 ;
LAYER CUT12 ;
 RECT -0.06 -0.06 0.06 0.06 ;
 SPACING 0.14 BY 0.14 ;

END VIAGEN12
VIA VIACENTER23 LAYER M3 ; RECT -2.2 -2.2 2.2 2.2 ;

LAYER CUT23 ; RECT -0.8 -0.8 0.8 0.8 ;
LAYER M2 ; RECT -2.0 -2.0 2.0 2.0 ;

END VIACENTER23
VIA VIATOP23 LAYER M3 ; RECT -2.2 -2.2 2.2 8.2 ;

LAYER CUT23 ; RECT -0.8 5.2 0.8 6.8 ;
LAYER M2 ; RECT -2.2 -2.2 2.2 8.2 ;

END VIATOP23
VIA VIABOTTOM23 LAYER M3 ; RECT -2.2 -8.2 2.2 2.2 ;

LAYER CUT23 ; RECT -0.8 -6.8 0.8 -5.2 ;
LAYER M2 ; RECT -2.2 -8.2 2.2 2.2 ;

LEF/DEF 5.7 Language Reference
Examples

November 2009 336 Product Version 5.7

END VIABOTTOM23
VIA VIALEFT23 LAYER M3 ; RECT -7.8 -2.2 2.2 2.2 ;

LAYER CUT23 ; RECT -6.4 -0.8 -4.8 0.8 ;
LAYER M2 ; RECT -7.8 -2.2 2.2 2.2 ;

END VIALEFT23
VIA VIARIGHT23 LAYER M3 ; RECT -2.2 -2.2 7.8 2.2 ;

LAYER CUT23 ; RECT 4.8 -0.8 6.4 0.8 ;
LAYER M2 ; RECT -2.2 -2.2 7.8 2.2 ;

END VIARIGHT23
VIARULE VIALIST23 LAYER M3 ; DIRECTION VERTICAL ; WIDTH 3.6 TO

3.6 ;
LAYER M2 ; DIRECTION HORIZONTAL ; WIDTH 3.0 TO 3.0 ;

VIA VIACENTER23 ; VIA VIATOP23 ; VIA VIABOTTOM23 ;
VIA VIALEFT23 ; VIA VIARIGHT23 ;

END VIALIST23
VIARULE VIAGEN23 GENERATE

LAYER M2 ;
 ENCLOSURE 0.01 0.05 ;
LAYER M3 ;
 ENCLOSURE 0.01 0.05 ;
LAYER CUT23 ;
 RECT -0.06 -0.06 0.06 0.06 ;
 SPACING 0.14 BY 0.14 ;

END VIAGEN23
MACRO CORNER CLASS ENDCAP BOTTOMLEFT ; SIZE 436.8 BY 444 ; SYMMETRY X Y ; SITE
CORNER ;

PIN VDD SHAPE RING ; DIRECTION INOUT ;
PORT LAYER M2 ; WIDTH 20 ; PATH 426.8 200 200 200 200 434 ;END

END VDD
PIN VSS SHAPE RING ; DIRECTION INOUT ;

PORT LAYER M2 ; WIDTH 20 ; PATH 100 434 100 100 ; LAYER M1;
WIDTH 20 ; PATH 100 100 426.8 100 ;END

END VSS
END CORNER

MACRO IN1X class pad ; FOREIGN IN1X ; SIZE 151.2 BY 444 ;
SYMMETRY X ; SITE IOX ;
PIN Z DIRECTION OUTPUT ;

PORT LAYER M1 ; PATH 61.6 444 72.8 444 ; END
END Z
PIN PO DIRECTION OUTPUT ;

PORT LAYER M1 ; PATH 78.4 444 84.0 444 ; END
END PO
PIN A DIRECTION INPUT ;

PORT LAYER M1 ; PATH 95.2 444 100.8 444 ; END
END A
PIN PI DIRECTION INPUT ;

PORT LAYER M1 ; PATH 106.4 444 112 444 ; END
END PI
PIN VDD DIRECTION INOUT ; SHAPE ABUTMENT ;

PORT LAYER M2 ; WIDTH 20 ; PATH 10 200 141.2 200 ; END

LEF/DEF 5.7 Language Reference
Examples

November 2009 337 Product Version 5.7

END VDD
PIN VSS DIRECTION INOUT ; SHAPE ABUTMENT ;

PORT LAYER M1 ; WIDTH 20 ; PATH 10 100 141.2 100 ; END
END VSS

END IN1X

MACRO IN1Y EEQ IN1X ; FOREIGN IN1Y ; class pad ;SIZE 436.8 BY 150 ;
SYMMETRY Y ; SITE IOY ;
PIN Z DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 0 69 0 75 ; END
END Z
PIN PO DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 0 81 0 87 ; END
END PO
PIN A DIRECTION INPUT ;

PORT LAYER M2 ; PATH 0 51 0 57 ; END
END A
PIN PI DIRECTION INPUT ;

PORT LAYER M2 ; PATH 0 39 0 45 ; END
END PI
PIN VDD DIRECTION INOUT ; SHAPE ABUTMENT ;

PORT LAYER M2 ; WIDTH 20 ; PATH 236.8 10 236.8 140 ; END
END VDD
PIN VSS DIRECTION INOUT ; SHAPE ABUTMENT ;

PORT LAYER M2 ; WIDTH 20 ; PATH 336.8 10 336.8 140 ; END
END VSS

END IN1Y

MACRO FILLER FOREIGN FILLER ; SIZE 67.2 BY 6 ; SYMMETRY X Y R90;
SITE CORE1 ;
PIN VDD DIRECTION INOUT ; SHAPE ABUTMENT ;

PORT LAYER M1 ; RECT 45.8 0 55 6 ; END
END VDD
PIN VSS DIRECTION INOUT ; SHAPE ABUTMENT ;

PORT LAYER M1 ; RECT 12.2 0 21.4 6 ; END
END VSS
OBS LAYER M1 ; RECT 24.1 1.5 43.5 4.5 ; END

END FILLER

MACRO INV FOREIGN INVS ; SIZE 67.2 BY 24 ; SYMMETRY X Y ; SITE CORE1 ;
PIN Z DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 30.8 9 42 9 ; END
END Z
PIN A DIRECTION INPUT ;

PORT LAYER M1 ; PATH 25.2 15 ; END
END A
PIN VDD DIRECTION INOUT ; SHAPE ABUTMENT ;

PORT LAYER M1 ; WIDTH 5.6 ; PATH 50.4 4.6 50.4 13.4 ; END
END VDD
PIN VSS DIRECTION INOUT ; SHAPE ABUTMENT ;

PORT LAYER M1 ; WIDTH 5.6 ; PATH 16.8 4.6 16.8 13.4 ; END

LEF/DEF 5.7 Language Reference
Examples

November 2009 338 Product Version 5.7

END VSS
OBS LAYER M1 ; RECT 24.1 1.5 43.5 16.5 ; END

END INV

MACRO BUF FOREIGN BUFS ; SIZE 67.2 BY 126 ; SYMMETRY X Y ; SITE
CORE1 ;
PIN Z DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 25.2 39 42 39 ; END
END Z
PIN A DIRECTION INPUT ;

PORT LAYER M1 ; PATH 30.8 33 ; END
END A
PIN VDD DIRECTION INOUT ; SHAPE FEEDTHRU ;

PORT LAYER M1 ; WIDTH 5.6 ;
PATH 50.4 4.6 50.4 10.0 56.0 10.0 56.0 115.8 50.4 115.8

50.4 121.4 ; END
END VDD
PIN VSS DIRECTION INOUT ; SHAPE FEEDTHRU ;

PORT LAYER M1 ; WIDTH 5.6 ;
PATH 16.8 4.6 16.8 10.0 11.2 10.0 11.2 115.8 16.8 115.8

16.8 121.4 ; END
END VSS
OBS LAYER M1 ; RECT 24.1 1.5 43.5 124.5 ; END

END BUF

MACRO BIDIR1X FOREIGN BIDIR1X ; class pad ; SIZE 151.2 BY 444 ;
SYMMETRY X ; SITE IOX ;
PIN IO DIRECTION INOUT ;

PORT LAYER M1 ; PATH 61.6 444 67.2 444 ; END
END IO
PIN ZI DIRECTION OUTPUT ;

PORT LAYER M1 ; PATH 78.4 444 84.0 444 ; END
END ZI
PIN PO DIRECTION OUTPUT ;

PORT LAYER M1 ; PATH 95.2 444 100.8 444 ; END
END PO
PIN A DIRECTION INPUT ;

PORT LAYER M1 ; PATH 106.4 444 112.0 444 ; END
END A
PIN EN DIRECTION INPUT ;

PORT LAYER M1 ; PATH 134.4 444 140.0 444 ; END
END EN
PIN TN DIRECTION INPUT ;

PORT LAYER M1 ; PATH 28.0 444 33.6 444 ; END
END TN
PIN PI DIRECTION INPUT ;

PORT LAYER M1 ; PATH 44.8 444 50.4 444 ; END
END PI
PIN VDD DIRECTION INOUT ; SHAPE ABUTMENT ;

PORT LAYER M2 ; WIDTH 20 ; PATH 10 200 141.2 200 ; END
END VDD
PIN VSS DIRECTION INOUT ; SHAPE ABUTMENT ;

LEF/DEF 5.7 Language Reference
Examples

November 2009 339 Product Version 5.7

PORT LAYER M1 ; WIDTH 20 ; PATH 10 100 141.2 100 ; END
END VSS

END BIDIR1X

MACRO BIDIR1Y EEQ BIDIR1X ; class pad ; FOREIGN BIDIR1Y ; SIZE 436.8
BY 150 ; SYMMETRY Y ; SITE IOY ;
PIN IO DIRECTION INOUT ;

PORT LAYER M2 ; PATH 0 69 0 75 ; END END IO
PIN ZI DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 0 93 0 99 ; END END ZI
PIN PO DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 0 81 0 87 ; END END PO
PIN A DIRECTION INPUT ;

PORT LAYER M2 ; PATH 0 15 0 21 ; END END A
PIN EN DIRECTION INPUT ;

PORT LAYER M2 ; PATH 0 27 0 33 ; END END EN
PIN TN DIRECTION INPUT ;

PORT LAYER M2 ; PATH 0 39 0 45 ; END END TN
PIN PI DIRECTION INPUT ;

PORT LAYER M2 ; PATH 0 51 0 57 ; END END PI
PIN VDD DIRECTION INOUT ; SHAPE ABUTMENT ;

PORT LAYER M2 ; WIDTH 20 ; PATH 236.8 10 236.8 140 ; END
END VDD
PIN VSS DIRECTION INOUT ; SHAPE ABUTMENT ;

PORT LAYER M2 ; WIDTH 20 ; PATH 336.8 10 336.8 140 ; END
END VSS

END BIDIR1Y

MACRO OR2 FOREIGN OR2S ; SIZE 67.2 BY 42 ; SYMMETRY X Y ; SITE
CORE1 ;
PIN Z DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 25.2 39 42 39 ; END
END Z
PIN A DIRECTION INPUT ;

PORT LAYER M1 ; PATH 25.2 15 ; END
END A
PIN B DIRECTION INPUT ;

PORT LAYER M1 ; PATH 25.2 3 ; END
END B
PIN VDD DIRECTION INOUT ; SHAPE FEEDTHRU ;

PORT LAYER M1 ; WIDTH 5.6 ;
PATH 50.4 4.6 50.4 10.0 ; PATH 50.4 27.4 50.4 37.4 ;
VIA 50.4 3 C2PW ; VIA 50.4 21 C2PW ; VIA 50.4 33 C2PW ;
VIA 50.4 39 C2PW ; END

END VDD
PIN VSS DIRECTION INOUT ; SHAPE FEEDTHRU ;

PORT LAYER M1 ; WIDTH 5.6 ; PATH 16.8 4.6 16.8 10.0 ;
PATH 16.8 27.4 16.8 37.4 ;
VIA 16.8 3 C2NW ; VIA 16.8 15 C2NW ; VIA 16.8 21 C2NW ;
VIA 16.8 33 C2NW ; VIA 16.8 39 C2NW ; END

LEF/DEF 5.7 Language Reference
Examples

November 2009 340 Product Version 5.7

END VSS
OBS LAYER M1 ; RECT 24.1 1.5 43.5 40.5 ; END

END OR2

MACRO AND2 FOREIGN AND2S ; SIZE 67.2 BY 84 ; SYMMETRY X Y ; SITE
CORE1 ;
PIN Z DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 25.2 39 42 39 ; END
END Z
PIN A DIRECTION INPUT ;

PORT LAYER M1 ; PATH 42 15 ; END
END A
PIN B DIRECTION INPUT ;

PORT LAYER M1 ; PATH 42 3 ; END
END B
PIN VDD DIRECTION INOUT ; SHAPE ABUTMENT ;

PORT LAYER M1 ; WIDTH 5.6 ; PATH 50.4 4.6 50.4 79.4 ; END
END VDD
PIN VSS DIRECTION INOUT ; SHAPE ABUTMENT ;

PORT LAYER M1 ; WIDTH 5.6 ; PATH 16.8 4.6 16.8 79.4 ; END
END VSS
OBS LAYER M1 ; RECT 24.1 1.5 43.5 82.5 ; END

END AND2

MACRO DFF3 FOREIGN DFF3S ; SIZE 67.2 BY 210 ; SYMMETRY X Y ; SITE
CORE1 ;
PIN Q DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 19.6 99 47.6 99 ; END
END Q
PIN QN DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 25.2 123 42 123 ; END
END QN
PIN D DIRECTION INPUT ;

PORT LAYER M1 ; PATH 30.8 51 ; END
END D
PIN G DIRECTION INPUT ;

PORT LAYER M1 ; PATH 25.2 3 ; END
END G
PIN CD DIRECTION INPUT ;

PORT LAYER M1 ; PATH 36.4 75 ; END
END CD
PIN VDD DIRECTION INOUT ; SHAPE FEEDTHRU ;

PORT LAYER M1 ; WIDTH 5.6 ; PATH 50.4 4.6 50.4 205.4 ;
END
END VDD
PIN VSS DIRECTION INOUT ; SHAPE FEEDTHRU ;

PORT LAYER M1 ; WIDTH 5.6 ; PATH 16.8 4.6 16.8 205.4 ;
END
END VSS
OBS LAYER M1 ; RECT 24.1 1.5 43.5 208.5 ; PATH 8.4 3 8.4 123 ;

PATH 58.8 3 58.8 123 ; PATH 64.4 3 64.4 123; END
END DFF3

LEF/DEF 5.7 Language Reference
Examples

November 2009 341 Product Version 5.7

MACRO NOR2 FOREIGN NOR2S ; SIZE 67.2 BY 42 ; SYMMETRY X Y ; SITE
CORE1 ;
PIN Z DIRECTION OUTPUT ;

PORT LAYER M1 ; PATH 42 33 ; END
END Z
PIN A DIRECTION INPUT ;

PORT LAYER M1 ; PATH 25.2 15 ; END
END A
PIN B DIRECTION INPUT ;

PORT LAYER M1 ; PATH 36.4 9 ; END
END B
PIN VDD DIRECTION INOUT ; SHAPE FEEDTHRU ;

PORT LAYER M1 ; WIDTH 5.6 ; PATH 50.4 4.6 50.4 37.4 ; END
END VDD
PIN VSS DIRECTION INOUT ; SHAPE FEEDTHRU ;

PORT LAYER M1 ; WIDTH 5.6 ; PATH 16.8 4.6 16.8 37.4 ; END
END VSS
OBS LAYER M1 ; RECT 24.1 1.5 43.5 40.5 ; END

END NOR2

MACRO AND2J EEQ AND2 ;FOREIGN AND2SJ ; SIZE 67.2 BY 48 ;
SYMMETRY X Y ; ORIGIN 0 6 ; SITE CORE1 ;
PIN Z DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 25.2 33 42 33 ; END
END Z
PIN A DIRECTION INPUT ;

PORT LAYER M1 ; PATH 42 15 ; END
END A
PIN B DIRECTION INPUT ;

PORT LAYER M1 ; PATH 42 3 ; END
END B
PIN VDD DIRECTION INOUT ; SHAPE FEEDTHRU ;

PORT LAYER M1 ; WIDTH 5.6 ; PATH 50.4 -1.4 50.4 37.4 ;
END
END VDD
PIN VSS DIRECTION INOUT ; SHAPE FEEDTHRU ;

PORT LAYER M1 ; WIDTH 5.6 ; PATH 16.8 -1.4 16.8 37.4 ;
END
END VSS
OBS LAYER M1 ; RECT 24.1 1.5 43.5 34.5 ; END

END AND2J

MACRO SQUAREBLOCK FOREIGN SQUAREBLOCKS ; CLASS RING ;SIZE 268.8
BY 252 ; SITE SQUAREBLOCK ;
PIN Z DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 22.8 21 246.0 21 ; END
END Z
PIN A DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 64.4 33 137.2 33 ;
PATH 137.2 33 137.2 69 ; PATH 137.2 69 204.4 69 ; END

END A
PIN B DIRECTION INPUT ;

LEF/DEF 5.7 Language Reference
Examples

November 2009 342 Product Version 5.7

PORT LAYER M2 ; PATH 22.8 129 246.0 129 ; END
END B
PIN C DIRECTION INPUT ;

PORT LAYER M2 ; PATH 70 165 70 153 ; PATH 70 153 126 153 ;
END

END C
PIN D DIRECTION INPUT ;

PORT LAYER M2 ; PATH 22.8 75 64.4 75 ; END
END D
PIN E DIRECTION INPUT ;

PORT LAYER M2 ; PATH 22.8 87 64.4 87 ; END
END E
PIN F DIRECTION INPUT ;

PORT LAYER M2 ; PATH 22.8 99 64.4 99 ; END
END F
PIN G DIRECTION INPUT ;

PORT LAYER M2 ; PATH 22.8 111 64.4 111 ; END
END G
PIN VDD DIRECTION INOUT ; SHAPE RING ;

PORT LAYER M1 ; WIDTH 3.6 ; PATH 4.0 3.5 4.0 248 ;
PATH 264.8 100 264.8 248 ; PATH 150 3.5 150 100 ;
LAYER M2 ; WIDTH 3.6 ; PATH 4.0 3.5 150 3.5 ;
PATH 150 100 264.8 100 ; PATH 4.0 248 264.8 248 ; END

END VDD
PIN VSS DIRECTION INOUT ; SHAPE RING ;

PORT LAYER M1 ; WIDTH 3.6 ; PATH 10 10 10 150 ;
PATH 100 150 100 200 ; PATH 50 200 50 242 ;
PATH 258.8 10 258.8 242 ; LAYER M2 ; WIDTH 3.6 ;
PATH 10 150 100 150 ; PATH 100 200 50 200 ;
PATH 10 10 258.8 10 ; PATH 50 242 258.8 242 ; END

END VSS
OBS LAYER M1 ; RECT 13.8 14.0 255.0 237.2 ; END

END SQUAREBLOCK

MACRO I2BLOCK FOREIGN I2BLOCKS ; CLASS RING ; SIZE 672 BY 504 ;
SITE I2BLOCK ;
PIN Z DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 22.8 21 649.2 21 ; END
END Z
PIN A DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 22.8 63 154.0 63 ; PATH 154.0 63 154.0
129;
PATH 154.0 129 447.6 129 ; END

END A
PIN B DIRECTION INPUT ;

PORT LAYER M2 ; PATH 137.2 423 447.6 423 ; END
END B
PIN C DIRECTION INPUT ;

PORT LAYER M2 ; PATH 204.4 165 271.6 165 ; END
END C
PIN D DIRECTION INPUT ;

LEF/DEF 5.7 Language Reference
Examples

November 2009 343 Product Version 5.7

PORT LAYER M2 ; PATH 204.4 171 271.6 171 ; END
END D
PIN E DIRECTION INPUT ;

PORT LAYER M1 ; PATH 204.4 213 204.4 213 ; END
END E
PIN F DIRECTION INPUT ;

PORT LAYER M1 ; PATH 406 249 406 273 ; END
END F
PIN G DIRECTION INPUT ;

PORT LAYER M1 ; PATH 338.8 249 338.8 273 ; END
END G
PIN H DIRECTION INPUT ;

PORT LAYER M1 ; PATH 372.4 357 372.4 381 ; END
END H
PIN VDD DIRECTION INOUT ; SHAPE RING ;

PORT LAYER M1 ; WIDTH 3.6 ; PATH 668 3.5 668 80.5 ;
PATH 467 80.5 467 465.5 ; PATH 668 465.5 668 500.5 ;
PATH 4 500.5 4 465.5 ; PATH 138 465.5 138 80.5 ;
PATH 4 80.5 4 3.5 ; LAYER M2 ; WIDTH 3.6 ; PATH 4 3.5 668 3.5;
PATH 668 80.5 467 80.5 ; PATH 467 465.5 668 465.5 ;
PATH 668 500.5 4 500.5 ; PATH 4 465.5 138 465.5 ;
PATH 138 80.5 4 80.5 ; END

END VDD
PIN VSS DIRECTION INOUT ; SHAPE RING ;

PORT LAYER M1 ; WIDTH 3.6 ; PATH 662 10 662 74 ;
PATH 461 74 461 472 ; PATH 662 472 662 494 ; PATH 10 494 10

472;
PATH 144 472 144 74 ; PATH 10 74 10 10 ;LAYER M2 ; WIDTH

3.6 ;
PATH 10 10 662 10 ; PATH 662 74 461 74 ; PATH 461 472 662

472 ;
PATH 662 494 10 494 ; PATH 10 472 144 472 ; PATH 144 74 10

74 ;
END

END VSS
OBS LAYER M1 ; RECT 14 14 658 70 ; RECT 14 476 658 490 ;

RECT 148 14 457 490 ; # rectilinear shape description
LAYER OVERLAP ; RECT 0 0 672 84 ; RECT 134.4 84 470.4 462 ;
RECT 0 462 672 504 ; END

END I2BLOCK

MACRO LBLOCK FOREIGN LBLOCKS ; CLASS RING ; SIZE 201.6 BY 168 ; SITE
LBLOCK ;
PIN Z DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 2.8 15 198.8 15 ; END
END Z
PIN A DIRECTION OUTPUT ;

PORT LAYER M2 ; PATH 2.8 81 137.2 81 ; PATH 137.2 81 137.2
69 ;

PATH 137.2 69 198.8 69 ; END
END A

LEF/DEF 5.7 Language Reference
Examples

November 2009 344 Product Version 5.7

PIN B DIRECTION INPUT ;
PORT LAYER M2 ; PATH 2.8 165 64.4 165 ; END

END B
PIN C DIRECTION INPUT ;

PORT LAYER M1 ; PATH 2.8 93 2.8 105 ; END
END C
PIN D DIRECTION INPUT ;

PORT LAYER M1 ; PATH 64.4 93 64.4 105 ; END
END D
PIN E DIRECTION INPUT ;

PORT LAYER M1 ; PATH 198.8 39 198.8 39 ; END
END E
PIN F DIRECTION INPUT ;

PORT LAYER M1 ; PATH 198.8 45 198.8 45 ; END
END F
PIN G DIRECTION INPUT ;

PORT LAYER M1 ; PATH 2.8 111 2.8 111 ; END END G
PORT LAYER M2 ; WIDTH 3.6 ; PATH 1.8 27 199.8 27 ; END

END VDD
PIN VSS DIRECTION INOUT ;

PORT LAYER M2 ; WIDTH 3.6 ; PATH 1.8 57 199.8 57 ; END
END VSS
OBS LAYER M2 ; RECT 1.0 80 66.2 166.5 ; RECT 1.0 1.5 200.6 23 ;

RECT 1.0 31 200.6 53 ; RECT 1.0 61 200.6 82.5 ;
rectilinear shape description
LAYER OVERLAP ; RECT 0 0 201.6 84 ; RECT 0 84 67.2 168 ;
END

END LBLOCK

END LIBRARY

DEF

The following example shows a design netlist.

DESIGN DEMO4CHIP ;
TECHNOLOGY DEMO4CHIP ;
ARRAY DEMO4 ;
UNITS DISTANCE MICRONS 100 ;
COMPONENTS 243 ;

- CORNER1 CORNER ; - CORNER2 CORNER ; - CORNER3 CORNER ;
- CORNER4 CORNER ; - C01 IN1X ; - C02 IN1Y ; - C04 IN1X ;
- C05 IN1X ; - C06 IN1Y ;
- C07 IN1Y ; - C08 IN1Y ; - C09 IN1Y ; - C10 IN1X ; - C11 IN1X ;
- C13 BIDIR1Y ; - C14 INV ; - C15 BUF ; - C16 BUF ; - C17 BUF ;
- C19 BIDIR1Y ; - C20 INV ; - C21 BUF ; - C22 BUF ; - C23 BUF ;
- C25 BIDIR1Y ; - C26 INV ; - C27 BUF ; - C28 BUF ; - C29 BUF ;
- C31 BIDIR1Y ; - C32 INV ; - C33 BUF ; - C34 BUF ; - C35 BUF ;
- C37 BIDIR1X ; - C39 INV ; - C40 BUF ; - C41 BUF ; - C42 BUF ;

LEF/DEF 5.7 Language Reference
Examples

November 2009 345 Product Version 5.7

- C44 BIDIR1X ; - C45 INV ; - C46 BUF ; - C47 BUF ; - C48 BUF ;
- C50 BIDIR1Y ; - C51 INV ; - C52 BUF ; - C53 BUF ; - C54 BUF ;
- C56 BIDIR1X ; - C57 INV ; - C58 BUF ; - C59 BUF ; - C60 BUF ;
- D02 BIDIR1X ; - D03 INV ; - D04 BUF ; - D05 BUF ; - D06 BUF ;
- D08 BIDIR1X ; - D09 INV ; - D10 BUF ; - D11 BUF ; - D12 BUF ;
- D14 BIDIR1X ; - D15 INV ; - D16 BUF ; - D17 BUF ; - D19 BUF ;
- D33 BIDIR1Y ; - D34 INV ; - D35 BUF ; - D36 BUF ; - D37 BUF ;
- D39 BIDIR1Y ; - D40 INV ; - D41 BUF ; - D42 BUF ; - D43 BUF ;
- D45 BIDIR1Y ; - D46 INV ; - D47 BUF ; - D48 BUF ; - D49 BUF ;
- D82 OR2 ; - D83 OR2 ; - D84 OR2 ; - D85 OR2 ; - D86 OR2 ;
- D87 OR2 ; - D88 OR2 ; - D89 OR2 ; - D90 OR2 ; - D91 OR2 ;
- D92 OR2 ; - D93 OR2 ;
- E01 AND3 ; - E02 AND3 ; - E03 AND3 ; - E04 AND3 ; - E05 AND3 ;
- E06 AND3 ; - E07 AND3 ; - E08 AND3 ; - E09 AND3 ; - E10 AND3 ;
- E11 AND3 ; - E12 AND3 ; - E13 AND3 ; - E14 AND3 ; - E15 AND3 ;
- E16 AND3 ;
- EE16 IN1X ; - E17 IN1X ; - E18 IN1X ; - E19 IN1X ; - E20 IN1X ;
- E21 IN1X ; - E22 IN1X ; - E23 IN1Y ; - E24 IN1Y ; - E25 IN1Y ;
- E26 INV ; - E27 AND2 ; - E28 AND2 ; - E29 AND2 ; - E30 AND2 ;
- E31 AND2 ; - E32 AND2 ; - E33 OR2 ; - E34 OR2 ; - E35 OR2 ;
- E36 OR2 ; - E37 IN1Y ; - E38A01 DFF3 ; - E38A02 DFF3 ;
- E38A03 DFF3 ;- E38A04 DFF3 ; - E38A05 DFF3 ; - F01 I2BLOCK ;
- F04 OR2 ; - F06 OR2 ; - F07 OR2 ; - F08 OR2 ; - F09 SQUAREBLOCK ;
- F12 LBLOCK ;
- Z14 INV ; - Z15 BUF ; - Z16 BUF ; - Z17 BUF ; - Z20 INV ;
- Z21 BUF ; - Z22 BUF ; - Z23 BUF ; - Z26 INV ; - Z27 BUF ;
- Z28 BUF ; - Z29 BUF ; - Z32 INV ; - Z33 BUF ; - Z34 BUF ;
- Z35 BUF ; - Z39 INV ; - Z40 BUF ; - Z41 BUF ; - Z42 BUF ;
- Z45 INV ; - Z46 BUF ; - Z47 BUF ; - Z48 BUF ; - Z51 INV ;
- Z52 BUF ; - Z53 BUF ; - Z54 BUF ; - Z57 INV ; - Z58 BUF ; - Z59 BUF ;
- Z60 BUF ; - Z103 INV ; - Z104 BUF ; - Z105 BUF ; - Z106 BUF ;
- Z109 INV ; - Z110 BUF ; - Z111 BUF ; - Z112 BUF ; - Z115 INV ;
- Z116 BUF ; - Z117 BUF ; - Z119 BUF ; - Z134 INV ; - Z135 BUF ;
- Z136 BUF ; - Z137 BUF ; - Z140 INV ; - Z141 BUF ; - Z142 BUF ;
- Z143 BUF ; - Z146 INV ; - Z147 BUF ; - Z148 BUF ; - Z149 BUF ;
- Z182 OR2 ; - Z183 OR2 ; - Z184 OR2 ; - Z185 OR2 ; - Z186 OR2 ;
- Z187 OR2 ; - Z188 OR2 ; - Z189 OR2 ; - Z190 OR2 ; - Z191 OR2 ;
- Z192 OR2 ; - Z193 OR2 ; - Z201 AND3 ; - Z202 AND3 ; - Z203 AND3 ;
- Z204 AND3 ; - Z205 AND3 ; - Z206 AND3 ; - Z207 AND3 ; - Z208 AND3 ;
- Z209 AND3 ; - Z210 AND3 ; - Z211 AND3 ; - Z212 AND3 ; - Z213 AND3 ;
- Z214 AND3 ; - Z215 AND3 ; - Z216 AND3 ; - Z226 INV ; - Z227 AND2 ;
- Z228 AND2 ; - Z229 AND2 ; - Z230 AND2 ; - Z231 AND2 ; - Z232 AND2 ;
- Z233 OR2 ; - Z234 OR2 ; - Z235 OR2 ; - Z236 OR2 ; - Z38A01 DFF3 ;
- Z38A02 DFF3 ; - Z38A03 DFF3 ; - Z38A04 DFF3 ; - Z38A05 DFF3 ;
END COMPONENTS

NETS 222 ;
- VDD (Z216 B) (Z215 B) (Z214 C) (Z214 B)
(Z213 C) (Z213 B) (Z212 C) (Z212 B) (Z211 C) (Z211 B)
(Z210 C) (E23 Z) (Z143 Z) (Z142 Z) (Z141 Z) (Z119 Z)
(Z117 Z) (Z116 Z) (Z106 Z) (Z105 Z) (Z104 Z) (Z34 Z)

LEF/DEF 5.7 Language Reference
Examples

November 2009 346 Product Version 5.7

(Z33 Z) (Z28 Z) (Z27 Z) (Z22 Z) (Z21 Z) (Z16 Z)
(Z15 Z) (D45 PO) (D14 PO) (C01 PI) (D45 TN) (D39 TN)
(D33 TN) (D14 TN) (D08 TN) (D02 TN) (C56 TN) (C50 TN)
(C44 TN) (C37 TN) (C31 TN) (C25 TN) (C19 TN) (C13 TN) ;
- VSS (Z209 C) (Z208 C) (Z207 C) (Z206 C) (Z205 C)
(Z204 C) (Z203 C) (Z202 C) (Z201 C) (Z149 Z) (Z148 Z)
(Z147 Z) (Z137 Z) (Z136 Z) (Z135 Z) (Z112 Z) (Z111 Z)
(Z110 Z) (Z60 Z) (Z59 Z) (Z58 Z) (Z54 Z) (Z53 Z)
(Z52 Z) (Z47 Z) (Z46 Z) (Z41 Z) (Z40 Z) (E18 Z)
(D49 Z) (D43 Z) (D45 A) (D39 A) (D33 A) (D14 A)
(D08 A) (D02 A) (C56 A) (C50 A) (C44 A) (C37 A)
(C31 A) (C25 A) (C19 A) (C13 A) ; - XX1001 (Z38A04 G)
(Z38A02 G) ; - XX100 (Z38A05 G) (Z38A03 G) (Z38A01 G) ;
- XX907 (Z236 B) (Z235 B) ; - XX906 (Z234 B) (Z233 B) ;
- XX904 (Z232 B) (Z231 B) ; - XX903 (Z230 B) (Z229 B) ;
- XX902 (Z228 B) (Z227 B) ;
- XX900 (Z235 A) (Z233 A) (Z232 A) (Z230 A) (Z228 A) (Z226 A) ;
- Z38QN4 (Z38A04 QN) (Z210 B) ; - COZ131 (Z38A04 Q) (Z210 A) ;
- Z38QN3 (Z38A03 QN) (Z209 B) ; - COZ121 (Z38A03 Q) (Z209 A) ;
- Z38QN2 (Z38A02 QN) (Z208 B) ; - COZ111 (Z38A02 Q) (Z208 A) ;
- Z38QN1 (Z38A01 QN) (Z207 B) ; - COZ101 (Z38A01 Q) (Z207 A) ;
- XX901 (Z236 A) (Z234 A) (Z231 A) (Z229 A) (Z227 A) (Z226 Z)

(Z193 A) ;
- X415 (Z149 A) (Z148 A) (Z147 A) (Z146 Z) ; - X413 (Z143 A)

(Z142 A) (Z141 A) (Z140 Z) ;
- X411 (Z137 A) (Z136 A) (Z135 A) (Z134 Z) ;
- X405 (Z119 A) (Z117 A) (Z116 A) (Z115 Z) ;
- X403 (Z112 A) (Z111 A) (Z110 A) (Z109 Z) ;
- X401 (Z106 A) (Z105 A) (Z104 A) (Z103 Z) ;
- X315 (Z60 A) (Z59 A) (Z58 A) (Z57 Z) ;
- X313 (Z54 A) (Z53 A) (Z52 A) (Z51 Z) ;
- DIS051 (Z216 A) (Z48 Z) ;
- X311 (Z48 A) (Z47 A) (Z46 A) (Z45 Z) ;
- DIS041 (Z215 A) (Z42 Z) ; - X309 (Z42 A) (Z41 A) (Z40 A)

(Z39 Z) ;
- X307 (Z35 A) (Z34 A) (Z33 A) (Z32 Z) ;
- DIS031 (Z214 A) (Z35 Z) ; - DIS021 (Z213 A) (Z29 Z) ;
- X305 (Z29 A) (Z28 A) (Z27 A) (Z26 Z) ;
- DIS011 (Z212 A) (Z23 Z) ;
- X303 (Z23 A) (Z22 A) (Z21 A) (Z20 Z) ;
- DIS001 (Z211 A) (Z17 Z) ;
- X301 (Z17 A) (Z16 A) (Z15 A) (Z14 Z) ;
- X1000 (E38A05 G) (E38A03 G) (E38A01 G) (E37 Z) ;
- CNTEN (Z38A05 Q) (E38A05 Q) (E25 A) ;
- VIH20 (E37 PI) (E25 PO) ; - X0907 (E36 B) (E35 B) (E25 Z) ;
- CCLK0 (F09 A) (E24 A) ; - VIH19 (E25 PI) (E24 PO) ;
- X0906 (E34 B) (E33 B) (E24 Z) ; - CATH1 (F09 Z) (E23 A) ;
- VIH18 (E24 PI) (E23 PO) ; - CRLIN (F08 Z) (E22 A) ;
- VIH17 (E23 PI) (E22 PO) ; - X0904 (E32 B) (E31 B) (E22 Z) ;
- NXLIN (F07 Z) (E21 A) ; - VIH16 (E22 PI) (E21 PO) ;
- X0903 (E30 B) (E29 B) (E21 Z) ; - RPT1 (F06 Z) (E20 A) ;

LEF/DEF 5.7 Language Reference
Examples

November 2009 347 Product Version 5.7

- VIH15 (E21 PI) (E20 PO) ; - X0902 (E28 B) (E27 B) (E20 Z) ;
- AGISL (F04 Z) (E19 A) ; - VIH14 (E20 PI) (E19 PO) ;
- X0900 (E35 A) (E33 A) (E32 A) (E30 A) (E28 A) (E26 A)

(E19 Z) ;
- TSTCN (Z38A05 QN) (E38A05 QN) (E18 A) ;
- VIH13 (E19 PI) (E18 PO) ; - BCLK1 (F01 A) (E17 A) ;
- VIH12 (E18 PI) (E17 PO) ; - CLR0 (F01 Z) (EE16 A) ;
- VIH11 (E17 PI) (EE16 PO) ; - BCLKX1 (Z216 C) (E17 Z)

(E16 C) ; - CLRX0 (Z38A05 CD) (Z38A03 CD) (Z38A01 CD)
(Z215 C) (E38A05 CD) (E38A03 CD) (E38A01 CD) (EE16 Z)
(E15 C) ; - E38QN4 (E38A04 QN) (E10 B) ;

- CAX131 (E38A04 Q) (E10 A) ; - E38QN3 (E38A03 QN) (E09 B) ;
- CAX121 (E38A03 Q) (E09 A) ; - E38QN2 (E38A02 QN) (E08 B) ;
- CAX111 (E38A02 Q) (E08 A) ; - E38QN1 (E38A01 QN) (E07 B) ;
- CAX101 (E38A01 Q) (E07 A) ;
- SDD111 (Z38A05 D) (Z205 Z) (E38A05 D) (E05 Z) ;
- SDD121 (Z38A04 D) (Z204 Z) (E38A04 D) (E04 Z) ;
- X0901 (E36 A) (E34 A) (E31 A) (E29 A) (E27 A) (E26 Z)

(D93 A) ;
- VIH21 (Z192 A) (E37 PO) (D92 A) ;
- STRDENB0 (Z206 B) (Z202 B) (Z201 B) (Z189 B) (Z188 B)

(F12 A) (E06 B) (E02 B) (E01 B) (D89 B) (D88 B) ;
- STRDENA0 (Z202 A) (Z201 A) (Z183 B) (Z182 B) (F12 Z)

(F01 H) (E02 A) (E01 A) (D83 B) (D82 B) ;
- DAB151 (F12 H) (D48 Z) ; - DAA151 (F08 B) (D47 Z) ;
- X0415 (D49 A) (D48 A) (D47 A) (D46 Z) ;
- SDD151 (Z38A01 D) (Z201 Z) (E38A01 D) (E01 Z) (D45 EN) ;
- X0414 (Z146 A) (D46 A) (D45 ZI) ; - D151 (E14 C) (D45 IO) ;
- DAB141 (F12 G) (D42 Z) ; - DAA141 (F08 A) (D41 Z) ;
- X0413 (D43 A) (D42 A) (D41 A) (D40 Z) ;
- SDD141 (Z38A02 D) (Z202 Z) (E38A02 D) (E02 Z) (D39 EN) ;
- VIH60 (D45 PI) (D39 PO) ; - X0412 (Z140 A) (D40 A) (D39 ZI) ;
- D141 (E13 C) (D39 IO) ; - SDI131 (E16 B) (D37 Z) ;
- DAB131 (F12 F) (D36 Z) ; - DAA131 (F07 B) (D35 Z) ;
- X0411 (D37 A) (D36 A) (D35 A) (D34 Z) ;
- VIH58 (Z193 Z) (D93 Z) (D33 PI) ;
- SDD131 (Z38A03 D) (Z203 Z) (E38A03 D) (E03 Z) (D33 EN) ;
- VIH59 (D39 PI) (D33 PO) ; - X0410 (Z134 A) (D34 A) (D33 ZI) ;
- D131 (E12 C) (D33 IO) ; - SDI101 (E15 B) (D19 Z) ; ...
- X0315 (C60 A) (C59 A) (C58 A) (C57 Z) ;
- SDD071 (Z211 Z) (E11 Z) (C56 EN) ;
- VIH53 (Z190 Z) (D90 Z) (D02 PI) (C56 PO) ;
- X0314 (Z57 A) (C57 A) (C56 ZI) ;
- D071 (E08 C) (C56 IO) ; - SDI061 (E11 B) (C54 Z) ;
- DAB061 (F09 H) (C53 Z) ; - DAA061 (F04 A) (C52 Z) ;
- X0313 (C54 A) (C53 A) (C52 A) (C51 Z) ;
- SDD061 (Z212 Z) (E12 Z) (C50 EN) ;
- VIH52 (Z189 Z) (D89 Z) (C56 PI) (C50 PO) ;
- X0312 (Z51 A) (C51 A) (C50 ZI) ;
- D061 (E07 C) (C50 IO) ; - SDI051 (E16 A) (C48 Z) ;
- DAB051 (F09 G) (C47 Z) ; - DAA051 (F01 G) (C46 Z) ;

LEF/DEF 5.7 Language Reference
Examples

November 2009 348 Product Version 5.7

- X0311 (C48 A) (C47 A) (C46 A) (C45 Z) ;
- SDD051 (Z213 Z) (E13 Z) (C44 EN) ;
- VIH51 (Z188 Z) (D88 Z) (C50 PI) (C44 PO) ;
- X0310 (Z45 A) (C45 A) (C44 ZI) ;
- D051 (E06 C) (C44 IO) ; - SDI041 (E15 A) (C42 Z) ;
- DAB041 (F09 F) (C41 Z) ; - DAA041 (F01 F) (C40 Z) ;
- X0309 (C42 A) (C41 A) (C40 A) (C39 Z) ;
- SDD041 (Z214 Z) (E14 Z) (C37 EN) ;
- VIH50 (Z187 Z) (D87 Z) (C44 PI) (C37 PO) ;
- X0308 (Z39 A) (C39 A) (C37 ZI) ;
- D041 (E05 C) (C37 IO) ; - SDI031 (E14 A) (C35 Z) ;
- DAB031 (F09 E) (C34 Z) ; - DAA031 (F01 E) (C33 Z) ;
- X0307 (C35 A) (C34 A) (C33 A) (C32 Z) ;
- SDD031 (Z215 Z) (E15 Z) (C31 EN) ;
- VIH49 (Z186 Z) (D86 Z) (C37 PI) (C31 PO) ;
- X0306 (Z32 A) (C32 A) (C31 ZI) ;
- D031 (E04 C) (C31 IO) ; - SDI021 (E13 A) (C29 Z) ;
- DAB021 (F09 D) (C28 Z) ; - DAA021 (F01 D) (C27 Z) ;
- X0305 (C29 A) (C28 A) (C27 A) (C26 Z) ;
- SDD021 (Z216 Z) (E16 Z) (C25 EN) ;
- VIH48 (Z185 Z) (D85 Z) (C31 PI) (C25 PO) ;
- X0304 (Z26 A) (C26 A) (C25 ZI) ;
- D021 (E03 C) (C25 IO) ; - SDI011 (E12 A) (C23 Z) ;
- DAB011 (F09 C) (C22 Z) ; - DAA011 (F01 C) (C21 Z) ;
- X0303 (C23 A) (C22 A) (C21 A) (C20 Z) ;
- SDD011 (Z209 Z) (E09 Z) (C19 EN) ;
- VIH47 (Z184 Z) (D84 Z) (C25 PI) (C19 PO) ;
- X0302 (Z20 A) (C20 A) (C19 ZI) ;
- D011 (E02 C) (C19 IO) ; - SDI001 (E11 A) (C17 Z) ;
- DAB001 (F09 B) (C16 Z) ; - DAA001 (F01 B) (C15 Z) ;
- X0301 (Z14 A) (C17 A) (C16 A) (C15 A) (C14 Z) ;
- VIH45 (Z182 Z) (D82 Z) (C13 PI) ;
- SDD001 (Z210 Z) (E10 Z) (C13 EN) ;
- VIH46 (Z183 Z) (D83 Z) (C19 PI) (C13 PO) ;
- X0300 (C14 A) (C13 ZI) ; - D001 (E01 C) (C13 IO) ;
- CCLKB0 (Z234 Z) (Z189 A) (E34 Z) (D89 A) (C11 A) ;
- VIH10 (EE16 PI) (C11 PO) ;
- STRAAA (Z206 A) (E06 A) (C11 Z) ;
- CCLKA0 (Z233 Z) (Z188 A) (E33 Z) (D88 A) (C10 A) ;
- VIH9 (C11 PI) (C10 PO) ;
- STRB00 (Z192 B) (D92 B) (C10 Z) ;
- CRLINB1 (Z232 Z) (Z187 A) (E32 Z) (D87 A) (C09 A) ;
- VIH8 (C10 PI) (C09 PO) ;
- STRA00 (Z187 B) (D87 B) (C09 Z) ;
- CRLINA1 (Z231 Z) (Z186 A) (E31 Z) (D86 A) (C08 A) ;
- VIH7 (C09 PI) (C08 PO) ;
- X10001 (E38A04 G) (E38A02 G) (C08 Z) ;
- NXLINB1 (Z230 Z) (Z185 A) (E30 Z) (D85 A) (C07 A) ;
- VIH6 (C08 PI) (C07 PO) ;
- CLRX00 (Z38A04 CD) (Z38A02 CD) (E38A04 CD) (E38A02 CD)

(C07 Z) ;

LEF/DEF 5.7 Language Reference
Examples

November 2009 349 Product Version 5.7

- NXLINA1 (Z229 Z) (Z184 A) (E29 Z) (D84 A) (C06 A) ;
- VIH5 (C07 PI) (C06 PO) ;
- STRBB0 (Z205 B) (Z193 B) (E05 B) (D93 B) (C06 Z) ;
- RPTB1 (Z228 Z) (Z183 A) (E28 Z) (D83 A) (C05 A) ;
- VIH4 (C06 PI) (C05 PO) ;
- STRAA0 (Z205 A) (Z186 B) (E05 A) (D86 B) (C05 Z) ;
- RPTA1 (Z227 Z) (Z182 A) (E27 Z) (D82 A) (C04 A) ;
- VIH3 (C05 PI) (C04 PO) ;
- STRB0 (Z204 B) (Z203 B) (Z191 B) (Z190 B) (E04 B)

(E03 B) (D91 B) (D90 B) (C04 Z) ;
- CNTENB0 (Z236 Z) (Z191 A) (E36 Z) (D91 A) (C02 A) ;
- VIH2 (C04 PI) (C02 PO) ;
- STRA0 (Z204 A) (Z203 A) (Z185 B) (Z184 B) (E04 A)

(E03 A) (D85 B) (D84 B) (C02 Z) ;
- CNTENA0 (Z235 Z) (Z190 A) (E35 Z) (D90 A) (C01 A) ;
- VIH1 (C02 PI) (C01 PO) ; - CALCH (E37 A) (C01 Z) ;

#

Scan Chain Synthesis Example

You define the scan chain in the COMPONENTS and SCANCHAINS sections in your DEF file.

COMPONENTS 100 ;
- SIN MUX ;
- SOUT PAD ;
- C1 SDFF ;
- C2 SDFF ;
- C3 SDFF ;
- C4 SDFF ;
- B1 BUF ;
- A1 AND ; ...
END COMPONENTS

NETS 150 ;
- N1 (C1 SO) (C3 SI) ;
- N2 (C3 SO) (A1 A) ; ...
END NETS

You do not need to define any scan nets in the NETS section. This portion of the NETS section
shows the effect of the scan chain process on existing nets that use components you specify
in the SCANCHAINS section.

SCANCHAINS 1 ;
- SC

+ COMMONSCANPINS (IN SI) (OUT SO)
+ START SIN Z2
+ FLOATING C1 C2 C3

LEF/DEF 5.7 Language Reference
Examples

November 2009 350 Product Version 5.7

+ ORDERED C4 B1 (IN A) (OUT Q) ;
+ STOP SOUT A ;

END SCANCHAINS

Because components C1, C2, and C3 are floating, TROUTE SCANCHAIN can synthesize
them in any order in the chain. TROUTE synthesizes ordered components (C4 and B1) in the
order you specify.

LEF/DEF 5.7 Language Reference

November 2009 351 Product Version 5.7

B
Optimizing LEF Technology for Place and Route

This appendix contains the following information.

■ Overview

■ Guidelines for Routing Pitch on page 352

■ Guidelines for Wide Metal Spacing on page 354

■ Guidelines for Wire Extension at Vias on page 355

■ Guidelines for Default Vias on page 357

■ Guidelines for Stack Vias (MAR Vias) and Samenet Spacing on page 359

■ Example of an Optimized LEF Technology File on page 363

Overview

This appendix provides guidelines for defining the optimized technology section in the LEF
file to get the best performance using Cadence® place-and-route tools, especially Cadence
Ultra Router. The LEF syntax shown is based on Silicon Ensemble® Place-and-Route 5.2 or
newer.

For the following guidelines, the preferred routing direction for metal1 and all other odd metal
layers is horizontal. The preferred routing direction for metal2 and all other even metal layers
is vertical. Standard cells are arranged in horizontal rows.

This appendix discusses the following LEF statements.

LAYER layerName
TYPE ROUTING ;
PITCH distance ;
WIDTH defWidth ;
SPACING minSpacing [RANGE minwidth maxwidth] ;
WIREEXTENSION value ;

END layerName

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 352 Product Version 5.7

VIA viaName DEFAULT
[TOPSTACKONLY]
LAYER layerName RECT pt pt ; ...

END viaName

SPACING
SAMENET
 layerName layerName minSpace [STACK] ;

END SPACING

Guidelines for Routing Pitch

The following is a summary for choosing the right pitch for an existing design library. For
detailed information on determining routing pitch, refer to the Cadence Abstract Generator
User Guide.

Pitch Measurement

Line-to-via Via-to-via Line-to-line

Via

Routing
segment

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 353 Product Version 5.7

DESIGN RULE No. 1

Although the minimum metal1 routing pitch is 0.485um from the design rule, you should use
0.56um instead, to match the metal3 routing pitch in the same preferred direction.

LEF Construct No. 1

LAYER metal1
TYPE ROUTING ;
WIDTH 0.23 ;
SPACING 0.23 ;
PITCH 0.56 ;
DIRECTION HORIZONTAL ;

W.1 Minimum width of metal1 = 0.23 um

S.1 Minimum space between two metal1 regions = 0.23 um

W.2 Minimum and maximum width of cut1 = 0.26 um

E.1 Minimum extension of metal1 beyond cut1 = 0.01 um

W.3 Minimum width of metal3 = 0.28 um

S.2 Minimum space between two metal3 regions = 0.28 um

W.4 Minimum and maximum width of cut2 = 0.26 um

E.2 Minimum extension of metal1 beyond cut2 = 0.01 um

0.01

0.23 0.23

0.23
cut1

metal1

0.485 0.56

metal3

0.28

0.26

0.28 0.28

0.01

cut2

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 354 Product Version 5.7

END metal1

LAYER metal3
TYPE ROUTING ;
WIDTH 0.28 ;
SPACING 0.28 ;
PITCH 0.56 ;
DIRECTION HORIZONTAL ;

END metal3

Recommendations

■ Use line-to-via spacing for both the horizontal and vertical direction.

■ Allow diagonal vias with the routing pitch.

■ Align the routing pitch for metal1 and metal2, with the pins inside the standard cells.

■ Have uniform routing pitch in the same preferred direction. The pitch ratio should be 2 -
3 or 1 - 2. It is better to define the metal1 pitch larger than necessary in order to achieve
a 1 - 1 ratio because the metal1 width is usually smaller the metal2 and metal3
widths.

Pitch Recommendations for Library Development

■ All pins should be on the grid, and only those portions of the pins that are accessible to
the router should be modeled as pins. For example, 45 degree pin geometry.

■ The height of the cell should be the even multiple of the metal1 pitch, and the width of
the cell should be the even multiple of the metal2 pitch.

■ The blockage modeling, especially for metal1, should be simplified as much as
possible. For example, it is very common for the entire area within the cell boundary to
be obstructed in metal1, so use a single rectangular blockage instead of many small
blockages.

Guidelines for Wide Metal Spacing

The SPACING statement in the LEF LAYER section is applied to both regular and special
wires. You can use the Cadence® ultra router option frouteUseRangeRule to determine
which objects to check against the SPACING RANGE statement. The default checks both pin
and obstruction.

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 355 Product Version 5.7

DESIGN RULE No. 2

LEF CONSTRUCT No. 2

LAYER metal1
WIDTH 0.23 ;
SPACING 0.23 ;
SPACING 0.6 RANGE 10.002 1000 ;

END metal1

Guidelines for Wire Extension at Vias

The following guidelines are for wire extension at vias.

S.1 Minimum space between two metal1 regions = 0.23 um

S.2 Minimum space between metal lines with one or both metal line width and
length are greater than 10um = 0.6 um

0.6

0.23

metal1

metal1

metal1

0.23

> 10

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 356 Product Version 5.7

DESIGN RULE No. 3

LEF CONSTRUCT No. 3

LAYER metal2
TYPE ROUTING ;
WIDTH 0.28 ;
SPACING 0.28 ;
PITCH 0.56 ;
WIREEXTENSION 0.19 ;
DIRECTION VERTICAL ;

END metal2

VIA via23 DEFAULT
LAYER metal2 ;

RECT -0.14 -0.14 0.14 0.14 ; # Use square via
LAYER cut2 ;

RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal3 ;

RECT -0.14 -0.14 0.14 0.14 ; # Use square via

W.1 Minimum and maximum width of cut1 = 0.26 um

W.2 Minimum width of metal2 = 0.28 um

E.1 Minimum extension of metal2 beyond cut1 = 0.01 um

E.2 Minimum extension of metal2 end-of-line region beyond cut1 = 0.06 um

0.26

0.13 + 0.06 = 0.19
0.06

0.28

metal2

cut1
0.01

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 357 Product Version 5.7

END via23

Recommendations

■ Use the WIREEXTENSION statement instead of defining multiple vias because the width
of the metal2 in cut1 is the same as the default routing width of the metal2 layer.

■ Define the DEFAULT VIA as a square via.

Guidelines for Default Vias

The following guidelines are for default vias.

DESIGN RULE No. 4

W.1 Minimum width of metal1 = 0.23 um

W.2 Minimum and maximum width of cut1 = 0.26 um

E.1 Minimum extension of metal1 beyond cut1 = 0.01 um

E.2 Minimum extension of metal1 end-of-line region beyond cut1 = 0.06 um

0.23metal1

0.26

0.06

0.01

cut1

Case A: Case B:

0.23metal1
0.06

0.26

0.01

cut1

Use WIREEXTENSION and
square DEFAULT VIA

Use Horizontal and Vertical DEFAULT VIAs

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 358 Product Version 5.7

LEF CONSTRUCT No. 4 (Case B)

LAYER metal1
TYPE ROUTING ;
WIDTH 0.23 ;
SPACING 0.23 ;
PITCH 0.56 ;
DIRECTION HORIZONTAL ;

END metal1

VIA via12_H DEFAULT
LAYER metal1 ;

RECT -0.19 -0.14 0.19 0.14 ; # metal1 end-of-line
extension 0.6 in both directions

LAYER cut1 ;
RECT -0.13 -0.13 0.13 0.13 ;

LAYER metal2 ;
RECT -0.14 -0.14 0.14 0.14 ;

END via12_H

VIA via12_V DEFAULT
LAYER metal1 ;

RECT -0.14 -0.19 0.14 0.19 ; # metal1 end-of-line
extension 0.6 in both directions

LAYER cut1 ;
RECT -0.13 -0.13 0.13 0.13 ;

LAYER metal2 ;
RECT -0.14 -0.14 0.14 0.14 ;

END via12_V

Recommendations

■ If the width of the end-of-line metal extension is the same as the default metal routing
width, as in Case A, use the WIREEXTENSION statement in the LEF LAYER section, and
define a square via in the DEFAULT VIA section.

■ If the width of the end-of-line metal extension is the same as the width of the via metal,
as in Case B, define one horizontal DEFAULT VIA and one vertical DEFAULT VIA to
cover the required metal extension area in both pregerred and non-preferred routing
directions. Do not use the WIREEXTENSION statement in the LEF LAYER section.

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 359 Product Version 5.7

Guidelines for Stack Vias (MAR Vias) and Samenet
Spacing

The following guidelines are for stack vias (minimum area rule) and SAMENET SPACING.

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 360 Product Version 5.7

DESIGN RULE No. 5

W.1 Minimum width of metal2 = 0.28 um

W.2 Minimum and maximum width of cut2 = 0.26 um

E.1 Minimum extension of metal2 beyond cut2 = 0.01 um

A.1 Minimum area of metal2 = 0.2025 um

C.1 Cut2 can be fully or partially stacked on cut1, contact or any combination

W.1 Minimum width of metal3 = 0.28 um

W.2 Minimum and maximum width of cut3 = 0.26 um

E.1 Minimum extension of metal2 beyond cut3 = 0.01 um

A.1 Minimum area of metal3 = 0.2025 um

C.1 Cut3 can be fully or partially stacked on cut2, cut1, contact or any
combination

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 361 Product Version 5.7

LEF CONSTRUCT No. 5

VIA via23_stack_north DEFAULT TOPOFSTACKONLY
LAYER metal2 ;

RECT -0.14 -0.14 0.14 0.6 ; # MAR = 0.28 x 0.74
LAYER cut2 ;

0.06 + 0.26 + 0.56 + 0.06 = 0.94

0.28
0.06 0.06

pitch = 0.56

cut2 cut2

Default Routing Segment:

Minimum routing area of metal3 = 0.28 x 0.94 = 0.2632 > 0.2.25 (MAR)

metal3

cut2

cut2
metal2

0.28

0.740.56

via23_stack_north via23_stack_south

MAR VIAs:

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 362 Product Version 5.7

RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal3 ;

RECT -0.14 -0.14 0.14 0.14 ;

END via23_stack_north

VIA via23_stack_south DEFAULT TOPOFSTACKONLY
LAYER metal2 ;

RECT -0.14 -0.6 0.14 0.14 ; # MAR = 0.28 x 0.74
LAYER cut2 ;

RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal3 ;

RECT -0.14 -0.14 0.14 0.14 ;

END via23_stack_south

VIA via34_stack_east DEFAULT TOPOFSTACKONLY
LAYER metal3 ;

RECT -0.14 -0.14 0.6 0.14 ; # MAR = 0.28 x 0.74
LAYER cut3 ;

RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal4 ;

RECT -0.14 -0.14 0.14 0.14 ;

END via34_stack_east

VIA via34_stack_west DEFAULT TOPOFSTACKONLY
LAYER metal3 ;

RECT -0.6 -0.14 0.14 0.14 ; # MAR = 0.28 x 0.74
LAYER cut3 ;

RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal4 ;

RECT -0.14 -0.14 0.14 0.14 ;

END via34_stack_west

Recommendations

■ The minimum metal routing segment (two vias between one pitch grid) with or without
end-of-line metal extension should automatically satisfy the minimum area rule.

■ If vias are stackable, create the TOPSTACKONLY vias with a rectangular shape blocking
only one neighboring grid for both sides of the preferred routing direction. In other words,
one north oriented and one south oriented for vertical-preferred routing layers, and one
east oriented and one west oriented for horizontal-preferred routing layers.

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 363 Product Version 5.7

■ Use slightly larger dimensions for the via size to make them an even number, so they
snap to the manufacturing grids.

■ The STACK keyword in the SAMENETSPACING statements only allows vias to be fully
overlapped (stacked) by SROUTE commands. To allow vias to be partially overlapped,
set the environment variable SROUTE.ALLOWOVERLAPINSTACKVIA to TRUE.

■ The metal1 layer does not require a MAR via because all metal1 pins should satisfy the
minimum area rules.

Example of an Optimized LEF Technology File
VERSION 5.2 ;

NAMESCASESENSITIVE ON ;

BUSBITCHARS "[]" ;

UNITS
DATABASE MICRONS 100 ;

END UNITS

LAYER metal1
TYPE ROUTING ;
WIDTH 0.23 ;
SPACING 0.23 ;
SPACING 0.6 RANGE 10.02 1000 ;
PITCH 0.56 ;
DIRECTION HORIZONTAL ;

END metal1

LAYER cut1
TYPE CUT ;

END cut1

LAYER metal2
TYPE ROUTING ;
WIDTH 0.28 ;
SPACING 0.28 ;
SPACING 0.6 RANGE 10.02 1000 ;
PITCH 0.56 ;
WIREEXTENSION 0.19 ;
DIRECTION VERTICAL ;

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 364 Product Version 5.7

END metal2

LAYER cut2
TYPE CUT ;

END cut2

LAYER metal3
TYPE ROUTING ;
WIDTH 0.28 ;
SPACING 0.28 ;
SPACING 0.6 RANGE 10.02 1000 ;
PITCH 0.56 ;
WIREEXTENSION 0.19 ;
DIRECTION HORIZONTAL ;

END metal3

LAYER cut3
TYPE CUT ;

END cut3

LAYER metal4
TYPE ROUTING ;
WIDTH 0.28 ;
SPACING 0.28 ;
SPACING 0.6 RANGE 10.02 1000 ;
PITCH 0.56 ;
WIREEXTENSION 0.19 ;
DIRECTION VERTICAL ;

END metal4

LAYER cut4
TYPE CUT ;

END cut4

LAYER metal5
TYPE ROUTING ;
WIDTH 0.28 ;
SPACING 0.28 ;
SPACING 0.6 RANGE 10.02 1000 ;

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 365 Product Version 5.7

PITCH 0.56 ;
WIREEXTENSION 0.19 ;
DIRECTION HORIZONTAL ;

END metal5

LAYER cut5
TYPE CUT ;

END cut5

LAYER metal6
TYPE ROUTING ;
WIDTH 0.44 ;
SPACING 0.46 ;
SPACING 0.6 RANGE 10.02 1000 ;
PITCH 1.12 ;
DIRECTION VERTICAL ;

END metal6

start DEFAULT VIA

VIA via12_H DEFAULT
LAYER metal1 ;

RECT -0.19 -0.14 0.19 0.14 ; # metal1 end-of-line ext 0.6
LAYER cut1 ;

RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal2 ;

RECT -0.14 -0.14 0.14 0.14 ;

END via12_H

VIA via12_V DEFAULT
LAYER metal1 ;

RECT -0.14 -0.19 0.14 0.19 ; # metal1 end-of-line ext 0.6
LAYER cut1 ;

RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal2 ;

RECT -0.14 -0.14 0.14 0.14 ;

END via12_V

VIA via23 DEFAULT
LAYER metal2 ;

RECT -0.14 -0.14 0.14 0.14 ;
LAYER cut2 ;

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 366 Product Version 5.7

RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal3 ;

RECT -0.14 -0.14 0.14 0.14 ;

END via23

VIA via34 DEFAULT
LAYER metal3 ;

RECT -0.14 -0.14 0.14 0.14 ;
LAYER cut3 ;

RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal4 ;

RECT -0.14 -0.14 0.14 0.14 ;

END via34

VIA via45 DEFAULT
LAYER metal4 ;

RECT -0.14 -0.14 0.14 0.14 ;
LAYER cut4 ;

RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal5 ;

RECT -0.14 -0.14 0.14 0.14 ;

END via45

VIA via56_H DEFAULT
LAYER metal5 ;

RECT -0.24 -0.19 0.24 0.19 ;
LAYER cut5 ;

RECT -0.18 -0.18 0.18 0.18 ;
LAYER metal6 ;

RECT -0.27 -0.27 0.27 0.27 ;

END via56_H

VIA via56_V DEFAULT
LAYER metal5 ;

RECT -0.19 -0.24 0.19 0.24 ;
LAYER cut5 ;

RECT -0.18 -0.18 0.18 0.18 ;
LAYER metal6 ;

RECT -0.27 -0.27 0.27 0.27 ;

END via56_V

end DEFAULT VIA

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 367 Product Version 5.7

start STACK VIA

VIA via23_stack_north DEFAULT TOPOFSTACKONLY
LAYER metal2 ;

RECT -0.14 -0.14 0.14 0.6 ; # MAR = 0.28 x 0.74
LAYER cut2 ;

RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal3 ;

RECT -0.14 -0.14 0.14 0.14 ;

END via23_stack_north

VIA via23_stack_south DEFAULT TOPOFSTACKONLY
LAYER metal2 ;

RECT -0.14 -0.6 0.14 0.14 ; # MAR = 0.28 x 0.74
LAYER cut2 ;

RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal3 ;

RECT -0.14 -0.14 0.14 0.14 ;

END via23_stack_south

VIA via34_stack_east DEFAULT TOPOFSTACKONLY
LAYER metal3 ;

RECT -0.14 -0.14 0.6 0.14 ; # MAR = 0.28 x 0.74
LAYER cut3 ;

RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal4 ;

RECT -0.14 -0.14 0.14 0.14 ;

END via34_stack_east

VIA via34_stack_west DEFAULT TOPOFSTACKONLY
LAYER metal3 ;

RECT -0.6 -0.14 0.14 0.14 ; # MAR = 0.28 x 0.74
LAYER cut3 ;

RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal4 ;

RECT -0.14 -0.14 0.14 0.14 ;

END via34_stack_west

VIA via45_stack_north DEFAULT TOPOFSTACKONLY
LAYER metal4 ;

RECT -0.14 -0.14 0.14 0.6 ; # MAR = 0.28 x 0.74
LAYER cut4 ;

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

November 2009 368 Product Version 5.7

RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal5 ;

RECT -0.14 -0.14 0.14 0.14 ;

END via45_stack_north

VIA via45_stack_south DEFAULT TOPOFSTACKONLY
LAYER metal4 ;

RECT -0.14 -0.6 0.14 0.14 ; # MAR = 0.28 x 0.74
LAYER cut4 ;

RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal5 ;

RECT -0.14 -0.14 0.14 0.14 ;

END via45_stack_south

VIA via56_stack_east DEFAULT TOPOFSTACKONLY
LAYER metal5 ;

RECT -0.19 -0.19 0.35 0.19 ; # MAR = 0.38 x 0.54
LAYER cut5 ;

RECT -0.18 -0.18 0.18 0.18 ;
LAYER metal6 ;

RECT -0.27 -0.27 0.27 0.27 ;

END via56_stack_east

VIA via56_stack_west DEFAULT TOPOFSTACKONLY
LAYER metal5 ;

RECT -0.35 -0.19 0.19 0.19 ; # MAR = 0.38 x 0.54
LAYER cut5 ;

RECT -0.18 -0.18 0.18 0.18 ;
LAYER metal6 ;

RECT -0.27 -0.27 0.27 0.27 ;

END via56_stack_west

end STACK VIA

LEF/DEF 5.7 Language Reference

November 2009 369 Product Version 5.7

C
Calculating and Fixing Process Antenna
Violations

This appendix describes process antenna violations and how you can use the router to
correct them. It includes the following sections:

■ Overview on page 370

■ Using Process Antenna Keywords in the LEF and DEF Files on page 374

■ Calculating Antenna Ratios on page 375

■ Checking for Antenna Violations on page 392

■ Using Antenna Diode Cells on page 403

■ Using DiffUseOnly on page 404

■ Calculations for Hierarchical Designs on page 405

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 370 Product Version 5.7

Overview

During deep submicron wafer fabrication, gate damage can occur when excessive static
charges accumulate and discharge, passing current through a gate. If the area of the layer
connected directly to the gate or connected to the gate through lower layers is large relative
to the area of the gate and the static charges are discharged through the gate, the discharge
can damage the oxide that insulates the gate and cause the chip to fail. This phenomenon is
called the process antenna effect (PAE).

To determine the extent of the PAE, the router calculates the area of the layer relative to the
area of the gates connected to it, or connected to it through lower layers. The number it
calculates is called the antenna ratio. Each foundry sets a maximum allowable antenna ratio
for the chips it fabricates.

For example, assume a foundry sets a maximum allowable antenna ratio of 500. If a net has
two input gates that each have an area of 1 square micron, any metal layers that connect to
the gates and have an area larger than 1,000 square microns have process antenna
violations because they would cause the antenna ratio to be higher than 500:

To tell the router the values to use when it calculates the antenna ratio, you set antenna
keywords in the LEF and DEF files. The router measures potential damage caused by PAE
by checking the ratio it calculates against the values specified by the antenna keywords.
When it finds a net whose antenna ratio for a specified layer exceeds the maximum allowed
value for that layer, it finds a process antenna violation and attempts to fix it using one or
both of the following methods:

■ Changing the routing so the routing layers connected to a gate or connected to a gate
through lower layers are not so large that they build enough static charge to damage the
gate

■ Inserting diodes that protect the gate by providing an alternate path to discharge the
static charge

LEF can specify several types of antenna ratios, including ratios for PAE damage on one layer
only and ratios calculated by adding accumulated damage on several layers. In addition, LEF
can specify ratios based on the area of the metal wires or the cut area of vias.

Antenna Ratio =
Area of metal layer

Area of gates
500 =

1000

1 + 1

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 371 Product Version 5.7

What Are Process Antennas?

In a chip manufacturing process, metal layers are built up, layer by layer, starting with the first-
level metal layer (usually referred to as metal1). Next, the metal1-metal2 vias are created,
then the second-level metal layer, then metal2-metal3 vias, and so on.

On each metal layer, metal is initially deposited so it covers the entire chip. Then, the
unneeded portions of the metal are removed by etching, typically in plasma (charged
particles).

Figure C-1 on page 371 shows a section of an imaginary chip after the unneeded metal from
metal2 is removed.

Figure C-1

In the figure,

■ Gate areas for transistors are labelled Gk, where k is a sequential number starting with 1.

■ Wire segments are labelled Ni,j

❑ N signifies that the wire segment is an electrically connected node

❑ i specifies the metal layer to which the node belongs

❑ j is a sequential number for the node on that metal layer

■ Nodes are labelled so that all pieces of the metal geometry on layer metali that are
electrically connected by conductors at layers below metali belong to the same node.
For example, the two metal2 wire segments that belong to node N2,1 are electrically
connected to gates G1, G2, and G3 by a piece of wire on metal1 (labelled N1,2).

Thick oxide insulates the already-fabricated structures below metal2, preventing them from
direct contact with the plasma. The metal2 geometries, however, are exposed to the plasma,

G1 G3 G4G2 Diode

N1,1 N1,2 N1,3 N1,4

N2,3N2,1 N2,2N2,1

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 372 Product Version 5.7

and collect charge from it. As the metal geometries collect charge, they build up voltage
potential.

Because the metal geometries collect charge during the metallization process, they are
referred to as process antennas. In general, the more area covered by the metal geometries
that are exposed to the plasma (that is, the larger the process antennas), the more charge
they can collect.

In Figure C-1 on page 371, note the following:

■ Node N1,1 is electrically connected to gates G1 and G2.

■ Node N1,2 is electrically connected to gate G3.

■ Node N2,1 (node N2,1 has two pieces of metal) is electrically connected to gates G1, G2,
and G3.

■ Node N1,3 and node N2,2 are electrically connected to gate G4.

■ Node N1,4 and node N2,3 are electrically connected to the diffusion (diode).

What Is the Process Antenna Effect (PAE)?

If the voltage potential across the gate oxide becomes large enough to cause current to flow
across the gate oxide, from the process antennas to the gates to which the process antennas
are electrically connected, the current can damage the gate oxide. The process antenna
effect (PAE) is the term used to describe the build-up of charge and increase in voltage
potential. The larger the total gate area that is electrically connected to the process antennas
on a specific layer, the more charge the connected gates can withstand.

In the imaginary chip in Figure C-1 on page 371, if the current were to flow, the following
would happen, as a result of the node-gate connections:

■ The charge collected by process antennas on nodes N1,1, N1,2, and N2,1 would be
discharged through one or more of gates G1, G2, and G3.

■ The charge collected by process antennas on nodes N1,3 and N2,2 would be discharged
through gate G4.

■ The charge collected by process antennas on node N1,4 and N2,3 would be discharged
through the diode.

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 373 Product Version 5.7

What Is the Antenna Ratio?

Because the total gate area that is electrically connected to a node (and therefore connected
to the process antennas) determines the amount of charge from the process antennas the
electrically connected gates can withstand, and because the size of the process antennas
connected to the node determines how much charge the antennas collect, it is useful to
calculate the ratio of the size of the process antennas on a node to the size of the gate area
that is electrically connected to the node. This is the antenna ratio. The greater the antenna
ratio, the greater the potential for damage to the gate oxide.

If you check a chip and obtain an antenna ratio greater than the threshold specified by the
foundry, gate damage is likely to occur.

Figure C-2 on page 373 shows the same section of the imaginary chip as the previous figure.
The shaded areas in this figure represent the process antennas on node N2,1 and the gates
to which they connect: gates G1, G2, and G3. The shaded gates discharge the electricity
collected by the process antennas on node N2,1.

Figure C-2

What Can Be Done to Improve the Antenna Ratio?

If there is an alternate path for the current to flow, the charge on the node can be discharged
through the alternate path before the voltage potential reaches a level that damages the gate.
For example, a Zener diode, which allows current to flow in the reverse direction when the
reverse bias reaches a specified breakdown voltage, provides an alternate path, and helps
avoid building up so much charge at the node that the charge is discharged through the gate

G1 G3 G4G2 Diode

N1,1 N1,2 N1,3 N1,4

N2,1 N2,2 N2,3N2,1

Antenna Ratio =
Area of process antennas on a node

Area of gates electrically connected to the node

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 374 Product Version 5.7

oxide. Diffusion features that form the output of a logic gate (source and drain of transistors)
can provide such an alternate discharge path.

Routers typically use two methods to decrease the antenna ratio:

■ Changing the routing by breaking the metal layers into smaller pieces

■ Inserting antenna diode cells to discharge the current

Both of these methods supply alternate paths for the current. For details about how to specify
antenna diode cells, see “Using Antenna Diode Cells” on page 403.

Using Process Antenna Keywords in the LEF and DEF
Files

You tell the router the values to use for the gate, diffusion, and metal areas by setting values
for process antenna keywords in the LEF and DEF files for your design. You also tell the router
the values to use for the threshold process antenna ratios by setting the keywords.

The following table lists LEF version 5.5 antenna keywords.

If the keyword
ends with ... It refers to ... Examples

area Area of the gates or
diffusion

Measured in square
microns

ANTENNADIFFAREA
ANTENNAGATEAREA

factor Area multiplier used
for the metal nodes

ANTENNAAREAFACTOR
ANTENNASIDEAREAFACTOR

Note: Use DIFFUSEONLY if you want the
multiplier to apply only when connecting to
diffusion. For more information, see “Using
DiffUseOnly” on page 404.

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 375 Product Version 5.7

Calculating Antenna Ratios

Tools should calculate antenna ratios using one of the following models:

■ The partial checking model

Using this model, you calculate damage to gates by process antennas on one layer. For
example, if you use the partial checking model to calculate the PAE referred to a gate
from metal3, you do not consider any potential damages referred to that gate from
metallization steps on metal1 or metal2.

You use this model to calculate a partial antenna ratio (PAR). A PAR tells you if any single
metallization step is likely to inflict damage to a gate.

■ The cumulative checking model

This model is more conservative than the partial checking model. It adds damage to a
gate caused by the PAE referred to the gate from each metallization step, starting from
metal1 up to the layer that is being checked. For example, if you use the cumulative
checking model to calculate the PAE referred to a gate from metal3, you add the PAR
from the relevant antenna areas on metal1, metal2, and metal3.

You use this model to calculate a cumulative antenna ratio (CAR). A CAR adds the
damages on successive layers together to accumulate them as the layers are built up.

Calculating the Antenna Area

The area used to model the charge-collecting ability of a node is called the antenna area.
The router calculates the antenna area for one of the following areas:

■ The drawn area (the top surface area of the metal shape)

ratio Relationship the
router is calculating

Cum is used in
keywords for
cumulative antenna
ratio.

ANTENNAAREARATIO
ANTENNASIDEAREARATIO
ANTENNADIFFAREARATIO
ANTENNADIFFSIDEAREARATIO
ANTENNACUMAREARATIO
ANTENNACUMSIDEAREARATIO
ANTENNACUMDIFFAREARATIO
ANTENNACUMDIFFSIDEAREARATIO

If the keyword
ends with ... It refers to ... Examples

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 376 Product Version 5.7

■ The side area (the area of the sides of the metal shape)

The height of each side is taken from the THICKNESS statement for that layer.

Figure C-3 on page 376 shows drawn and side areas.

Figure C-3

Antenna Area Factor

You can increase or decrease the calculated antenna area by specifying an antenna area
factor in the LEF file.

■ Use ANTENNAAREAFACTOR to adjust the calculation of the drawn area.

■ Use ANTENNASIDEAREAFACTOR to adjust the calculation of the side area.

The default value of both factors is 1.

The final ratio check can be scaled (that is, made more or less pessimistic) by using the
ANTENNAAREAFACTOR or ANTENNASIDEAREAFACTOR values that are used to multiply the
final PAR and CAR values.

Note: The LEF and DEF ANTENNA values are always unscaled values; only the final ratio-
check is affected by the scale factors.

Calculating a PAR

The general PAR(m1) equation for a single layer is calculated as:

The existing ANTENNAAREAFACTOR statement is shown as metalFactor for the metal
area. It has no effect on the diff_area, gate_area, or cut_area shown. Likewise, the
ANTENNAAREADIFFREDUCEPWL statement is shown as diffMetalReduceFactor, the

Side areaDrawn area

PAR(mi) = {(metalFactor x metal_area) x diffMetalReduceFactor - minusDiffFactor x diff_area}

(gate_area + plusDiffFactor x diff_area)

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 377 Product Version 5.7

ANTENNAAREAMINUSDIFF statement is shown as minusDiffFactor, and the
ANTENNAGATEPLUSDIFF statement is shown as plusDiffFactor. For cut layer, the ratio
equation illustrates the effect of an ANTENNAAREAFACTOR cutFactor statement as
metalFactor. If there is no preceding ANTENNAAREAFACTOR statement, the
metalFactor value defaults to 1.0.

For single layer rules, the PAR value is compared to ANTENNA[SIDE]AREARATIO and/or
ANTENNADIFF[SIDE]AREARATIO, as appropriate. For cumulative layer rules, the CAR
values is compared to ANTENNACUM[SIDE]AREARATIO and/or
ANTENNACUMDIFF[SIDE]AREARATIO, as appropriate.

The following example uses a simplified formula to calculate a PAR, without including the
various area factors:

PAR(Ni,j, Gk) is the partial antenna ratio for node j on metali with respect to gate Gk, where
Gk is electrically connected to node Ni,j by layer i or below.

Area(Ni,j) is the drawn or side area of node Ni,j.

C(Ni,j) is the set of gates Gk that are electrically connected to Ni,j through the layers below
metali.

Area(Gk) is the drawn or side area of gate Gk. (The reason to include the Gk parameter for
PAR is to maintain uniformity with the notation for CAR.)

Note: For a specified node Ni,j, the PAR(Ni,j, Gk) for all gates Gk that are connected to
the node Ni,j using metali or below are identical.

Calculations for PAR on the First Metal Layer

Figure C-4 on page 378 shows a section of an imaginary chip after the first metal layer is
processed.

PAR Ni,j,Gk() Area Ni,j()

Area Gk()
Gk

Gk C Ni,j()∈
∑

---=

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 378 Product Version 5.7

Figure C-4

To calculate PAR(Ni,j, Gk) for node N1,1, a node on the first metal layer, with respect to gate
G1, use the following formula:

Because gates G1 and G2 both connect to node N1,1, the following statement is true:

PAR(N1,1,G1) = PAR(N1,1,G2)

To calculate PAR for node N1,2, another node on the first metal layer, with respect to gate G3,
use the following formula:

To calculate PAR(Ni,j, Gk) for node N1,3, another node on the first metal layer, with respect
to gate G4, use the following formula:

Calculations for PAR on the Second Metal Layer

Figure C-5 on page 379 shows the chip after the second metal layer is processed.

G1 G3 G4G2 Diode

N1,1 N1,2 N1,3 N1,4

The shaded areas in the figure represent the wire segment and the
gates whose areas you must compute to evaluate the formula below.

PAR (N1,1,G1) =
Area(N1,1)

Area(G1) + Area(G2)

PAR (N1,2,G3) =
Area(N1,2)

 Area(G3)

PAR (N1,3,G4) =
Area(N1,3)

 Area(G4)

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 379 Product Version 5.7

Figure C-5

N2,1 consists of two pieces of metal on the second layer that are electrically connected at this
step in the fabrication process. Therefore, to calculate PAR(N2,1,G1), you must add the area
of both pieces together.

To calculate PAR(Ni,j,Gk) for node N2,1, a node on the second metal layer, with respect to
gate G1, use the following formula:

As on the first layer,
PAR(N2,1,G1) = PAR(N2,1,G2) = PAR(N2,1,G3)

Calculations for PAR on the Third Metal Layer

Figure C-6 on page 380 shows the chip after the third metal layer is processed.

G1 G3 G4G2 Diode

N1,1 N1,2 N1,3 N1,4

The shaded areas in the figure represent the wire segments and the
gates whose areas you must compute to evaluate the formula below.

N2,1 N2,2 N2,3N2,1

PAR (N2,1,G1) =
Area(N2,1)

Area(G1) + Area(G2) + Area(G3)

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 380 Product Version 5.7

Figure C-6

To calculate PAR(Ni,j, Gk)for node N3,1, a node on the third metal layer, with respect to gate
G1, use the following formula:

As on the prior layers,
PAR(N3,1,G1) = PAR(N3,1,G2) = PAR(N3,1,G3) = PAR(N3,1,G4)

Calculations for PAR on the Fourth Metal Layer

Figure C-7 on page 381 shows the chip after the fourth metal layer is processed.

G1 G3 G4G2 Diode

N1,1 N1,2 N1,3

N3,1 N3,2

N2,1 N2,1 N2,2 N2,3

N1,4

The shaded areas in the figure represent the wire segment and the
gates whose areas you must compute to evaluate the formula below.

PAR (N3,1,G1) =
Area(N3,1)

Area(G1) + Area(G2) + Area(G3) + Area(G4)

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 381 Product Version 5.7

Figure C-7

To calculate PAR(Ni,j, Gk) for the fourth metal layer, use the following formula:

As on the prior layers,
PAR(N4,1,G1) = PAR(N4,1,G2) = PAR(N4,1,G3) = PAR(N4,1,G4)

Note: Node N4,1 is connected to the diffusion layer through the output diode. After the router
calculates the antenna ratio, it compares its calculations to the area of the diffusion, instead
of the area of the gates.

Calculating a CAR

To calculate a CAR, the router adds the PARs for all the relevant nodes on the specified or
lower metal layers that are electrically connected to a gate. Therefore, CAR(Ni,j,Gk)
designates the cumulative damage to gate Gk by metallization steps up to the current level of
metal, i.

To create a single accumulative model that combines both metal and cut damage into one
model, specify the ANTENNACUMROUTINGPLUSCUT statement for the layer, so that:

G1 G3 G4G2 Diode

N1,1 N1,2 N1,3

N3,1 N3,2

N2,1 N2,1 N2,2 N2,3

N1,4

The shaded areas in the figure represent the wire segment and the
gates whose areas you must compute to evaluate the formula below.

N4,1

PAR (N4,1,G1) =
Area(N4,1)

 Area(G1) + Area(G2) + Area(G3) + Area(G4)

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 382 Product Version 5.7

CAR(mi) = PAR(mi) + CAR(vi-1)

This means that the CAR from the cut layer below this metal layer is accumulated, instead of
the CAR from the metal layer below this metal layer.

Note: In practice, the router only needs to keep track of the worst-case CAR; however, the
CARs for all of the gates shown in Figure C-8 on page 382 are described here.

The router calculates an antenna ratio with respect to a node-gate pair. To find the CAR for
the node Ni,j - gate Gk pair, you trace the path of the current between gate Gk and node Ni,j
and add the PAR with respect to gate Gk for the all nodes in the path between the first metal
layer and layer i that you can trace back to Gk.

Figure C-8

Important

In Figure C-8 on page 382, node N1,2 is not shaded because it was not electrically
connected to G2 when metal1 was processed. That is, because the charge
accumulated on N1,2 when metal1 was processed cannot damage gate G1, the
router does not include it in the calculations for CAR(N2,1,G1).

Another way to explain this is to say that the PAE from node N1,2 with respect to gate
G2 is 0.

G1 G3 G4G2 Diode

N1,1 N1,2 N1,3

N3,1 N3,2

N2,1 N2,1 N2,2 N2,3

N1,4

N4,1

The path of the current between gate G2 and node N4,1 is shaded.

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 383 Product Version 5.7

Calculations for CAR on the First Metal Layer

Figure C-9 on page 383 shows the chip after the first metal layer is processed.

Figure C-9

In the figure above,

CAR(N1,1,G1) = PAR(N1,1,G1)

CAR(N1,1,G2) = PAR(N1,1,G2)

Because PAR(N1,1,G1) equals PAR(N1,1,G2), CAR(N1,1,G1) equals CAR(N1,1,G2).

Note: In general, CAR(Ni,j,Gk) equals CAR(Ni,j,Gk’) if the two gates Gk and Gk’ are
electrically connected to the same node on metal1, the lowest layer that is subject to the
process antenna effect.

Calculations for CAR on the Second Metal Layer

Figure C-10 on page 384 shows the chip after the second metal layer is processed.

G1 G3 G4G2 Diode

N1,1 N1,2 N1,3 N1,4

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 384 Product Version 5.7

Figure C-10

Important

In the figure above, N1,2 is not included in the calculations for CAR(N2,1,G1)
because it was not electrically connected to G1 when metal1 was processed. That
is, because the charge accumulated on N1,2 when metal1 was processed cannot
damage gate G1, the router does not include it in the calculations for CAR(N2,1,G1).

In the figure above,

CAR(N2,1,G1) = PAR(N1,1,G1) + PAR(N2,1,G1)

CAR(N2,1,G2) = PAR(N1,1,G2) + PAR(N2,1,G2)

Gates G1 and G2 have the same history with regard to PAE because they are connected to
the same piece of metal1, so they have the same CAR for any node on a specified layer:

CAR(N2,1,G1) = CAR(N2,1,G2)

Calculations for CAR on the Third Metal Layer

Figure C-11 on page 385 shows the chip after the third metal layer is processed.

G1 G3 G4G2 Diode

N1,2 N1,3 N1,4

N2,2 N2,3

The path of the current between gate G1 and node N2,1 is shaded.
Note that node N2,1 comprises two pieces of metal.

N1,1

N2,1N2,1

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 385 Product Version 5.7

Figure C-11

Gate G1

In the figure above,

CAR(N3,1,G1) = PAR(N1,1,G1) + PAR(N2,1,G1) + PAR(N3,1,G1)

Gate G2

In the figure above,

CAR(N3,1,G2) = PAR(N1,1,G2) + PAR(N2,1,G2) + PAR(N3,1,G2)

CAR(N3,1,G1) equals CAR(N3,1,G2) because gates G1 and G2 are both electrically
connected to the same node, N1,1, on metal1 and therefore have the same history with
regard to PAE. Therefore, the formula for CAR(N3,2, G2) is CAR(N3,1,G1) = CAR(N3,1,G2)

Gates G3 and G4

Gates G3 and G4 are not connected to the same node on metal1 and therefore do not have
the same history with regard to PAE. Therefore, the CAR(N3,1,G3) and CAR(N3,1,G4) do
not necessarily equal CAR(N3,1,G1) or CAR(N3,1,G2).

In Figure C-12 on page 386, the relevant areas for calculating CAR for gate G3 are shaded.

G1 G3 G4G2 Diode

N1,1 N1,2 N1,3

N3,1 N3,2

N2,1 N2,1 N2,2 N2,3

N1,4

The path of the current between gate G1 and node N3,1 is shaded.

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 386 Product Version 5.7

Figure C-12

In the figure above,

CAR(N3,1,G3) = PAR(N1,2,G3) + PAR(N2,1,G3) + PAR(N3,1,G3)

In Figure C-13 on page 386, the relevant areas for calculating CAR for gate G4 are shaded.

Figure C-13

In the figure above,

CAR(N3,1,G4) = PAR(N1,3,G4) + PAR(N2,2,G4) + PAR(N3,1,G4)

G1 G3 G4G2 Diode

N1,1 N1,2 N1,3

N3,1 N3,2

N2,1 N2,1 N2,2 N2,3

N1,4

G1 G3 G4G2 Diode

N1,1 N1,2 N1,3

N3,1 N3,2

N2,1 N2,1 N2,2 N2,3

N1,4

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 387 Product Version 5.7

Calculations for CAR on the Fourth Metal Layer

The following figure shows the chip after the fourth metal layer is processed.

Note: Node N4,1 is connected to the diffusion layer through the output diode. After the router
calculates the antenna ratio, it compares its calculations to the area of the diffusion, instead
of the area of the gates.

Gates G1 and G2

In Figure C-14 on page 387, the relevant areas for calculating CAR(N4,1,G1) and
CAR(N4,1,G2) are shaded.

Figure C-14

In the figure above,

CAR(N4,1,G1) = PAR(N1,1,G1) + PAR(N2,1,G1)
 + PAR(N3,1,G1) + PAR(N4,1,G1)

CAR(N4,1,G2) = PAR(N1,1,G2) + PAR(N2,1,G2)
 + PAR(N3,1,G2) + PAR(N4,1,G2)

CAR(N4,1,G1) = CAR(N4,1,G2)

G1 G3 G4G2 Diode

N1,1 N1,2 N1,3

N3,1 N3,2

N2,1 N2,1 N2,2 N2,3

N1,4

N4,1

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 388 Product Version 5.7

Gate G3

In Figure C-15 on page 388, the relevant areas for calculating CAR(N4,1,G3) are shaded.

Figure C-15

In the figure above,

CAR(N4,1,G3) = PAR(N1,2,G3) + PAR(N2,1,G3)
 + PAR(N3,1,G3) + PAR(N4,1,G3)

CAR(N4,1,G3) does not equal CAR(N4,1,G1) or CAR(N4,1,G2) because it is not connected
to the same node on metal1.

Gate G4

In Figure C-16 on page 389, the relevant areas for calculating CAR(N4,1,G4) are shaded.

G1 G3 G4G2 Diode

N1,1 N1,2 N1,3

N3,1 N3,2

N2,1 N2,1 N2,2 N2,3

N1,4

N4,1

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 389 Product Version 5.7

Figure C-16

In the figure above,

CAR(N4,1,G4) = PAR(N1,3,G4) + PAR(N2,2,G4)
 + PAR(N3,1,G4) + PAR(N4,1,G4)

CAR(N4,1,G4) does not equal CAR(N4,1,G1), CAR(N4,1,G2), or CAR(N4,1,G3) because
it is not connected to the same node on metal1.

Calculating Ratios for a Cut Layer

The router calculates damage from a cut layer separately from damage from a metal layer.
Calculations for the cut layers do not use side area modelling.

Calculating a PAR on a Cut Layer

The general PAR(ci) equation for a single layer is calculated as:

The existing ANTENNAAREAFACTOR statement is shown as cutFactor for the metal area.
Likewise, the ANTENNAAREADIFFREDUCEPWL statement is shown as
diffAreaReduceFactor, the ANTENNAAREAMINUSDIFF statement is shown as

G1 G3 G4G2 Diode

N1,1 N1,2 N1,3

N3,1 N3,2

N2,1 N2,1 N2,2 N2,3

N1,4

N4,1

PAR(ci) = ((cutFactor x cut_area) x diffAreaReduceFactor) - (minusDiffFactor x diff_area)

gate_area + (plusDiffFactor x diff_area)

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 390 Product Version 5.7

minusDiffFactor, and the ANTENNAGATEPLUSDIFF statement is shown as
plusDiffFactor. For cut layer, the ratio equation illustrates the effect of an
ANTENNAAREAFACTOR cutFactor statement as metalFactor. If there is no preceding
ANTENNAAREAFACTOR statement, the metalFactor value defaults to 1.0.

In the figures and text that follow,

■ Cij is the cut layer between metali and metalj.

■ NCij,k specifies an electrically connected node on Cij.

■ The nodes are numbered sequentially, from left to right.

Figure C-17 on page 390 shows the chip after the C12 process step.

Figure C-17

In the figure above,

As in calculations on the metal layers,

PAR(NC12,1,G1) = PAR(NC12,1,G2)

Calculating a CAR on a Cut Layer

As explained in “Calculating Antenna Ratios”:

CAR(ci) = PAR(ci) + CAR(ci-1)

To create a single accumulative model that combines both metal and cut damage into one
model, specify the ANTENNACUMROUTINGPLUSCUT statement for the layer, so that:

G1 G3 G4G2 Diode

N1,2 N1,3N1,1 N1,4

NC12,2 NC12,2 NC12,4NC12,3NC12,1

Area(NC12,1)
Area(G1) + Area(G2)

PAR(NC12,1,G1) =

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 391 Product Version 5.7

CAR(ci) = PAR(ci) + CAR(mi-1)

This means that the CAR from the metal layer below this cut layer is accumulated, instead of
the CAR from the cut layer below this cut layer.

Figure C-18 on page 391 shows the chip after the C23 process step.

Figure C-18

The router calculates the CAR with respect to gate G3 after the cut C23 process step as
follows:

Figure C-19 on page 392 shows the chip after the C34 process step.

G1 G3 G4G2 Diode

N1,2 N1,3N1,1 N1,4

NC12,2 NC12,2 NC12,4NC12,3NC12,1

N2,1 N2,1 N2,2 N2,3

NC23,1 NC23,2 NC23,2

Area(NC12,2)

Area(G3)CAR(NC23,1,G3) = +
Area(G1) + Area(G2) + Area(G3)

Area(NC23,1)

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 392 Product Version 5.7

Figure C-19

The router calculates the CAR with respect to gate G3 after the cut C34 process step as
follows:

Checking for Antenna Violations

For each metal layer, the router performs several antenna checks, using the keywords and
values specified in the LEF or DEF file. The router can perform the following four types of
antenna checks, depending on the keywords you set in the LEF file:

■ Area Ratio Check

■ Side Area Ratio Check

■ Cumulative Area Ratio Check

■ Cumulative Side Area Ratio Check

G1 G3 G4G2 Diode

N1,2 N1,3N1,1 N1,4

N2,1 N2,1 N2,3

N3,1 N3,2

N2,2

NC34,1 NC34,2

NC12,1 NC12,2 NC12,2 NC12,3 NC12,4

NC23,2NC23,2NC23,1

Area(NC23,1)

CAR(NC34,1,G3) =

+
Area(G1) + Area(G2) + Area(G3) + Area(G4)

Area(NC34,1)

Area(G1) + Area(G2) + Area(G3)

Area(NC12,2)

Area(G3)
+

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 393 Product Version 5.7

Area Ratio Check

The area ratio check compares the PAR for each layer to the value of the
ANTENNAAREARATIO or ANTENNADIFFAREARATIO.

The router calculates the PAR as follows:

According to the formula above, the area ratio check finds the PAR for node Ni,j with respect
to gate Gk by dividing the drawn area of the node by the area of the gates that are electrically
connected to it. The final PAR is multiplied by the ANTENNAAREAFACTOR (the default value
for the factor is 1) and compared to the ANTENNAAREARATIO or ANTENNADIFFAREARATIO.
If the PAR is greater than the ANTENNAAREARATIO or ANTENNADIFFAREARATIO specified
in the LEF file, the router finds a process antenna violation and attempts to fix it.

The link between PAR(Ni,j,Gk) and a PAE violation at node Ni,j depends on whether node
Ni,j is connected to a piece of diffusion, as follows:

■ If there is no connection from node Ni,j to a diffusion area through the current and lower
layers, a violation occurs when the PAR is greater than the ANTENNAAREARATIO.

■ If there is a connection from node Ni,j to a diffusion area through current and lower
layers, a violation occurs when the PAR is greater than the ANTENNADIFFAREARATIO.

■ If there is a connection from node Ni,j to a diffusion area through current and lower
layers, and ANTENNADIFFAREA is not specified for an output or inout pin, the value is 0.

Side Area Ratio Check

The side area ratio check compares the PAR computed based on the side area of the nodes
for each layer to the value of the ANTENNASIDEAREARATIO or
ANTENNADIFFSIDEAREARATIO.

The router calculates the PAR as follows:

According to the formula above, the area ratio check finds the PAR for node Ni,j with respect
to gate Gk by dividing the side area of the node by the area of the gates that are electrically

PAR (Ni,j, Gk) =
Drawn area of Ni,j

Σ Area of gates connected below Ni,j

PAR (Ni,j Gk) =
Side area of Ni,j

Σ Area of gates connected below Ni,j

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 394 Product Version 5.7

connected to Ni,j. The final PAR is multiplied by the ANTENNASIDEAREAFACTOR (the
default value for the factor is 1) and compared to the ANTENNASIDEAREARATIO or
ANTENNADIFFSIDEAREARATIO. If the PAR is greater than the ANTENNASIDEAREARATIO or
ANTENNADIFFSIDEAREARATIO specified in the LEF file, the router finds a process antenna
violation and attempts to fix it.

The link between PAR(Ni,j,Gk) and a PAE violation at node Ni,j depends on whether node
Ni,j is connected to a piece of diffusion, as follows:

■ If there is no connection to the diffusion area through the current and lower layers, a
violation occurs when the PAR is greater than the ANTENNASIDEAREARATIO.

■ If there is a connection to the diffusion area through current and lower layers, a violation
occurs when the PAR is greater than the ANTENNADIFFSIDEAREARATIO.

■ If there is a connection to the diffusion area through current and lower layers, and
ANTENNADIFFAREA is not specified for an output or inout pin, the value is 0.

Cumulative Area Ratio Check

The cumulative area ratio check compares the CAR to the value of ANTENNACUMAREARATIO
or ANTENNACUMDIFFAREARATIO. The CAR is equal to the sum of the PARs of all nodes on
the same or lower layers that are electrically connected to the gate.

Note: When you use CARs, you can ignore metal layers by not specifying the CAR keywords
for those layers. For example, if you want to check metal1 using a PAR and the remaining
metal layers using a CAR, you can define ANTENNAAREARATIO or
ANTENNASIDEAREARATIO for metal1, and ANTENNACUMAREARATIO or
ANTENNACUMSIDEAREARATIO for the remaining metal layers.

The cumulative area ratio check finds the CAR for node Ni,j with respect to gate Gk by
adding the PARs for all layers of metal, from the current layer down to metal1, for all nodes
that are electrically connected Gk. The final CAR is multiplied by the ANTENNAAREAFACTOR
(the default value for the factor is 1) and compared to the ANTENNACUMAREARATIO or
ANTENNACUMDIFFAREARATIO. If the CAR is greater than the ANTENNACUMAREARATIO or
ANTENNACUMDIFFAREARATIO specified in the LEF file, the router finds a process antenna
violation and attempts to fix it.

The link between CAR(Ni,j,Gk) and a PAE violation at node Ni,j depends on whether node
Ni,j is connected to a piece of diffusion, as follows:

■ If there is no connection to a diffusion area through the current and lower layers, a
violation occurs when the CAR is greater than the ANTENNACUMAREARATIO.

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 395 Product Version 5.7

■ If there is a connection to a diffusion area through current and lower layers, a violation
occurs when the CAR is greater than the ANTENNACUMDIFFAREARATIO.

■ If there is a connection to a diffusion area through current and lower layers, and
ANTENNADIFFAREA is not specified for an output or inout pin, the value is 0.

Cumulative Side Area Ratio Check

The cumulative side area ratio check compares the CAR to the value of the
ANTENNACUMSIDEAREARATIO or ANTENNACUMDIFFAREARATIO.

Note: When you use CARs, you can ignore metal layers by not specifying the CAR keywords
for those layers. For example, if you want to check metal1 using a PAR and the remaining
metal layers using a CAR, you can define ANTENNAAREARATIO or
ANTENNASIDEAREARATIO for metal1, and ANTENNACUMAREARATIO or
ANTENNACUMSIDEAREARATIO for the remaining metal layers.

The cumulative side area ratio check finds the CAR for node Ni,j with respect to gate Gk by
adding the PARs for all layers of metal, from the current layer down to metal1, for all nodes
that are electrically connected Gk. The final CAR is multiplied by the
ANTENNASIDEAREAFACTOR (the default value for the factor is 1) and compared to the
ANTENNACUMSIDEAREARATIO or ANTENNACUMDIFFAREARATIO. If the CAR is greater than
the ANTENNACUMSIDEAREARATIO or ANTENNACUMDIFFAREARATIO specified in the LEF
file, the router finds a process antenna violation and attempts to fix it.

■ If there is no connection to a diffusion area through the current and lower layers, a
violation occurs when the CAR is greater than the ANTENNACUMSIDEAREARATIO.

■ If there is a connection to a diffusion area through current and lower layers, a violation
occurs when the CAR is greater than the ANTENNACUMSIDEAREARATIO.

■ If there is a connection to a diffusion area through current and lower layers, and
ANTENNACUMDIFFAREA is not specified for an output or inout pin, the value is 0.

Cut Layer Process Antenna Model Examples

■ Example 1

To create the following process antenna rule for a cut layer via1:

cut_area / (gate_area + 2.0 x diff_area) <= 10

Cut layers should include the following information:
ANTENNAGATEPLUSDIFF 2.0 ;

ANTENNADIFFAREARATIO 10 ;

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 396 Product Version 5.7

■ Example 2

Assume the following process antenna rule:

cut_area x PWL(diff_area) / gate_area <= 10

This rule uses a cumulative model with diffusion area reduction function, where:

❑ PAR = (cut_area x diffReduceFactor) / gate_area <= 10

❑ diffReduceFactor = 1.0 for diff_area < 0.1µm2

❑ diffReduceFactor = 0.2 for diff_area >= 0.1 µm2

Cut layers should include the following information:
ANTENNAAREADIFFREDUCEPWL ((0.0 1.0) (0.0999 1.0) (0.1 0.2)

 (1000.0 0.2)) ;

ANTENNACUMDIFFAREARATIO 10 ;

For examples of models that use the ANTENNACUMROUTINGPLUSCUT and the
ANTENNAAREAMINUSDIFF rules, see the examples below in “Routing Layer Process
Antenna Models.”

Routing Layer Process Antenna Model Examples

The following process antenna rule examples use the topology shown in Figure C-20 on
page 396. In this figure, there are two polysilicon gates (G1, G2), one diffusion connection
(D1), contacts (C), and via (V1, V2) and metal (M1, M2, M3) shapes. Note that M1,2 is one
LEF PIN, and M1,3 is a different LEF PIN. The other metal is routing.

Figure C-20

M1,2 M1,3

D1

G2G1

M1,1

M2,1

M3,1 M3,2

M2,2
V2,1

V1,1 V1,2 V1,3 V1,4

V2,2

C1 C2 C3

LEF PIN A LEF PIN B

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 397 Product Version 5.7

The following area values are also used for the examples:

Example 1

The following process antenna rule combines cut area and metal area into one cumulative
rule:

ratio = (metal _area + 10 x cut_area) / gate_area

■ The cumulative ratio <= 1000 for diffusion < 0.1, and <= 4000 for diffusion >= 0.1

■ The single layer ratio <= 500 for diffusion < 0.1, and <= 1500 for diffusion >= 0.1

Every routing layer should include the following information:
ANTENNACUMROUTINGPLUSCUT ;

ANTENNACUMDIFFAREARATIO ((0.0 1000) (0.0999 1000) (0.1 4000)

(1000.0 4000)) ;

ANTENNADIFFAREARATIO ((0.0 5000) (0.0999 500) (0.1 1500)

(1000.0 1500)) ;

Every cut layer should include the following information:
ANTENNAAREAFACTOR 10 ; #10.0 x cut area

ANTENNACUMROUTINGPLUSCUT ;

ANTENNACUMDIFFAREARATIO ((0.0 1000) (0.0999 1000) (0.1 4000)

(1000.0 4000)) ;

ANTENNADIFFAREARATIO ((0.0 5000) (0.0999 500) (0.1 1500)

(1000.0 1500)) ;

Note: ANTENNAAREARATIO and ANTENNACUMAREARATIO are not required because the
*DIFFAREARATIO statements are checked, even if diff_area is equal to 0.

For gate G1, the PARs and CARs are computed as follows:

1. CAR(C,G1) = 10 x area(C1) / area(G1) = 10 x 0.1 / 1.0 = 1.0

The polysilicon and contact cut layer and shapes are not normally visible in LEF and DEF.
If the contact cut area should be included, its CAR value should be included with LEF
PIN A, using appropriate ANTENNA statements. The M1 PIN area should not be

G1 = 1.0 D1 = 0.5 M2,1 = 4.0

G2 = 2.0 M1,1 = 1.0 M2,2 = 5.0

All Cs = 0.1 M1,2 = 2.0 M3,1 = 6.0

All Vs = 0.1 M1,3 = 3.0 M3,2 = 9.0

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 398 Product Version 5.7

included because M1 area is a PIN shape in the LEF and will be added in by tools
reading LEF. Therefore, there should be two antenna statements for LEF PIN A, either:
ANTENNAGATEAREA 1.0 LAYER M1 ;

ANTENNAMAXCUTCAR 1.0 LAYER C ;

or:
ANTENNAGATEAREA 1.0 LAYER M1 ;

ANTENNAMAXAREACAR 1.0 LAYER M1 ;

Because the M1 PIN area is not included in the MAXAREACAR value, both of sets of
statements give the same results. For more details, see “Calculations for Hierarchical
Designs.”

Similarly, the LEF PIN B should have values, such as either:
ANTENNAGATEAREA 2.0 LAYER M1 ;

ANTENNADIFFAREA 0.5 LAYER M1 ;

ANTENNAMAXCUTCAR 1.0 LAYER C ; #only C2 affects G2; C3 does not

or:
ANTENNAGATEAREA 2.0 LAYER M1 ;

ANTENNADIFFAREA 0.5 LAYER M1 ;

ANTENNAMAXAREACAR 1.0 LAYER M1 ; #only C2 affects G2; C3 does not

2. PAR(M1,G1) = area(M1,2) / area(G1) = 2 / 1 = 2.0

3. CAR(M1,G1) = PAR(M1,G1) + PIN A’s CAR(C,G1)
PIN A’s CAR(C,G1) = ANTENNAMAXCUTCAR for LAYER C = 1.0
= 2.0 + 1.0 = 3.0

4. diode_area = 0, single-layer PWL(0) = 500, check PAR(M1,G1) = 2.0 <= 500,
cum-layer PWL(0) = 1000, therefore check CAR(M1,G1) = 3.0 <= 1000

5. PAR(V1,G1) = 10 x area(V1,2 + V1,3) / area(G1) = 10 x 0.2 / (1) = 2.0

6. CAR(V1,G1) = PAR(V1,G1) + CAR(M1,G1) = 2.0 + 3.0 = 5.0

7. diode_area = 0, single-layer PWL(0) = 500, check PAR(V1,G1) = 2.0 <= 500,
cum_layer PWL(0) = 1000, therefore check CAR(V1,G1) = 5.0 <= 1000

8. PAR(M2,G1) = area(M2,1 + M2,2) / area(G1 + G2) = (4+5) / (1 + 2) = 3.0

9. CAR(M2,G1) = PAR(M2,G1) + CAR(V1,G1) = 3.0 + 5.0 = 8.0

10. diode_area = 0.5, single-layer PWL(0.5) = 1500, check PAR(M2,G1) = 3.0 <= 1500,
cum_layer PWL(0.5) = 4000, therefore check CAR(M2, G1) = 8.0 <= 4000

11. PAR(V2,G1) = 10 x area(V2,1 + V2,2) / area(G1 + G2) = 10 x 0.2 / (1 + 2) = 0.67

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 399 Product Version 5.7

12. CAR(V2,G1) = PAR(V2,G1) + CAR(M2,G1) = 0.67 + 8.0 = 8.67

13. diode_area = 0.5, single-layer PWL(0.5) = 1500, check PAR(V2,G1) = 0.67 <= 1500,
cum_layer PWL(0.5) = 4000, therefore check CAR(V2, G1) = 8.67 <= 4000

14. PAR(M3,G1) = area(M3,1 + M3,2) / area(G1 + G2) = (6 + 9) / (1 + 2) = 5

15. CAR(M3,G1) = PAR(M3,G1) + CAR(V2,G1) = 5 + 8.67 = 12.34

16. diode_area = 0.5, single-layer PWL(0.5) = 1500, check PAR(M3,G1) = 5 <= 1500,
cum_layer PWL(0.5) = 4000, therefore check CAR(M3,G1) = 13.67 <= 4000

Example 2

The following cumulative rule is the same as the rule in Example 1, except it also subtracts
the diff_area factor. Only the cumulative model is used.

ratio = [(metal_area + 10 x cut_area) - (100 x diff_area)] / gate_area

Every routing layer should include the following information:
ANTENNACUMROUTINGPLUSCUT ;

ANTENNAAREAMINUDIFF 100.0 ;

ANTENNACUMDIFFAREARATIO 1000 ;

Every cut layer should include the following information:
ANTENNAAREAFACTOR 10 ; #10.0 x cut area

ANTENNACUMROUTINGPLUSCUT ;

ANTENNAAREAMINUDIFF 100.0 ;

ANTENNACUMDIFFAREARATIO 1000 ;

For gate G1, the PARs and CARs are computed as follows:

1. CAR(C,G1) = 10 x area(C1) / area(G1) = 10 x 0.1 / 1.0 = 2.0

This value is on the LEF PIN, as mentioned in Example 1.

2. PAR(M1,G1) = area(M1,2) / area(G1) - (100 x diff_area) = (2 / 1) - (100 x 0) = 2.0

3. CAR(M1,G1) = PAR(M1,G1) + PIN A’s CAR(C,G1)
PIN A’s CAR(M1) = ANTENNAMAXAREACAR for LAYER M1 = 1.0
 = 2.0 + 1.0 = 3.0

4. Check CAR(M1,G1) = 3.0 <= 1000

5. PAR(V1,G1) = [10 x area(V1,2 + V1,3) - (100 x diff_area)] / area(G1)
= [(10 x .2) - (100 x 0)] / (1) = 2.0

6. CAR(V1,G1) = PAR(V1,G1) + CAR(M1,G1) = 2.0 + 3.0 = 5.0

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 400 Product Version 5.7

7. Check CAR(V1,G1) = 5.0 <= 1000

8. PAR(M2,G1) = [area(M2,1 + M2,2) - (100 x area(D1))] / area(G1 + G2)
 = [(4 + 5) - (100 x 0.5) / (1 + 2) = -13.67

9. CAR(M2,G1) = PAR(M2,G1) + CAR(V1,G1) = -13.67 + 5.0 = -8.67, truncate to 0

10. Check CAR(M2,G1) = 0 <= 1000

11. PAR(V2,G1) = [(10 x area(V2,1 + V2,2)) - (100 x area(D1)] / area(G1 + G2)
= [(10 x 0.2) - (100 x 0.5)] / (1 + 2) = -16.0

12. CAR(V2,G1) = PAR(V2,G1) + CAR(M2,G1) = -16.0 + 0 = -16.0, truncate to 0

13. Check CAR(V2,G1) = 0 <= 1000

14. PAR(M3,G1) = [area(M3,1 + M3,2) - (100 x area(D1))] / area(G1 + G2)
= [(6 + 9) - (100 x 0.5)] / (1 + 2) = -11.67

15. CAR(M3,G1) = PAR(M3,G1) + CAR(V2,G1) = -11.67 + 0 = -11.67, truncate to 0

16. Check CAR(M3,G1) = 0 <= 1000

Example 3

The following cumulative rule for metal layers includes a diffusion area factor added into the
denominator of the ratio:

Single layer: metal_area / (gate_area + 2.0 x diff_area) <= 1000

Cumulative for the layer: metal_area / (gate_area + 2.0 x diff_area) <= 5000

Every metal layer should include the following information:
ANTENNAPLUSGATEDIFF 2.0 ;

ANTENNADIFFAREARATIO 1000 ;

ANTENNACUMDIFFAREARATIO 5000 ;

Note: The via area is ignored in this example. If an independent via model is needed, similar
statements should be added to the via layers, which would be computed separately.

For gate G1, the PARs and CARs are computed as follows:

1. PAR(M1,G1) = area(M1,2) / area(G1) = 2.0 / 1 = 2

2. CAR(M1,G1) = PAR(M1,G1) = 2

3. Check PAR(M1,G1) = 2 <= 1000,
check CAR(M1,G1) = 2 <= 5000

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 401 Product Version 5.7

4. PAR(M2,G1) = area(M2,1 + M2,2) / [area(G1 + G2) + 2 x area(D1)]
= (4 + 5) / [(1 + 2) + 2 x 0.5] = 2.25

5. CAR(M2,G1) = CAR(M1,G1) + PAR(M2,G1) = 2 + 2.25 = 4.25

6. Check PAR(M1,G1) = 2.25 <= 1000,
check CAR(M1,G1) = 4.25 <= 5000

7. PAR(M3,G1) = area(M3,1 + M3,2) / [area(G1 + G2) + 2 x area(D1)]
 = (6 + 9) / [(1 + 2) + 2 x 0.5] = 3.75

8. CAR(M3,G1) = PAR(M3,G1) + CAR(M2,G1) = 3.75 + 4.25 = 8.0

9. Check PAR(M1,G1) = 3.75 <= 1000,
check CAR(M1,G1) = 8.0 <= 5000

Example 4

Assume a cumulative rule that includes a diffusion area reduction value and a routing ratio of
1000. The reduction value is 1.0 if the diff_area is less than 0.1, 0.2 if the diff_area equals
0.1, and decreases linearly to 0.1 if the diff_area equals 1.0. The reduction value remains 0.1
if the diff_area is greater than 1.0.

Every metal layer should include the following information:
ANTENNAAREADIFFREDUCEPWL ((0.0 1.0) (0.0999 1.0) (0.1 0.2)(1.0 0.1)

(1000.0 0.1)) ;" ;

ANTENNACUMDIFFAREARATIO 1000 ;

Note: The via area is ignored in this example. If an independent via model is needed, similar
statements should be added to the via layers, which would be computed separately.

For gate G1, the PARs and CARs are computed as follows:

1. Initial PAR(M1,G1) = area(M1,2) / area(G1) = 2.0 / 1 = 2

2. diode_area = 0, PWL(0) = 1.0, therefore initial PAR(M1,G1) is multiplied by 1.0
to give PAR(M1,G1) = 2 x 1 = 2

3. CAR(M1,G1) = PAR(M1,G1) = 2

4. Check CAR(M1,G1) <= 1000, therefore check 2 <= 1000

5. Initial PAR(M2,G1) = area(M2,1 + M2,2) / area(G1 + G2) = (4 + 5) / (1 + 2) = 3

6. diode_area = 0.5, PWL(0.5) = 0.155, therefore initial PAR(M2,G1) is multiplied by 1.0
to give PAR(M2,G1) = 3 x 0.155 = 0.465

7. CAR(M2,G1) = CAR(M1,G1) + PAR(M2,G1) = 2 + 0.465 = 2.465

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 402 Product Version 5.7

8. Check CAR(M2,G1) <= 1000, therefore check 2.465 <= 1000

9. Initial PAR(M3,G1) = area(M3,1 + M3,2) / area(G1 + G2) = (6 + 9) / (1 + 2) = 5

10. diode_area = 0.5, PWL(0.5) = 0.155, therefore initial PAR(M3,G1) is multiplied by 0.155
 to give PAR(M3,G1) = 5 x 0.1555 = 0.775

11. CAR(M3,G1) = PAR(M3,G1) + CAR(M2,G1) = 0.775 + 2.465 = 3.24

12. Check CAR(M3,G1) <= 1000, therefore check 3.24 <= 1000

Example Using the Antenna Keywords

The following example is a portion of a LEF file that shows the antenna keywords for a
process that has cumulative area ratio damage for metal and cut layers.

Assume you have the following antenna rules for your process:

1. A maximum cumulative metal to gate area ratio of 1000

2. If a diode of greater than .1 microns is connected to the metal, the maximum metal ratio
is: ratio = diode_area x 2000 + 5000

3. A maximum cumulative via to gate area ratio of 20

4. If a diode of greater than .1 microns is connected to the via, the maximum via ratio is:
ratio = diode_area x 200 + 100

The corresponding LEF file would include:
LAYER M1

 TYPE ROUTING ;

 ...

 ANTENNACUMAREARATIO 1000 ;

 ANTENNACUMDIFFAREARATIO

 PWL ((0 1000) (0.099 1000) (0.1 5200) (100 205000)) ;

END M1

LAYER VIA1

 TYPE CUT ;

 ...

 ANTENNACUMAREARATIO 20 ;

 ANTENNACUMDIFFAREARATIO

 PWL ((0 20) (0.099 20) (0.1 120) (100 20100)) ;

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 403 Product Version 5.7

END VIA1

A typical standard cell that has only M1 pins and routing inside of it would have:
MACRO INV1X

 CLASS CORE ;

 ...

 PIN IN

 DIRECTION INPUT ;

 ANTENNAGATEAREA .5 LAYER M1 ; # connects to 0.5 µm^2 poly gate
 ANTENNAPARTIALMETALAREA 1.0 LAYER M1 ; # has 1.0 µm^2 M1 area.
 # Note that it should not include the M1 pin area, just the M1 routing
 # area that is not included in the PIN shapes. In many cases, all of the

 # M1 routing is included in the PIN, so this value is 0, and not in the
 # LEF at all.

 ANTENNAMAXAREACAR 10.0 LAYER M1 ; # has 10.0 cumulative ratio so far.

 # This value can include area from internal poly routing if poly routing

 # damage is accumulated with the metal layers. It does not include

 # the area of the M1 pin area, just the M1 routing area that is not
 # included in the PIN shapes. If poly damage is not included, and all

 # of the M1 routing is included in the PIN, this value will be 0, and
 # not in the LEF at all.

 ...

 END IN

 PIN OUT

 DIRECTION OUTPUT ;

 ANTENNADIFFAREA .2 LAYER M1 ; # connects to 0.2 µm^2 difusion area
 ANTENNAPARTIALMETALAREA 1.0 LAYER M1 ; # has 1.0 µm^2 M1 area
 # No ANTENNAMAXAREACAR value because no internal poly gate is connected

 ...

 END OUT

END INV1X

Using Antenna Diode Cells

Routers generally use one of two methods to fix process antenna violations:

■ Change the routing by breaking the metal layers into smaller pieces

■ Insert antenna diode cells to discharge the current

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 404 Product Version 5.7

Changing the Routing

One method routers use to fix antenna violations is to limit the charge that is collected through
the metal nodes exposed to the plasma. To do this, it goes up one layer or pushes the routing
down one layer whenever the process antenna ratio exceeds the ratio set in the LEF file.

The router changes the routing by disconnecting nets with antenna violations and making the
connections to higher metal layers instead. It does not make the connections to lower layers.
This method works because the top metal layer always completes the connection from the
gate to the output drain area of the driver, which is a diode that provides a discharge path.

Inserting Antenna Diode Cells

The second method routers use to repair antenna violations is to insert antenna diode cells
in the design. The electrical charges on the metal that connects to the diodes is then
discharged through the diode diffusion layer and substrate. The router inserts the diode cells
automatically.

The following example shows a LEF definition of an antenna diode cell, with the CLASS CORE
ANTENNACELL and ANTENNADIFFAREA defined:
MACRO antenna1

 CLASS CORE ANTENNACELL ;

 ...

 PIN ANT1

 AntennaDiffArea 1.0 ;

 PORT

 LAYER metal1 ;

 RECT 0.190 2.380 0.470 2.660 ;

 END

 END ANT1

END antenna1

Using DiffUseOnly

LEF defines only one value for ANTENNAAREAFACTOR and one value for
ANTENNASIDEAREAFACTOR, with or without DIFFUSEONLY, per layer. If you specify more
than one antenna area or side area factor for a layer, only the last one is used. The
AREAFACTOR value lets you scale the value of the metal area. If you use the DIFFUSEONLY
keyword, only metal attached to diffusion is scaled.

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 405 Product Version 5.7

Suppose you have the following LEF file:

Figure C-21

In the figure,

■ The input pin H01 of GATE_M2_M3 connects the metal wires to metal1, metal2, and
metal3 in sequence.

■ The ANTENNAAREAFACTOR 1.2 DIFFUSEONLY and ANTENNASIDEAREAFACTOR 1.4
DIFFUSEONLY apply to metal3 routing.

■ Prior to metal3 fabrication, there is no path to the diffusion diode. This causes the default
factor of 1.0 to apply to the metal1 and metal2 segments shown when calculating
PARs.

Calculations for Hierarchical Designs

The following section illustrates computation of antenna ratios for hierarchical designs.

Antenna.lef

LAYER M3
TYPE ROUTING ;
PITCH 0.56 ;
DIRECTION HORIZONTAL ;
WIDTH 0.28 ; SPACING 0.28 ;
SPACING 0.36 RANGE 1.0 250.0 ;
CAPACITANCE CPERSQDIST 0.0009762 ;
RESISTANCE RPERSQ 0.129 ;
THICKNESS 0.60 ;
AntennaAreaRatio 10000 ;
AntennaDiffAreaRatio 10000 ;
AntennaAreaFactor 1.2 DiffUseOnly ;
AntennaSideAreaRatio 5000 ;
AntennaDiffSideAreaRatio 5000 ;
AntennaSideAreaFactor 1.4 DiffUseOnly ;
END M3

M2

M1

M3

Pin H01 of GATE_M2_M3Pin N01 of DIFF_M2_M3

Pin N01 of DIFF_M2_M3 is not connected
to the rest until M3 is fabricated.

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 406 Product Version 5.7

LEF and DEF Keywords for Hierarchical Designs

Design Example

Figure C-22 on page 407 represents a macro block. This block can be a custom hard block
or part of a bottom-up hierarchical flow. The resulting PAE values will be the same in either
case. In the example,

■ Gates G1, G2, G3, and G4 are the same size.

■ Node N1,3 is larger than node N1,2.

■ Vias (cuts) are all the same size.

■ The I/O pin is on metal3.

■ The area of diffusion for D1 is area(Diff1).

■ The area of diffusion for D2 is area(Diff2).

■ The area of the cut layer that connects node N3,1 and node N4,2 is area(NC34,1).

■ Any damage from the poly layer or poly-to-metal1 via is ignored.

If the keyword
ends with ... It refers to ... Examples

area
sideArea

Drawn area or side area of the
metal wires. Measured in
square microns.

ANTENNAPARTIALCUTAREA
ANTENNAPARTIALMETALAREA
ANTENNAPARTIALMETALSIDEAREA
ANTENNAPINDIFFAREA
ANTENNAPINGATEAREA
ANTENNAPINPARTIALCUTAREA

CAR Relationship the router is
calculating

CAR is used in keywords for
cumulative antenna ratio.

ANTENNAMAXAREACAR
ANTENNAMAXCUTCAR
ANTENNAMAXSIDEAREACAR
ANTENNAPINMAXAREACAR
ANTENNAPINMAXCUTCAR
ANTENNAPINMAXSIDEAREACAR

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 407 Product Version 5.7

Figure C-22

Relevant Metal Areas

■ The relevant metal area for PAE calculations is the partial metal drawn area and side
area connected directly to the I/O pin on the inside of the macro on the specified layer.

■ Only the same metal layer as the I/O pin or above is needed for PAR calculations in
hierarchical designs.

Important

Do not include the drawn area or side area of the I/O pin in the area calculations for
the block, because the router includes these areas in the calculations for the upper
level. Only the internal routing area that is not part of the I/O pin should be included.

For the design in the figure above, you must specify values for the following metal areas in
the LEF file:
ANTENNAPARTIALMETALAREA area(N3,2) LAYER Metal3 ;

ANTENNAPARTIALMETALAREA area(N4,2) LAYER Metal4 ;

ANTENNAPARTIALMETALSIDEAREA sideArea(N3,2) LAYER Metal3 ;

ANTENNAPARTIALMETALSIDEAREA sideArea(N4,2) LAYER Metal4 ;

You do not need to specify an ANTENNAPARTIALMETALAREA or
ANTENNAPARTIALSIDEMETALAREA for any layer lower than metal3 because the I/O pin is
on metal3; that is, there is no connection outside the block until metal3 is processed.

Macro block

I/O
pin

N4,1 N4,2

N3,3

N2,3

N1,2 N1,3

N2,2

N1,4 N1,5N1,1

N2,1

G1 G2 G3 G4 D2D1

N3,2N3,1

NC34,2 N34,3

N12,1

N23,1

N34,1

N12,2 N12,3 N12,4

N23,2

N12,5 N12,6

N23,3

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 408 Product Version 5.7

Relevant Gate, Diffusion, and Cut Areas

■ The relevant gate and diffusion areas are the gate and diffusion areas that connect
directly to the I/O pin on the specified layer or are electrically connected to the pin
through lower layers.

■ The relevant partial cut area is above the current pin layer and inside the macro on the
specified layer.

For the design in the figure above, you must specify values for the following gate, diffusion,
and cut areas in the LEF file:
ANTENNAGATEAREA area(G2 + G3 + G4) LAYER Metal3 ;

ANTENNADIFFAREA area(Diff1) LAYER Metal3 ;

ANTENNADIFFAREA area(Diff1 + Diff2) LAYER Metal4 ;

ANTENNAPARTIALCUTAREA area(N34,2) LAYER Via34 ;

Calculating the CAR

Use the following keywords to calculate the actual CAR on the I/O pin layer or above.

■ The relevant maximum CAR value of the drawn and side areas are from the metal layer
that is on or below the I/O pin layer.

■ The relevant maximum CAR value of the cut layer is from the cut layer that is immediately
above the I/O pin layer.

For the example in Figure C-22 on page 407, the keywords and calculations for metal3 and
via34 would be:

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 409 Product Version 5.7

Sample LEF File for a Bottom-Up Hierarchical Design

For a macro block like that shown in Figure C-22 on page 407, you should have the following
pin information in your LEF file, ignoring SIDEAREA values:
PIN example

 ANTENNAGATEAREA 0.3 LAYER METAL3 ; # area of G2 + G3 + G4

 ANTENNADIFFAREA 1.0 LAYER METAL3 ; # area of D1

 ANTENNAPARTIALMETALAREA 10.0 LAYER METAL3 ; # area of N3,2

 ANTENNAMAXAREACAR 100.0 LAYER METAL3 ; # max CAR of N3,2

 ANTENNAPARTIALCUTAREA 0.1 LAYER VIA34 ; # area of N34,2

 ANTENNAMAXCUTCAR 5.0 LAYER VIA34 ; # max cut CAR of N34,2

 ANTENNAGATEAREA 0.3 LAYER METAL4 ; # area of G2 + G3 + G4

 ANTENNADIFFAREA 2.0 LAYER METAL4 ; # area of D1 + D2

 ANTENNAPARTIALMETALAREA 12.0 LAYER METAL4 ; # area of N4,2

 ANTENNAMAXAREACAR 130.0 LAYER METAL4 ; # max CAR of N4,2

END example

Top-Down Hierarchical Design Example

In a top-down design, the router uses the top-level antenna values to check for process
antennas inside the block. If the top level is routed first, the top-level routing CAR and PAR
values can be passed down into the DEF for the sub-block. This method can also be used to
pass down estimated “budgets” for PAR and CAR values.

Set the following keywords in the DEF file for the design. In a top-down design you assign a
value to the I/O pin that indicates how much routing, CAR, and PAR occurred outside the
block already.
MACRO macroName

CLASS BLOCK ;

PIN pinName

DIRECTION OUTPUT ;

[ANTENNAPINPARTIALMETALAREA value [LAYER layerName] ;] ...

[ANTENNAPINPARTIALMETALSIDEAREA value [LAYER layerName] ;] ...

[ANTENNAPINGATEAREA value [LAYER layerName] ;] ...

[ANTENNAPINDIFFAREA value [LAYER layerName] ;] ...

[ANTENNAPINMAXAREACAR value [LAYER layerName] ;] ...

[ANTENNAPINMAXSIDEAREACAR value [LAYER layerName] ;] ...

[ANTENNAPINPARTIALCUTAREA value [LAYER cutlayerName] ;] ...

[ANTENNAPINMAXCUTCAR value LAYER cutlayerName] ;] ...

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

November 2009 410 Product Version 5.7

END Z

END macroName

Sample DEF File for a Top-Down Hierarchical Design

An example of the DEF keywords for Figure C-22 on page 407 would be:
PINS 100 ;

- example + NET example1

+ ANTENNAPINPARTIALMETALAREA (N3,1) LAYER Metal3 ;

+ ANTENNAPINPARTIALMETALSIDEAREA (N3,1) LAYER Metal3 ;

+ ANTENNAPINGATEAREA (G1) LAYER Metal3 ;

 # No ANTENNAPINDIFFAREA for this example

+ ANTENNAPINPARTIALCUTAREA (N34,1) LAYER via34 ;

+ ANTENNAPINGATEAREA (G1) LAYER Metal4 ;

+ ANTENNAPINPARTIALMETALAREA (N4,1) LAYER Metal4 ;

+ ANTENNAPINPARTIALMETALSIDEAREA (N4,1) LAYER Metal4 ;

...

END PINS

LEF/DEF 5.7 Language Reference

November 2009 411 Product Version 5.7

Index

Symbols
,... in syntax 8
... in syntax 8
[] in syntax 8
{} in syntax 8
| in syntax 8

A
abutment pins 200
alias

expansion in DEF and LEF 229
names in DEF and LEF 228
statements in LEF and DEF 227

B
blockages, simplified 192
braces in syntax 8
brackets in syntax 8
BUSBITCHARS statement

description, DEF 246

C
capacitance

peripheral 92
wire-to-ground 89

cell modeling
combining blockages 192

characters
escape 239
information 8

COMPONENTS statement
description, DEF 246

conventions
user-defined arguments 7
user-entered text 7

COVER model, definition in LEF 173

D
database

converting LEF values to integer
values 212

debugging
DEF files 232
LEF libraries 232
parametric macros 232

DEF
example 344
syntax overview 238

DEF syntax
PINS 271

DEF syntax and description
BUSBITCHARS 246
COMPONENTS 246
DESIGN 251
DIEAREA 251
DIVIDERCHAR 15, 252
GCELLGRID 254
GROUPS 256
HISTORY 256
NETS 257
PINPROPERTIES 286
PROPERTYDEFINITIONS 287
REGIONS 288
ROW 289
SPECIALNETS 298
TECHNOLOGY 322
TRACKS 323
UNITS DISTANCE MICRONS 323
VERSION 324
VIAS 325

DESIGN statement
description, DEF 251

diagonal vias, recommendation for
RGrid 172

DIEAREA statement
description, DEF 251

DIVIDERCHAR statement
description, DEF 15, 252

LEF/DEF 5.7 Language Reference

November 2009 412 Product Version 5.7

E
edge capacitance 92
EEQ statement, LEF syntax 179
electrically equivalent models, LEF

syntax 179
endcap models, definition in LEF 174
equivalent models

electrically equivalent (EEQ) 179
error checking, utilities 232
escape character 239

F
feedthrough pins

LEF 200
FOREIGN references

LEF syntax 179
offset between LEF and GDSII 179

G
GCell grid

restrictions 255
uniform, in DEF 255

GCELLGRID statement
description, DEF 254

GROUPS statement
description, DEF 256

H
HISTORY statement

description, DEF 256

I
INOUT pins, netlist 194
INPUT DEF command

error checking 232
INPUT GDSII command

with incremental LEF 231
INPUT LEF command

error checking 232
incremental capability 231

INPUT pins, netlist 194

italics in syntax 7

L
LAYER (nonrouting) statement

description, LEF 16, 76
layers

for LEF via descriptions 216
routing order in LEF 82

LEF
example 333
files

distance precision 12
line length 12

overview 12
routing layer order 82

LEF syntax
overview 14

LEF syntax and description
LAYER, nonrouting 16, 76
MACRO 172
NONDEFAULT rule 203
OBS, macro obstruction 190
PIN macro 193
PROPERTYDEFINITIONS 207
SITE 209
UNITS 211
VERSION 214
VIA 215
VIARULE 220
VIARULE viaRuleName

GENERATE 221
LEF values converted to integer

values 212
legal characters 8
library design, simplifying blockages 192
literal characters 7

M
macro obstruction, OBS statement

description, LEF 187, 190
macro PIN statement

description, LEF 193
MACRO statement

description, LEF 172
models, site orientation 183
mustjoin pins 197

LEF/DEF 5.7 Language Reference

November 2009 413 Product Version 5.7

N
netlist pins

INOUT 194
INPUT 194
OUTPUT 194

nets
mustJoin nets 259

NETS statement
description, DEF 257

NONDEFAULT rule statement
description, LEF 203

O
OBS (macro obstruction) statement

description, LEF 187, 190
obstructions, simplified 192
Or-bars in syntax 8
orientation

models 183
pin 250, 267, 284

OUTPUT pins, netlist 194
overlaps, specifying in LEF 192

P
peripheral capacitance 92
PIN (macro) statement

description, LEF 193
PINPROPERTIES statement

description, DEF 286
pins

abutment 200
direction in LEF 196
external, DEF 272
feedthrough pins in LEF 200
INOUT 194
INPUT 194
modeling in LEF 193
mustjoin 197
netlist 194
orientation 250, 267, 284
OUTPUT 194
power geometries 201
ring 200
using in LEF 202

PINS statement

syntax, DEF 271
PITCH parameter, ratio in three-layer

design 171
placement site function, SITE statement in

LEF 209
ports

in LEF 199
multiple pins 199

power pin
geometries in LEF 201

PROPERTYDEFINITIONS statement
description, DEF 287
description, LEF 207

R
REGIONS statement

description, DEF 288
regular expressions 9
regular wiring

orthogonal paths 267, 308
RGrid, description 171
ring pins 200
routing time, diagonal vias 172
routing width, LEF syntax 128
ROW statement

description, DEF 289

S
scan chains

example 349
rules 295

SI units in LEF 212
SITE statement

description, LEF 209
sites

symmetry 211
special wiring

description 303
pins and wiring, DEF 309

SPECIALNETS statement
description, DEF 298

syntax conventions 7

T
TECHNOLOGY statement

LEF/DEF 5.7 Language Reference

November 2009 414 Product Version 5.7

description, DEF 322
three-layer design, pitch ratio 171
TRACKS statement

description, DEF 323

U
UNITS DISTANCE MICRONS statement

description, DEF 323
UNITS statement

description, LEF 211

V
values in library database 212
VERSION statement

description, DEF 324
vertical bars in syntax 8
VIA statement

description, LEF 215
VIARULE statement

description, LEF 220
VIARULE viaRuleName GENERATE

statement
description, LEF 221

vias
default vias in LEF 216
layers for vias in LEF 216

VIAS statement
description, DEF 325

W
wide wire signal wire, specifying 203
wiring, regular

orthogonal paths 267, 308
wiring, special

description 303
pins and wiring 309

