cädence

LEF/DEF Language Reference

Product Version 5.7
November 2009
© 1990-2008 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence's trademarks, contact the corporate legal department at the address shown above or call 800.862.4522.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are used with permission.

All other trademarks are the property of their respective holders.
Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this publication may violate copyright, trademark, and other laws. Except as specified in this permission statement, this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence. This statement grants you permission to print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a commitment on the part of Cadence. The information contained herein is the proprietary and confidential information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence's customer in accordance with, a written agreement between Cadence and its customer. Except as may be explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

LEF/DEF 5.7 Language Reference

Contents

Preface 7
What's New 7
Typographic and Syntax Conventions 7
Character Information 8
1
LEF Syntax 11
About Library Exchange Format Files 12
General Rules 12
Name Escaping Semantics for LEF/DEF Files 12
Managing LEF Files 13
Order of LEF Statements 14
LEF Statement Definitions 14
Bus Bit Characters 14
Clearance Measure 15
Divider Character 15
Extensions 15
Layer (Cut) 16
Layer (Implant) 74
Layer (Masterslice or Overlap) 76
Layer (Routing) 79
Macro 172
Manufacturing Grid 202
Maximum Via Stack 202
Nondefault Rule 203
Property Definitions 207
Site 209
Units 211
Use Min Spacing 214
Version 214
Via 215

LEF/DEF 5.7 Language Reference

Via Rule 220
Via Rule Generate 221
2
ALIAS Statements 227
ALIAS Statements 227
ALIAS Definition 228
ALIAS Examples 228
ALIAS Expansion 229
3
Working with LEF 231
Incremental LEF 231
Error Checking 232
Message Facility 233
Error-Checking Facility 235
4
DEF Syntax 237
About Design Exchange Format Files 238
General Rules 239
Name Escaping Semantics for LEF/DEF Files 239
Order of DEF Statements 241
DEF Statement Definitions 242
Blockages 242
Bus Bit Characters 246
Components 246
Design 251
Die Area 251
Divider Character 252
Extensions 252
Fills 252
GCell Grid 254
Groups 256

LEF/DEF 5.7 Language Reference

History 256
Nets 257
Nondefault Rules 268
Pins 271
Pin Properties 286
Property Definitions 287
Regions 288
Rows 289
Scan Chains 290
Slots 296
Special Nets 298
Styles 310
Technology 322
Tracks 322
Units 323
Version 324
Vias 325
A
Examples 333
LEF 333
DEF 344
Scan Chain Synthesis Example 349
B
Optimizing LEF Technology for Place and Route 351
Overview 351
Guidelines for Routing Pitch 352
Guidelines for Wide Metal Spacing 354
Guidelines for Wire Extension at Vias 355
Guidelines for Default Vias 357
Guidelines for Stack Vias (MAR Vias) and Samenet Spacing 359
Example of an Optimized LEF Technology File 363
C
Calculating and Fixing Process Antenna Violations 369
Overview 370
What Are Process Antennas? 371
What Is the Process Antenna Effect (PAE)? 372
What Is the Antenna Ratio? 373
What Can Be Done to Improve the Antenna Ratio? 373
Using Process Antenna Keywords in the LEF and DEF Files 374
Calculating Antenna Ratios 375
Calculating the Antenna Area 375
Calculating a PAR 376
Calculating a CAR 381
Calculating Ratios for a Cut Layer 389
Checking for Antenna Violations 392
Area Ratio Check 393
Side Area Ratio Check 393
Cumulative Area Ratio Check 394
Cumulative Side Area Ratio Check 395
Cut Layer Process Antenna Model Examples 395
Routing Layer Process Antenna Model Examples 396
Example Using the Antenna Keywords 402
Using Antenna Diode Cells 403
Changing the Routing 404
Inserting Antenna Diode Cells 404
Using DiffUseOnly 404
Calculations for Hierarchical Designs 405
LEF and DEF Keywords for Hierarchical Designs 406
Design Example 406
Top-Down Hierarchical Design Example 409
Index 411

LEF/DEF 5.7 Language Reference

Preface

This manual is a language reference for users of the Cadence ${ }^{\circledR}$ Library Exchange Format (LEF) and Design Exchange Format (DEF) integrated circuit (IC) description languages.

LEF defines the elements of an IC process technology and associated library of cell models. DEF defines the elements of an IC design relevant to physical layout, including the netlist and design constraints. LEF and DEF inputs are in ASCII form.

This manual assumes that you are familiar with the development and design of integrated circuits.

This preface provides the following information:

- What's New on page 7
- Typographic and Syntax Conventions on page 7
- Character Information on page 8

What's New

For information on what is new or changed in LEF and DEF for version 5.7 see What's New in LEF/DEF.

Typographic and Syntax Conventions

This list describes the conventions used in this manual.

```
text Words in monospace type indicate keywords that you must
```

variable
objRegExpr
enter literally. These keywords represent language tokens.
Words in monospace type indicate keywords that you must

Words in italics indicate user-defined information for which you must substitute a name or a value.

An object name with the identifier objRegExpr represents a regular expression for the object name.

LEF/DEF 5.7 Language Reference

Preface

$p t$	Represents a point in the design. This value corresponds to a coordinate pair, such as $x y$. You must enclose a point within parentheses, with space between the parentheses and the coordinates. For example,
	$\operatorname{RECT}(10002000)(1500400)$.
\|	Vertical bars separate possible choices for a single argument. They take precedence over any other character.
[]	Brackets denote optional arguments. When used with vertical bars, they enclose a list of choices from which you can choose one.
\{ \}	Braces followed by three dots indicate that you must specify the argument at least once, but you can specify it multiple times.
\{ \}	Braces used with vertical bars enclose a list of choices from which you must choose one.
	Three dots indicate that you can repeat the previous argument. If they are used with brackets, you can specify zero or more arguments. If they are used with braces, you must specify at least one argument, but you can specify more.
	A comma and three dots together indicate that if you specify more than one argument, you must separate those arguments with commas.

Quotation marks enclose string values. Write quotation marks within a string as $\backslash \mathrm{l}$. Write a backslash within a string as $\backslash \backslash$.

Any characters not included in the list above are required by the language and must be entered literally.

Character Information

LEF and DEF support the following characters:

```
! < and >
$
```

< and >
. (period)

LEF/DEF 5.7 Language Reference

Preface

```
& 
Uppercase and lowercase alphabet
characters
Numbers
```

DEF reserves the following characters for special functions:
() Coordinates
$+\quad$ Start of new keyword

- \quad Coordinates and start of new keyword
[] Default special characters for bus bits unless overridden by BUSBITCHARS
/ Default special character for hierarchy unless overridden by DIVIDERCHAR

LEF and DEF names cannot contain the following ASCII characters:

ln	Newline
	Space
$;$	Semicolon

Note: LEF and DEF names also cannot contain the ASCII character used by the place-androute tool for comments. For example, if the tool uses the pound sign (\#) for comments, it cannot be used in a LEF or DEF name.

LEF and DEF interpret the following characters as regular expressions. Use these characters in LEF and DEF names only when you intend a regular expression.

$*$	Asterisk	Matches any sequence of characters
$\%$	Percent	Matches any single character

LEF/DEF 5.7 Language Reference

Preface

Note: Pattern matching only works in a few areas of the DEF file, such as component name matching in the SPECIALNET section, and component name matching in GROUP definitions.

LEF/DEF 5.7 Language Reference

LEF Syntax

This chapter contains information about the following topics:

- About Library Exchange Format Files on page 12
- General Rules on page 12
- Name Escaping Semantics for LEF/DEF Files on page 12
- Managing LEF Files on page 13
- Order of LEF Statements on page 14
- LEF Statement Definitions on page 14
- Bus Bit Characters on page 14
- Clearance Measure on page 15
- Divider Character on page 15
- Extensions on page 15
- Layer (Cut) on page 16
- Layer (Implant) on page 74
- Layer (Masterslice or Overlap) on page 76
- Layer (Routing) on page 79
- Macro on page 172

O Layer Geometries on page 187
O Macro Obstruction Statement on page 190
O Macro Pin Statement on page 193

- Manufacturing Grid on page 202
- Maximum Via Stack on page 202

LEF/DEF 5.7 Language Reference

LEF Syntax

- Nondefault Rule on page 203
- Property Definitions on page 207
- Site on page 209
- Units on page 211
- Use Min Spacing on page 214
- Version on page 214
- Via on page 215
- Via Rule on page 220
- Via Rule Generate on page 221

About Library Exchange Format Files

A Library Exchange Format (LEF) file contains library information for a class of designs. Library data includes layer, via, placement site type, and macro cell definitions. The LEF file is an ASCII representation using the syntax conventions described in "Typographic and Syntax Conventions" on page 7.

General Rules

Note the following information about creating LEF files:
■ Indentifiers like net names and cell names are limited to 2,048 characters.

- Distance is specified in microns.
- Distance precision is controlled by the UNITS statement.
- LEF statements end with a semicolon (;). You must leave a space between the last character in the statement and the semicolon.

Name Escaping Semantics for LEF/DEF Files

For information, see Name Escaping Semantics for LEF/DEF Files on page 239.

LEF/DEF 5.7 Language Reference LEF Syntax

Managing LEF Files

You can define all of your library information in a single LEF file; however this creates a large file that can be complex and hard to manage. Instead, you can divide the information into two files, a "technology" LEF file and a "cell library" LEF file.

A technology LEF file contains all of the LEF technology information for a design, such as placement and routing design rules, and process information for layers. A technology LEF file can include any of the following LEF statements:

```
[VERSION statement]
[BUSBITCHARS statement]
[DIVIDERCHAR statement]
[UNITS statement]
[MANUFACTURINGGRID statement]
[USEMINSPACING statement]
[CLEARANCEMEASURE statement ;]
[PROPERTYDEFINITIONS statement]
[LAYER (Nonrouting) statement
    | LAYER (Routing) statement] ...
[MAXVIASTACK statement]
[VIA statement] ...
[VIARULE statement] ...
[VIARULE GENERATE statement] ...
[NONDEFAULTRULE statement] ...
[SITE statement] ...
[BEGINEXT statement] ...
[END LIBRARY]
```

A cell library LEF file contains the macro and standard cell information for a design. A library LEF file can include any of the following statements:

```
[VERSION statement]
[BUSBITCHARS statement]
[DIVIDERCHAR statement]
[VIA statement] ...
[SITE statement]
[MACRO statement
    [PIN statement] ...
    [OBS statement ...] ] ...
[BEGINEXT statement] ...
[END LIBRARY]
```

When reading in LEF files, always read in the technology LEF file first.

LEF/DEF 5.7 Language Reference
 LEF Syntax

Order of LEF Statements

LEF files can contain the following statements. You can specify statements in any order; however, data must be defined before it is used. For example, the UNITS statement must be defined before any statements that use values that are dependent on UNITS values, LAYER statements must be defined before statements that use the layer names, and VIA statements must be defined before referencing them in other statements. If you specify statements in the following order, all data is defined before being used.

```
[VERSION statement]
[BUSBITCHARS statement]
[DIVIDERCHAR statement]
[UNITS statement]
[MANUFACTURINGGRID statement]
[USEMINSPACING statement]
[CLEARANCEMEASURE statement ;]
[PROPERTYDEFINITIONS statement]
[ LAYER (Nonrouting) statement
| LAYER (Routing) statement] ...
[MAXVIASTACK statement]
[VIA statement] ... #Fixed vias that can be used inside VIARULE
[VIARULE statement] ...
[VIARULE GENERATE statement] ...
[VIA statement] ... #Generated vias that can reference VIARULE name
[NONDEFAULTRULE statement] ...
[SITE statement] ...
[MACRO statement
    [PIN statement] ...
    [OBS statement ...]] ...
[BEGINEXT statement] ...
[END LIBRARY]
```


LEF Statement Definitions

The following definitions describe the syntax arguments for the statements that make up a LEF file. Statements are listed in alphabetical order, not in the order they should appear in a LEF file. For the correct order, see "Order of LEF Statements" on page 14.

Bus Bit Characters

```
[BUSBITCHARS "delimiterPair" ;]
```

Specifies the pair of characters used to specify bus bits when LEF names are mapped to or from other databases. The characters must be enclosed in double quotation marks. For example:

LEF/DEF 5.7 Language Reference

LEF Syntax

BUSBITCHARS "[]" ;
If one of the bus bit characters appears in a LEF name as a regular character, you must use a backslash (\backslash) before the character to prevent the LEF reader from interpreting the character as a bus bit delimiter.

If you do not specify the BUSBITCHARS statement in your LEF file, the default value is " []".

Clearance Measure

[CLEARANCEMEASURE \{MAXXY | EUCLIDEAN\} ;]
Defines the clearance spacing requirement that will be applied to all object spacing in the SPACING and SPACINGTABLE statements. If you do not specify a CLEARANCEMEASURE statement, euclidean distance is used by default.

MAXXY Uses the largest x or y distances for spacing between objects.
EUCLIDEAN Uses the euclidean distance for spacing between objects. That is, the square root of $x^{2}+y^{2}$.

Divider Character

[DIVIDERCHAR "character" ;]
Specifies the character used to express hierarchy when LEF names are mapped to or from other databases. The character must be enclosed in double quotation marks. For example:

```
DIVIDERCHAR "/" ;
```

If the divider character appears in a LEF name as a regular character, you must use a backslash (\backslash) before the character to prevent the LEF reader from interpreting the character as a hierarchy delimiter.

If you do not specify the DIVIDERCHAR statement in your LEF file, the default value is "/".

Extensions

```
[BEGINEXT "tag"
    extension
```

ENDEXT]

LEF/DEF 5.7 Language Reference LEF Syntax

Adds customized syntax to the LEF file that can be ignored by tools that do not use that syntax. You can also use extensions to add new syntax not yet supported by your version of LEF/DEF, if you are using version 5.1 or later.

```
extension
"tag"
Specifies the contents of the extension.
Identifies the extension block. You must enclose tag in double quotation marks.
```


Example 1-1 Extension Statement

```
BEGINEXT "1VSI Signature 1.0"
    CREATOR "company name"
    DATE "timestamp"
    REVISION "revision number"
ENDEXT
```


Layer (Cut)

```
LAYER layerName
    TYPE CUT ;
    [PROPERTY LEF58_TYPE
        "TYPE [TSV | PASSIVATION] ;" ;]
    [PROPERTY LEF58 BACKSIDE
        "BACKSIDE ;" ;]
    [PROPERTY LEF58 CUTCLASS
        "CUTCLASS className WIDTH viaWidth [LENGTH viaLength] [CUTS numCut]
            ;..." ;]
    [SPACING cutSpacing
            [CENTERTOCENTER]
            [SAMENET]
            [ LAYER secondLayerName [STACK]
            | ADJACENTCUTS {2 | 3 | 4} WITHIN cutWithin [EXCEPTSAMEPGNET]
            | PARALLELOVERLAP
            | AREA cutArea
        ]
    ;] ...
    [PROPERTY LEF58 SPACING
        "SPACING cutSpacing
            [MAXXY
            | [CENTERTOCENTER]
            [SAMENET | SAMEMETAL | SAMEVIA]
            [ LAYER secondLayerName [STACK]
                | ADJACENTCUTS {2 | 3 | 4} [EXACTALIGNED exactAlignedCut]
                        WITHIN cutWithin [EXCEPTSAMEPGNET][CUTCLASS className]
                        [SIDEPARALLELOVERLAP]
            | PARALLELOVERLAP [ EXCEPTSAMENET | EXCEPTSAMEMETAL | EXCEPTSAMEVIA]
```


LEF/DEF 5.7 Language Reference

 LEF Syntax```
 | PARALLELWITHIN within [EXCEPTSAMENET]
 | SAMEMETALSHAREDEDGE parwithin [ABOVE][CUTCLASS className]
 [EXCEPTTWOEDGES] [EXCEPTSAMEVIA numCut]
 | AREA cutArea]
 ;..." ;]
[SPACINGTABLE ORTHOGONAL
 {WITHIN cutWithin SPACING orthoSpacing} ... ;]
[PROPERTY LEF58 SPACINGTABLE
 "SPACINGTABLE
 [ORTHOGONAL
 {WITHIN cutWithin SPACING orthoSpacing} ... ;
 |[DEFAULT defaultCutSpacing]
 [SAMENET | SAMEMETAL]
 [LAYER secondLayerName]
 [CENTERTOCENTER { {className1 | ALL}| TO {className2 | ALL}
 } ...]
 CUTCLASS { {className1 | ALL} [SIDE | END]}...
 {{className2 | ALL} [SIDE | END] {-|cutSpacing}
 {-|cutSpacing}...}...;
]
;..." ;
[ARRAYSPACING [LONGARRAY] [WIDTH viaWidth] CUTSPACING cutSpacing
 {ARRAYCUTS arrayCuts SPACING arraySpacing} ... ;]
[PROPERTY LEF58 ARRAYSPACING
 "ARRAYSPACING [CUTCLASS className] [PARALLELOVERLAP]
 [LONGARRAY] [WIDTH viaWidth] CUTSPACING cutSpacing
 {ARRAYCUTS arrayCuts SPACING arraySpacing} ... ;
];" ;
[WIDTH minWidth ;]
[ENCLOSURE [ABOVE | BELOW] overhang1 overhang2
 [WIDTH minWidth [EXCEPTEXTRACUT cutWithin]
 | LENGTH minLength]
;] ...
[PREFERENCLOSURE [ABOVE | BELOW] overhang1 overhang2 [WIDTH minWidth] ;] ...
[PROPERTY LEF58 ENCLOSURE
 "ENCLOSURE [CUTCLASS className][ABOVE | BELOW]
{overhang1 overhang2 | END overhang1 SIDE overhang2}
 [WIDTH minWidth
 [EXCEPTEXTRACUT cutWithin [PRL | NOSHAREDEDGE]]
 | LENGTH minLength
 | EXTRACUT
 | REDUNDANTCUT cutWithin
];..." ;]
[PROPERTY LEF58 ENCLOSUREEDGE
 "ENCLOSUREEDGE [CUTCLASS className][ABOVE | BELOW] overhang
 WIDTH minWidth PARALLEL parLength WITHIN parWithin
 [EXCEPTEXTRACUT [cutWithin]]
 [EXCEPTTWOEDGES]
 ;..." ;]
[RESISTANCE resistancePerCut ;]
[PROPERTY propName propVal ;] ...
```


## LEF/DEF 5.7 Language Reference

 LEF Syntax```
    [ACCURRENTDENSITY {PEAK | AVERAGE | RMS}
    { value
    | FREQUENCY freq_1 freq_2 ... ;
            [CUTAREA cutArea_1 cutArea_2 ... ;]
            TABLEENTRIES
                v_freq_1_cutArea_1 v_freq_1_cutArea_2 ...
                v_freq_2_cutArea_1 v_freq_2_cutArea_2 ...
    } ;]
[DCCURRENTDENSITY AVERAGE
    { value
    | CUTAREA cutArea_1 cutArea_2 ... ;
        TABLEENTRIES value_1 value_2 ...
    } ;]
[ANTENNAMODEL {OXIDE1 | OXIDE2 | OXIDE3 | OXIDE4} ;] ...
[ANTENNAAREARATIO value ;] ...
[ANTENNADIFFAREARATIO {value | PWL ( ( d1 r1 ) ( d2 r2 ) ...)} ;] ...
[ANTENNACUMAREARATIO value ;] ...
[ANTENNACUMDIFFAREARATIO {value | PWL ( (d1 r1 ) ( d2 r2 ) ...)} ;] ...
[ANTENNAAREAFACTOR value [DIFFUSEONLY] ;] ...
[ANTENNACUMROUTINGPLUSCUT ;]
[ANTENNAGATEPLUSDIFF plusDiffFactor ; ]
[ANTENNAAREAMINUSDIFF minusDiffFactor ;]
[ANTENNAAREADIFFREDUCEPWL
    ( ( diffArea1 diffAreaFactor1 ) ( diffArea2 diffAreaFactor2 ) ...) ; ]
END layerName
```

Defines cut layers in the design. Each cut layer is defined by assigning it a name and design rules. You must define cut layers separately, with their own layer statements.

You must define layers in process order from bottom to top. For example:

```
poly masterslice
cut01 cut
metal1 routing
cut12 cut
metal2 routing
cut23 cut
metal3 routing
```


ACCURRENTDENSITY

Specifies how much AC current a cut of a certain area can handle at a certain frequency. For an example using the ACCURRENTDENSITY syntax, see Example 1-2 on page 83.
The ACCURRENTDENSITY syntax is defined as follows:
\{PEAK | AVERAGE | RMS $\}$
\{ value
| FREQUENCY freq_1 freq_2...;

LEF Syntax

```
    [CUTAREA cutArea_1 cutArea_2 ... ; ]
TABLEENTRIES
    v_freq_1_cutArea_1 v_freq_1_cutArea_2 ...
    v_freq_2_cutArea_1 v_freq_2_cutArea_2 ...
```

\} ;

PEAK Specifies the peak limit of the layer.
AVERAGE Specifies the average limit of the layer.
RMS \quad Specifies the root mean square limit of the layer.
value

FREQUENCY

CUTAREA

Specifies frequency values, in megahertz. You can specify more than one frequency. If you specify multiple frequency values, the values must be specified in ascending order.

If you specify only one frequency value, there is no frequency dependency, and the table entries are assumed to apply to all frequencies.
Type: Float
Specifies cut area values, in square microns $\left(\mu m^{2}\right)$. You can specify more than one cut area. If you specify multiple cut area values, the values must be specified in ascending order.

If you specify only one cut area value, there is no cut area dependency, and the table entries are assumed to apply to all cut areas.
Type: Float
Defines the maximum current for each frequency and cut area pair specified in the FREQUENCY and CUTAREA statements, in $\mathrm{mA} / \mu \mathrm{m}^{2}$.

The pairings define each cut area for the first frequency in the FREQUENCY statement, then the cut areas for the second frequency, and so on. The final value for a given cut area and frequency is computed from a linear interpolation of the table values.
Type: Float

LEF/DEF 5.7 Language Reference

LEF Syntax

ANTENNAAREADIFFREDUCEPWL ((diffAreal diffAreaFactor1)
(diffArea2 diffAreaFactor2) ...)
Indicates that the cut_area is multiplied by a diffAreaFactor computed from a piece-wise linear interpolation, based on the diffusion area attached to the cut.
The $d i f f$ Area values are floats, specified in microns squared. The $d i f f$ Area values should start with 0 and monotonically increase in value to the maximum size diffArea possible. The diffAreafactor values are floats with no units. The diffAreaFactor values are normally between 0.0 and 1.0. If no statement rule is defined, the diffMetalReduceFactor value in the $\operatorname{PAR}\left(m_{i}\right)$ equation defaults to 1.0 .

For more information on the $\operatorname{PAR}\left(m_{i}\right)$ equation and process antenna models, see Calculating Ratios for a Cut Layer, in Appendix C, "Calculating and Fixing Process Antenna Violations."

ANTENNAAREAFACTOR value [DIFFUSEONLY]
Specifies the multiply factor for the antenna metal area calculation. DIFFUSEONLY specifies that the current antenna factor should only be used when the corresponding layer is connected to the diffusion.
Default: 1.0
Type: Float
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."
Note: If you specify a value that is greater than 1.0, the computed areas will be larger, and violations will occur more frequently.

ANTENNAAREAMINUSDIFF minusDiffFactor

Indicates that the antenna ratio cut_area should subtract the diffusion area connected to it. This means that the ratio is calculated as:
ratio $=($ cutFactor x cut_area - minusDiffFactor x diff_area)/gate_area
If the resulting value is less than 0 , it should be truncated to 0 . For example, if a via2 shape has a final ratio that is less than 0 because it connects to a diffusion shape, then the cumulative check for metal3 (or via3) above the via2 shape adds a cumulative value of 0 from the via2 layer. (See Example 1 in Cut Layer Process Antenna Models, in Appendix C, "Calculating and Fixing Process Antenna Violations.".)
Type: Float
Default: 0.0
ANTENNAAREARATIO value
Specifies the maximum legal antenna ratio, using the area of the metal wire that is not connected to the diffusion diode. For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."
Type: Integer

LEF/DEF 5.7 Language Reference

LEF Syntax

ANTENNACUMAREARATIO value

Specifies the cumulative antenna ratio, using the area of the metal wire that is not connected to the diffusion diode. For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."
Type: Integer

Specifies the cumulative antenna ratio, using the area of the metal wire that is connected to the diffusion diode. You can supply an explicit ratio val ue or specify piece-wise linear format (PWL), in which case the cumulative ratio is calculated using linear interpolation of the diffusion area and ratio input values. The diffusion input values must be specified in ascending order.
Type: Integer
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."

ANTENNACUMROUTINGPLUSCUT

Indicates that cumulative ratio rules (that is, ANTENNACUMAREARATIO, and ANTENNACUMDIFFAREARATIO) accumulate with the previous routing layer instead of the previous cut layer. Use this to combine metal and cut area ratios into one rule.
For more information on process antenna models, see Calculating Ratios for a Cut Layer, in Appendix C, "Calculating and Fixing Process Antenna Violations."

Specifies the antenna ratio, using the area of the metal wire connected to the diffusion diode. You can supply an explicit ratio value or specify piece-wise linear format (PWL), in which case the ratio is calculated using linear interpolation of the diffusion area and ratio input values. The diffusion input values must be specified in ascending order.
Type: Integer
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."

ANTENNAGATEPLUSDIFF plusDiffFactor

Indicates the antenna ratio gate area includes the diffusion area multiplied by plusDifffactor. This means that the ratio is calculated as:
ratio $=$ cut_area $/($ gate_area + plusDiffFactor x diff_area)
The ratio rules without "DIFF" (the ANTENNAAREARATIO, ANTENNACUMAREARATIO, ANTENNASIDEAREARATIO, and ANTENNACUMSIDEAREARATIO statements), are unnecessary for this layer if ANTENNAGATEPLUSDIFF is defined because a zero diffusion area is already accounted for by the ANTENNADIFF*RATIO statements. Type: Float
Default: 0.0

LEF/DEF 5.7 Language Reference

LEF Syntax

For more information on process antenna models, see Calculating Ratios for a Cut Layer, in Appendix C, "Calculating and Fixing Process Antenna Violations."

ANTENNAMODEL \{OXIDE1 | OXIDE2 | OXIDE3 | OXIDE4\}
Specifies the oxide model for the layer. If you specify an ANTENNAMODEL statement, that value affects all ANTENNA* statements for the layer that follow it until you specify another ANTENNAMODEL statement.
Default: OXIDE1, for a new LAYER statement
Because LEF is sometimes used incrementally, if an ANTENNA statement occurs twice for the same oxide model, the last value specified is used. For any given ANTENNA keyword, only one value or PWL table is stored for each oxide metal on a given layer. For an example using the ANTENNAMODEL syntax, see Example 1-3 on page 88.

ARRAYSPACING

Specifies array spacing rules to use on the cut layer. An array spacing rule is intended for large vias of size $3 x 3$ or larger.
The ARRAYSPACING syntax is defined as follows:

```
[ARRAYSPACING [LONGARRAY]
    [WIDTH viaWidth] CUTSPACING cutSpacing
    {ARRAYCUTS arrayCuts
        SPACING arraySpacing} ...;
    ]
```

 CUTSPACING cutSpacing
 Specifies the edge-of-cut to edge-of-cut spacing inside one cut array.

LEF/DEF 5.7 Language Reference

LEF Syntax

ARRAYCUTS arrayCuts SPACING arraySpacing

Indicates that a large via array with a size greater than or equal to arrayCuts x arrayCuts in both dimensions must use N x N cut arrays (where $N=$ arraycuts) separated from other cut arrays by a distance of greater than or equal to arraySpacing.

For example, if arraycuts $=4$, then 2×3 and 2×4 arrays do not need to follow the array spacing rule. However, 3×3 and 3×4 arrays must follow the rule (3×4 is legal, if the LONGARRAY keyword is specified), while 4×4 or 4×5 arrays are violations, unless an arraycuts $=4$ rule is specified. (See Array Spacing Rule Example 1).
If you specify multiple \{ARRAYCUTS . . . \} statements, the arraycuts values must be specified in increasing order. (See Array Spacing Rule Example 3.)

Specifying more than one ARRAYCUTS statement creates multiple choices for via array generation.
For example, you can define an arraycuts $=4$ rule with arraySpacing $=1.0$, and an arraycuts $=5$ rule with arrayspacing $=1.5$. Either rule is legal, and the application should choose which rule to use (presumably based on which rule produces the most via cuts in the given via area).
LONGARRAY Indicates that the via can use N x M cut arrays, where $N=$ arrayCuts, and M can be any value, including one that is larger than N. (See Array Spacing Rule Example 2.)

WIDTH viaWidth
Indicates that the array spacing rules only apply if the via metal width is greater than or equal to viaWidth. (See Array Spacing Rule Example 1.)

Example 1-2 Array Spacing Rules

- Array Spacing Rule Example 1

Assume the following array spacing rule exists:
ARRAYSPACING WIDTH 2.0 CUTSPACING 0.2 ARRAYCUTS 3 SPACING 1.0 ;
Any via with a metal width greater than or equal to $2.0 \mu \mathrm{~m}$ should use the cut spacing of $0.2 \mu \mathrm{~m}$ between cuts inside 3×3 cut arrays, and the cut arrays should be spaced apart by

LEF/DEF 5.7 Language Reference

a distance of greater than or equal to $1.0 \mu \mathrm{~m}$ from other cut arrays. This creates the via shown in Figure 1-1 on page 24.

An array of 3×4 or $3 x 5$ cuts spaced $0.2 \mu \mathrm{~m}$ apart is a violation, unless the LONGARRAY keyword is specified. This is because the 3×3 sub-array, inside 3×4 or 3×5 cut array, does not meet $1.0 \mu \mathrm{~m}$ spacing from other cut arrays. Also, any larger array, such as 4×4 or 4×5 cuts, is a violation because the $3 x 3$ sub-array inside 4×4 or 4×5 cut array requires $1.0 \mu \mathrm{~m}$ spacing from other cut arrays.

Figure 1-1 Via Created With Array Spacing Width Rule

- Array Spacing Rule Example 2

The following array spacing rule is the same as Example 1, except the LONGARRAY keyword is present and the WIDTH keyword is not specified, so it creates the via shown in Figure 1-2 on page 25:
ARRAYSPACING LONGARRAY CUTSPACING 0.2 ARRAYCUTS 3 SPACING 1.0 ;
An array of $2 \times 2,2 \times 3$, or $2 x M$ cuts ignores this rule.
An array of $3 x 3$ or $3 x M$ must have $1.0 \mu \mathrm{~m}$ spacing from other cut arrays and $0.2 \mu \mathrm{~m}$ spacing between the cuts.

An array of $4 x 4$ or $4 x M$ is a violation because the array does not have $1.0 \mu \mathrm{~m}$ space from the $3 x M$ sub-array inside the $4 x M$ array.

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-2 Via Created With Array Spacing Long Array Rule

- Array Spacing Rule Example 3

Assume the following multiple array spacing rules exist:

```
ARRAYSPACING LONGARRAY CUTSPACING 0.2
    ARRAYCUTS 3 SPACING 1.0
    ARRAYCUTS 4 SPACING 1.5
    ARRAYCUTS 5 SPACING 2.0 ;
```

The application can choose between $3 x M$ cut arrays with $1.0 \mu \mathrm{~m}$ spacing, $4 \times \mathrm{M}$ cut arrays with $1.5 \mu \mathrm{~m}$ spacing, or 5 xM cut arrays with $2.0 \mu \mathrm{~m}$ spacing, using 0.2 cut-to-cut spacing inside each cut array. No wIDTH value indicates that any via with more than three via cuts in both dimensions (that is, 3×3 and 3×4, but not 2×4) must follow these rules.

DCCURRENTDENSITY

Specifies how much DC current a via cut of a certain area can handle in units of milliamps per square micron ($\mathrm{mA} / \mathrm{mm}^{2}$). For an example using the DCCURRENTDENSITY syntax, see Example 1-4 on page 90.
The DCCURRENTDENSITY syntax is defined as follows:
AVERAGE
\{ value
| CUTAREA cutArea_1 cutArea_2... ;

LEF/DEF 5.7 Language Reference

LEF Syntax

```
    TABLEENTRIES value_1 value_2 ...
} ;
```

AVERAGE Specifies the average limit for the layer.
value \quad Specifies a current limit for the layer in $\mathrm{mA} / \mathrm{mm}^{2}$.
Type: Float
CUTAREA Specifies cut area values, in square microns. You can specify more than one cut area value. If you specify multiple cut area values, the values must be specified in ascending order. Type: Float

TABLEENTRIES Specifies the maximum current density for each specified cut area, in $\mathrm{mA} / \mu \mathrm{m}^{2}$. The final value for a specific cut area is computed from a linear interpolation of the table values.
Type: Float

ENCLOSURE

Specifies an enclosure rule for the cut layer.
The enclosure syntax is described as follows:

```
[ENCLOSURE
    [ABOVE | BELOW] overhang1 overhang2
    [ WIDTH minWidth [EXCEPTEXTRACUT cutWithin]
    | LENGTH minLength]
;]
```

ENCLOSURE [ABOVE | BELOW] overhang1 overhang2

Indicates that any rectangle from this cut layer requires the routing layers to overhang by overhang1 on two opposite sides, and by overhang2 on the other two opposite sides. (See Figure 1-3 on page 28.)
Type: Float, specified in microns
If you specify BELOW, the overhang is required on the routing layers below this cut layer. If you specify ABOVE, the overhang is required on the routing layers above this cut layer. If you specify neither, the rule applies to both adjacent routing layers.
wIDTH minWidth

LEF/DEF 5.7 Language Reference

LEF Syntax

Indicates that the enclosure rule only applies when the width of the routing layer is greater than or equal to minWidth. If you do not specify a minimum width, the enclosure rule applies to all widths (as if minWidth equaled 0).
Type: Float, specified in microns
If you specify multiple enclosure rules with the same width (or with no width), then there are several legal enclosure rules for this width, and the application only needs to meet one of the rules. If you specify multiple enclosure rules with different minWidth values, the largest minWidth rule that is still less than or equal to the wire width applies.

For example, if you specify enclosure rules for $0.0 \mu \mathrm{~m}, 1.0 \mu \mathrm{~m}$, and $2.0 \mu \mathrm{~m}$ widths, then a $0.5 \mu \mathrm{~m}$ wire must meet a 0.0 rule, a $1.5 \mu \mathrm{~m}$ wire must meet a 1.0 rule, and a $2.0 \mu \mathrm{~m}$ wire must meet a 2.0 rule. (See Example 1-3 on page 28.)

EXCEPTEXTRACUT cutWithin
Indicates that if there is another via cut having same metal shapes on both metal layers less than or equal to cutWithin distance away, this ENCLOSURE with WIDTH rule is ignored and the ENCLOSURE rules for minimum width wires (that is, no WIDTH keyword) are applied to the via cuts instead. (See Example 1-4 on page 29.)
Type: Float, specified in microns
LENGTH minLength
Indicates that the enclosure rule only applies if the total length of the longest opposite-side overhangs is greater than or equal to minLength. The total length of the overhang is measured at the via cut center (see illustration F in Figure 1-5 on page 32).
Type: Float, specified in microns

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-3 Enclosure Rule

Example 1-3 Enclosure Rules

- The following definition describes a cut layer that has different enclosure rules for m1 below than for $m 2$ above.

```
LAYER via12
TYPE CUT ;
WIDTH 0.20 ; #cuts . 20 x . }20\mathrm{ squares
ENCLOSURE BELOW .03 .01 ; #m1: 0.03 on two opposite sides, 0.01 on other
ENCLOSURE ABOVE .05 .01 ; #m2: 0.05 on two opposite sides, 0.01 on other
RESISTANCE 10.0 ; #10.0 ohms per cut
```

END via12

- The following definition describes a cut layer that requires extra enclosure if the metal width is wider:

```
LAYER via23
TYPE CUT ;
WIDTH 0.20; #cuts . 20 x . 20 squares
SPACING 0.15 #via23 edge-to-edge spacing is 0.15
ENCLOSURE .05 .01 ; #m2, m3: 0.05 on two opposite sides, 0.01 on
    #other sides
ENCLOSURE .02 .02 WIDTH 1.0 ; #m2 needs 0.02 on all sides if m2 width >=1.0
    #m3 needs 0.02 on all sides if m3 width >=1.0
ENCLOSURE .05 .05 WIDTH 2.0 ; #m2 needs 0.05 on all sides if m2 width >=2.0
    #m3 needs 0.05 on all sides if m3 width >=2.0
```

END via23

LEF/DEF 5.7 Language Reference

LEF Syntax

The following definition describes a cut layer that requires an overhang of $.07 \mu \mathrm{~m}$ on all sides of metal3, and an overhang of $.09 \mu \mathrm{~m}$ on all sides of metal4, if the widths of metal3 and metal4 are greater than or equal to $1.0 \mu \mathrm{~m}$:

```
LAYER via34
TYPE CUT ;
WIDTH 0.25 ; #cuts . 25 x . }25\mathrm{ squares
ENCLOSURE .05 . 01 ; #minimum width enclosure rule
ENCLOSURE BELOW .07 .07 WIDTH 1.0 ; #m3 needs . 07 on all sides if m3 width >=1.0
ENCLOSURE ABOVE .09 .09 WIDTH 1.0 ; #m4 needs .09 on all sides if m4 width >=1.0
END via34
```


Example 1-4 Enclosure Rule With Width and ExceptExtraCut

The following definition describes a cut layer that requires an enclosure of either . $05 \mu \mathrm{~m}$ on opposite sides and $0.0 \mu \mathrm{~m}$ on the other two sides, or $0.04 \mu \mathrm{~m}$ on opposites sides and $0.01 \mu \mathrm{~m}$ on the other two sides. It also requires an enclosure of $0.03 \mu \mathrm{~m}$ in all directions if the wire width is greater than or equal to $0.03 \mu \mathrm{~m}$, unless there is an extra cut (redundant cut) within $0.2 \mu \mathrm{~m}$.

```
LAYER via34
TYPE CUT ;
WIDTH 0.10 #cuts . 10 x . }10\mathrm{ squares
SPACING 0.10 ; #minimum edge-to-edge spacing is 0.10
ENCLOSURE 0.0 0.05 ; #Overhang 0.0 0.05
ENCLOSURE 0.01 0.04 ; #or, overhang 0.01 0.04
#if width >= 0.3, need 0.03 0.03, unless extra cut across wire within 0. 2\mum
ENCLOSURE 0.03 0.03 WIDTH 0.3 EXCEPTEXTRACUT 0.2 ;
```

END via34

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-4 Illustrations of Enclosure Rule With Width and ExceptExtraCut

a) Okay; has 0.0 and 0.05 overhang.

c) Okay; meets wide-wire enclosure rule of 0.030 .03 .

e) Violation. Extra cut is <= 0.2 away; therefore, use min-width rule, but cannot meet either 0.00 .05 or 0.01 0.04 enclosure rules.

b) Okay; has 0.01 and 0.04 overhang.

d) Okay; extra cut is $<=0.2$ away; therefore, use min-width rule, and both cuts meet min-width enclosure rule of 0.0 and 0.5 .

f) Okay. Extra cut is <= 0.2 away; therefore use min-width rule, and both cuts meet the min-width enclosure rule of 0.00 .05 .

LEF/DEF 5.7 Language Reference

LEF Syntax

Example 1-5 Enclosure Rule With Length and Width

The following definition describes a cut layer that requires an enclosure of $.05 \mu \mathrm{~m}$ on opposite sides and $0.0 \mu \mathrm{~m}$ on the other two sides, as long as the total length enclosure on any two opposite sides is greater than or equal to $0.7 \mu \mathrm{~m}$. Otherwise, it requires $0.05 \mu \mathrm{~m}$ on all sides if the total enclosure length is less than or equal to $0.7 \mu \mathrm{~m}$. It also requires $0.10 \mu \mathrm{~m}$ on all sides if the metal layer has a width that is greater than or equal to $1.0 \mu \mathrm{~m}$. (Figure 1-5 on page 32 illustrates examples of violations and acceptable vias for the three ENCLOSURE rules.)

```
LAYER via34
TYPE CUT ;
WIDTH 0.20
SPACING 0.20 ;
ENCLOSURE 0.05 0.0 LENGTH 0.7 ;
ENCLOSURE 0.05 0.05 ;
ENCLOSURE 0.10 0.10 WIDTH 1.0 ;
```

```
#cuts . }20\mathrm{ x . }20\mathrm{ squares
```

\#cuts . }20\mathrm{ x . }20\mathrm{ squares
\#via34 edge-to-edge spacing is 0.20
\#via34 edge-to-edge spacing is 0.20
\#overhang 0.05 0.0 if total overhang >= 0.7
\#overhang 0.05 0.0 if total overhang >= 0.7
\#or, overhang 0.05 on all sides
\#or, overhang 0.05 on all sides
\#if width >= 1.0, always need 0.10

```
#if width >= 1.0, always need 0.10
```

END via34

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-5 Illustrations of Enclosure Rule With Length and Width

a) Violation. Longest overhang length <0.70, and did not meet second rule of 0.05 on all sides.

Longest overhang length $=0.74$
c) Violation. Longest overhang length $>=$ 0.70 , but does not have 0.05 on opposite sides, and did not meet second rule of 0.05 on all sides.

Longest overhang length $=0.40$
e) Okay. Total length <0.7; therefore first rule fails, but second rule for 0.05 on all sides is met.

b) Okay. Longest overhang length >= 0.70 , and has 0.05 on opposite sides, and 0.0 on other sides.

Longest overhang length $=0.70$
d) Okay. Longest overhang length $>=$ 0.70 , and has 0.05 on opposite sides, and 0.0 on other sides.

Longest overhang length $=0.85$
f) Okay. Overhang length $>=0.70$. (The center of the via cut is where the total overhang length is measured.)

LEF/DEF 5.7 Language Reference

LEF Syntax

g) Violation. Meets first rule, but width $>=1.0$; therefore must meet third rule: 0.10 on all sides.

LAYER LayerName

Specifies the name for the layer. This name is used in later references to the layer.

```
PREFERENCLOSURE [ABOVE | BELOW] overhang1 overhang2 [WIDTH
minWidth]
```

Specifies preferred enclosure rules that can improve manufacturing yield, instead of enclosure rules that absolutely must be met (see the ENCLOSURE keyword). Applications should use the PREFERENCLOSURE rule when it has little or no impact on density and routability.

PROPERTY propName propVal

Specifies a numerical or string value for a layer property defined in the PROPERTYDEFINITIONS statement. The propName you specify must match the propName listed in the PROPERTYDEFINITIONS statement.

RESISTANCE resistancePercut

Specifies the resistance per cut on this layer. LEF vias without their own specific resistance value, or DEF vias from a VIARULE without a resistance per cut value, can use this resistance value.

Via resistance is computed using resistancePercut and Kirchoff's law for typical parallel resistance calculation. For example, if $R=10$ ohms per cut, and the via has one cut, then $R=10$ ohms. If the via has two cuts, then $R=(1 / 2)$ * $10=5$ ohms.

SPACING

Specifies the minimum spacing allowed between via cuts on the same net or different nets. For via cuts on the same net, this value can be overridden by a spacing with the SAMENET keyword. (See Example 1-6 on page 35.)
The SPACING syntax is defined as follows:

LEF/DEF 5.7 Language Reference

LEF Syntax

```
[SPACING cutSpacing
    [CENTERTOCENTER]
    [SAMENET]
    [ LAYER secondLayerName [STACK]
    | ADJACENTCUTS {2 | 3 | 4} WITHIN cutWithin
            [EXCEPTSAMEPGNET]
    | PARALLELOVERLAP
    | AREA cutArea]
;] ...
```

cutSpacing Specifies the default minimum spacing between via cuts, in microns.
Type: Float
CENTERTOCENTER
Computes the cutSpacing or cutWithin distances from cutcenter to cut-center, instead of from cut-edge to cut-edge (the default behavior). (See Spacing Rule Example 4.)

SAMENET Indicates that the cutSpacing value only applies to same-net cuts. The SAMENET cutSpacing value should be smaller than the normal SPACING cutSpacing value that applies to different-net cuts.

LAYER secondLayerName
Applies the spacing rule between objects on the cut layer and objects on 2 ndLayerName. The second layer must be a cut or routing layer already defined in the LEF file, or the next routing layer declared in the LEF file. This allows "one layer look ahead," which is needed in some technologies. (See Spacing Rule Example 1.)

STACK Indicates that same-net cuts on two different layers can be stacked if they are aligned. If the cuts are not the same size, the smaller cut must be completely covered by the larger cut, to be considered legal. If both cuts are the same size, the centers of the cuts must be aligned, to be legal; otherwise, the cuts must have cutSpacing between them. If cutSpacing is 0.0, the samenet cut vias can be placed anywhere legally, including slightly overlap case. (See Spacing Rule Example 7.)

Most applications only allow spacing checks and STACK checking if secondLayerName is the cut layer below the current cut layer.

ADJACENTCUTS \{2 |3| 4$\}$ WITHIN cutWithin

LEF/DEF 5.7 Language Reference

LEF Syntax

Applies the spacing rule only when the cut has two, three, or four via cuts that are less than cutwithin distance, in microns, from each other. You can specify only one ADJACENTCUTS statement per cut layer. For more information, see "Adjacent Via Cuts." Type: Float (distance)

EXCEPTSAMEPGNET

Indicates that the ADJACENTCUTS rule does not apply between cuts, if they are on the same net, and are on a power or ground net. (See Spacing Rule Example 5.)

PARALLELOVERLAP

Indicates that cuts on different metal shapes that have a parallel edge overlap greater than 0 require cutspacing distance between them.

Only one PARALLELOVERLAP spacing value is allowed per cut layer. The rule does not apply to cuts that share the same metal shapes above or below that cover the overlap area between the cuts. (See Spacing Rule Example 8.)

AREA cutArea
Indicates that any cut with an area greater than or equal to cutArea requires edge-to-edge spacing greater than or equal to cutSpacing to all other cuts. (See Spacing Rule Example 6.)

A SPACING statement should already exist that applies to all cuts. Only cuts that have area greater than or equal to cutArea require extra spacing; therefore, cutSpacing for this keyword must be greater than the default spacing.

If you include CENTERTOCENTER, the cutSpacing values are computed from cut-center to cut-center, instead of from cut-edge to cut-edge.
Type: Float, specified in microns squared

Example 1-6 Spacing Rule Examples

- Spacing Rule Example 1

The following spacing rule defines the cut spacing required between a cut and the routing immediately above the cut. The spacing only applies to "outside edges" of the routing shape, and does not apply to a routing shape already overlapping the cut shape.

[^0]
LEF/DEF 5.7 Language Reference

LEF Syntax

SPACING 0.10 ; \#normal min cut-to-cut spacing
SPACING 0.15 LAYER metal2 ; \#spacing from cut to routing edge above

END cut12
LAYER metal2

END metal2

The "SPACING 0.15 LAYER metal2 ;" rule only applies to outside edges; therefore, no violations between cut12 and the top metal2 shape will occur. Only the spacing to the bottom metal2 shape is checked.

Spacing Rule Example 2

The following spacing rule specifies that extra space is needed for any via with more than three adjacent cuts, which happens if one via has more than 2×2 cuts (see Figure 1-6 on page 37). A cut that is within $.25 \mu \mathrm{~m}$ of three other cuts requires spacing that is greater than or equal to $0.22 \mu \mathrm{~m}$.

```
LAYER CUT12
```

```
SPACING 0.20;

SPACING 0.22 ADJACENTCUTS 3 WITHIN 0.25 ;

END CUT12

\section*{Adjacent Via Cuts}

A cut is considered adjacent if it is within distance of another cut in any direction (including a 45-degree angle). Figure 1-6 on page 37 illustrates adjacent via cuts for \(2 \times 2\), \(2 \times 3\), and \(3 x 3\) vias, for typical spacing values (that is, the diagonal spacing is greater than

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}
the ADJACENTCUTS distance value). For three adjacent cuts, the ADJACENTCUTS rule allows tight cut spacing on \(1 \times n\) vias and \(2 \times 2\) vias, but requires larger cut spacing on \(2 \times 3\), \(2 \times 4\) and \(3 x_{n}\) vias. For four adjacent cuts, the rule allows tight cut spacing on \(2 x_{n}\) vias, but it requires larger cut spacing on \(3 x_{n}\) vias.

The ADJACENTCUTS rule overrides the cut-to-cut spacing used in VIARULE GENERATE statements for large vias if the ADJACENTCUTS spacing value is larger than the VIARULE spacing value.

Figure 1-6


\section*{- Spacing Rule Example 3}

The following spacing rule specifies that extra space is required for any via with \(3 \times 3\) cuts or more (that is, a cut with four or more adjacent cuts - see Figure 1-6 on page 37). A cut that is within \(.25 \mu \mathrm{~m}\) of four other cuts requires spacing that is greater than or equal to \(0.22 \mu \mathrm{~m}\).
LAYER CUT12
SPACING 0.20 ; \#default cut spacing
SPACING 0.22 ADJACENTCUTS 4 WITHIN 0.25 ;
...
END CUT12

\section*{Spacing Rule Example 4}

The following spacing rule indicates that center-to-center spacing of greater than or equal to \(0.30 \mu \mathrm{~m}\) is required if the center-to-center spacing to three or more cuts is less

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}
than \(0.30 \mu \mathrm{~m}\). This is equivalent to saying a cut can have only two other cuts with center-to-center spacing that is less than \(0.30 \mu \mathrm{~m}\).
SPACING 0.30 CENTERTOCENTER ADJACENTCUTS 3 WITHIN 0.30 ;
- Spacing Rule Example 5

Figure 1-7 on page 38 illustrates the following spacing rule:
SPACING 1.0 ;
SPACING 1.2 ADJACENTCUTS 2 WITHIN 1.5 EXCEPTSAMEPGNET ;

Figure 1-7 Except Same PG Net Rule

a) Allowed if cuts are on power or ground nets. Violation if cuts are on signal net.

b) Allowed if cuts are on the same power or ground nets. Violation if cuts are on signal nets.

c) Allowed if cuts are on the same power or ground nets. Violation if cuts are on signal nets, or different nets.

\section*{Spacing Rule Example 6}

The following spacing rule indicates that normal cuts require \(0.10 \mu \mathrm{~m}\) edge-to-edge spacing, and cuts with an area greater than or equal to \(0.02 \mu \mathrm{~m}^{2}\) require \(0.12 \mu \mathrm{~m}\) edge-to-edge spacing to all other cuts:

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}
```

SPACING 1.0 ;
SPACING 0.12 AREA 0.02 ;

```
- Spacing Rule Example 7

The following spacing rule indicates cut23 cuts must be \(0.20 \mu \mathrm{~m}\) from cut12 cuts unless they are exactly aligned:
LAYER cut23 ;
SPACING 0.20 SAMENET LAYER cut12 STACK ;

\section*{Spacing Rule Example 8}

Figure 1-8 on page 40 illustrates the following spacing rule:
SPACING 1.0 ;
SPACING 1.5 PARALLELOVERLAP ;

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}

\section*{Figure 1-8 Parallel Overlap Rule}

a) Okay. Cuts have parallel overlap > 0; therefore PARALLELOVERLAP rule of 1.5 applies.

b) Okay. Cuts have parallel overlap \(=0\); therefore
PARALLELOVERLAP rule does not apply, and only 1.0 spacing is needed.

c) Okay. Cuts have no parallel overlap; therefore PARALLELOVERLAP rule does not apply, and only 1.0 spacing is needed.

d) Okay. Cuts overlap, but share the same metal above or below; therefore PARALLELOVERLAP rule does not apply, and only 1.0 spacing is needed.

e) Okay. Cuts share same metal above or below, and the shared metal does not necessarily need to cover the projected area between the cuts.

\section*{SPACINGTABLE}

Specifies spacing tables to use on the cut layer.
The SPACINGTABLE syntax is defined as follows:

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}
```

SPACINGTABLE ORTHOGONAL
{WITHIN cutWithin SPACING orthospacing}...
;]
WITHIN cutWithin SPACING orthoSpacing
Indicates that if two cuts have parallel overlap that is greater than 0 , and they are less than cutwithin distance from each other, any other cuts in an orthogonal direction must have greater than or equal to orthospacing. (See Example 1-6 on page 41., and Figure 1-9 on page 42.)
Type: Float, specified in microns (for both values)

```

\section*{Example 1-7 Spacing Table Orthogonal Rule}

The following example shows how a spacing table orthogonal rule is defined:
```

SPACING 0.10 \#min spacing for all cuts
SPACINGTABLE ORTHOGONAL
WITHIN 0.15 SPACING 0.11
WITHIN 0.13 SPACING 0.13
WITHIN 0.11 SPACING 0.15 ;

```

\section*{LEF/DEF 5.7 Language Reference}

LEF Syntax

Figure 1-9 Spacing Table Orthogonal Overlap Regions

a) If two cuts < cutWithin apart and overlap, then no other cut is allowed inside the orthogonal overlap region.

b) Orthogonal overlap region is computed from the cutWithin overlap region and cuts extended out orthogonally by orthoSpacing.

d) The rule applies in both the \(X\) and \(Y\) directions. In this case, the horizontal overlap of A and C makes \(B\) a violation.

TYPE CUT
Specifies that the layer is for contact-cuts. The layer is later referenced in vias, and in rules for generating vias.

\section*{WIDTH minWidth}

Specifies the minimum width of a cut. In most technologies, this is also the only legal size of a cut.
Type: Float, specified in microns

\section*{LEF/DEF 5.7 Language Reference \\ LEF Syntax}

\section*{Defining Cut Layer Properties to Create 32nm and 45nm Rules}

You can include cut layer properties in your LEF file to create 32 nm and 45 nm rules that currently are not supported by existing LEF syntax. The properties are specified inside the LAYER CUT statements where they can be seen with other rules.

Before you can reference them, properties must be defined at the beginning of the LEF file in the PROPERTYDEFINITIONS statement, immediately before the first LAYER statement.
- Properties belong to the LAYER object and have a type of STRING.
- Property strings cannot have new lines or carriage returns inside the string definitions (that is, between the double quotation marks). This means that the entire string definition for a property must be on the same line.

■ The property names used for these rules all start with LEF58_.
All properties use the following syntax within the LEF PROPERTYDEFINITIONS statement:
```

PROPERTYDEFINITIONS
LAYER propName STRING ["stringValue"] ;

```
END PROPERTYDEFINITIONS

The property definitions for the cut layer properties are as follows:
```

PROPERTYDEFINITIONS
LAYER LEF58_ARRAYSPACING STRING ;
LAYER LEF58_CUTCLASS STRING ;
LAYER LEF58_TYPE STRING ;
LAYER LEF58_BACKSIDE STRING ;
LAYER LEF58_ENCLOSURE STRING ;
LAYER LEF58_ENCLOSUREEDGE STRING ;
LAYER LEF58_SPACING STRING ;
LAYER LEF58_SPACINGTABLE STRING ;
END PROPERTYDEFINITIONS

```

\section*{Array Spacing Rule}

You can use array spacing rules to require extra space between cut arrays, and between each cut array inside one large via. This rule only applies to large vias with many cuts; it does not apply to cuts for smaller vias.

You can create an array spacing rule using the following property definition:

\section*{LEF/DEF 5.7 Language Reference \\ LEF Syntax}
```

PROPERTY LEF58_ARRAYSPACING
"ARRAYSPACING [CUTCLASS className] [PARALLELOVERLAP]
[LONGARRAY] [WIDTH viaWidth] CUTSPACING cutSpacing
{ARRAYCUTS arrayCuts SPACING arraySpacing} ...
;" ;

```

All other keywords are the same as the existing LEF cut layer ARRAYSPACING syntax.
Where:

\section*{CUTCLASS className}

Defines the array spacing rule for a specific cut class (className). If a cut layer has more than one cut class, CUTCLASS must be specified. Specify individual rules with the CUTCLASS keyword for each cut class, if needed.

\section*{PARALLELOVERLAP}

Indicates that the array spacing rule applies only when there is a parallel edge overlap greater than 0 .

\section*{Array Spacing Rule Examples}

■ The following array spacing rule indicates that any AY_array via with a metal width greater than or equal to \(1.0 \mu \mathrm{~m}\) should use cut spacing of \(0.10 \mu \mathrm{~m}\) between cuts inside \(3 \times 3\) cut arrays. The cut arrays should be at a distance greater than \(0.30 \mu \mathrm{~m}\) from other cut arrays with a parallel edge overlap greater than 0.
```

PROPERTY LEF58_ARRAYSPACING
"ARRAYSPACING CUTCLASS AY_array PARALLELOVERLAP WIDTH 1.0 CUTSPACING 0.10
ARRAYCUTS 3 SPACING 0.30 ;" ;

```

\section*{Cut Class Rule}

Cut class rules can be used to define the cut classes to which different types of vias can belong.

You can create a cut class rule using the following property definition:
```

PROPERTY LEF58_CUTCLASS
"CUTCLASS className WIDTH viaWidth [LENGTH viaLength] [CUTS numCut];..." ;

```
Where :
CUTCLASS className

Specifies the name of the cut class. This name is used in later references to the cut class.

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}

WIDTH viaWidth
Specifies the cut width for this cut class. Any vias with cut widths of viaWidth belong to this class.
Type: Float, specified in microns

LENGTH viaLength
Specifies the cut length for this cut class. Any vias with cut lengths of viaLength belong to this class. If you do not specify LENGTH, cuts belonging to this cut class have a square dimension of viaWidth.
Type: Float, specified in microns

\section*{CUTS numCut}

Specifies the number of cuts of this cut class type that is equivalent to a given minimum cut rule requirement. Also defines the resistance value for the cut class.
Type: Integer
Default: 1
The cut number is determined using the following equation. Assuming a minimum cut rule requires \(n\) number of cuts, then:
\(n / n u m\) Cut \(=\) equivalent number of cut class type cuts
Figure 1-10 on page 45 illustrates three via sizes. Via Vx1 contains one cut, via Vx2 contains 2 cuts, and via Vx4 contains four cuts. Using the above equation, Figure 1-11 on page 45 shows how many cuts of each cut type are required to meet the listed minimum cut rule.
The resistance value is determined using the following equation: cut layer resistance / numCut

\section*{Figure 1-10 Ilustration of Via Sizes}


Figure 1-11 Cut Number Equivalent to Minimum Cut Rule Requirement

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}

Note: Numbers are always rounded up.
\begin{tabular}{llll}
\begin{tabular}{lll} 
Minimum Cut \\
Rule
\end{tabular} & Vx1 (VA) & \(\mathbf{V x 2}(\mathrm{VB})\) & \(\mathbf{V x 4}(\mathrm{VC})\) \\
1 & 1 & \(1(1 / 2\) rounds to 1\()\) & \(1(1 / 4\) rounds to 1\()\) \\
2 & 2 & \(1(2 / 2=1)\) & \(1(2 / 4=.5\), rounds to 1\()\) \\
3 & 3 & \(2(3 / 2=1.5\), rounds to 2\()\) & \(1(3 / 4\) rounds to 1\()\) \\
4 & 4 & \(2(4 / 2=2)\) & \(1(4 / 4=1)\) \\
5 & 5 & \(3(5 / 2=2.5\), rounds to 3\()\) & \(2(5 / 4=1.25\), rounds to 2\()\) \\
6 & 6 & \(3(6 / 2=3)\) & \(2(6 / 4=1.5\), rounds to 2\()\)
\end{tabular}

\section*{Cut Class Rule Examples}
- The following cut class rule indicates that any cut vias with a square dimension of 0.15 \(\mu \mathrm{m}\) belong to cut class VA:
```

PROPERTY LEF58_CUTCLASS "CUTCLASS VA WIDTH 0.15 ;" ;

```
- The following cut class rule indicates that any cut vias with a rectangular dimension of \(0.15 \mu \mathrm{~m}\) and \(0.35 \mu \mathrm{~m}\) belong to cut class VB. This cut class uses 2 cuts; therefore, for a minimum cut rule requirement of two cuts, one via of this cut class is required to meet the rule. If the resistance value of a cut layer is 10 ohms, the resistance value of vias of this cut class is \(1 / 2 \times 10=5\) ohms.

PROPERTY LEF58_CUTCLASS "CUTCLASS VB WIDTH 0.15 LENGTH 0.35 CUTS 2 ;" ;
- The following cut class rule indicates that any cut vias with a square dimension of 0.20 \(\mu \mathrm{m}\) belong to cut class VC. This cut class uses 4 cuts; therefore, for a minimum cut rule requirement of 4 cuts, one via of this cut class is required to meet the rule.
```

PROPERTY LEF58_CUTCLASS "CUTCLASS VC WIDTH 0.20 CUTS 4 ;" ;

```

\section*{Type Rule}

A type rule can be used to further classify a cut layer.
You can create a type rule using the following property definition:
```

TYPE CUT;
PROPERTY LEF58_TYPE
"TYPE [TSV | PASSIVATION];" ;

```

Where:

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}

TSV
Indicates that the cut layer is a through-silicon via (TSV) cut layer.

\section*{PASSIVATION}

Indicates that the cut layer is a passivation cut layer.

\section*{Backside Rule}

A backside rule can be used to specify that cut layer is used on the underside of the die.
You can create a backside rule using the following property definition:
```

PROPERTY LEF58_BACKSIDE
"BACKSIDE ;" ;

```

Where:

\section*{BACKSIDE}

Indicates that the cut layer is a backside cut layer. Only a regular cut layer or a passivation cut layer can be a backside layer; a TSV cut layer cannot be a backside layer.

\section*{Enclosure Rule}

An enclosure rule can be used to prohibit via cuts from sharing the same wire edge.
You can create an enclosure rule using the following property definition:
```

PROPERTY LEF58 ENCLOSURE
"ENCLOSURE [CUTCLASS className][ABOVE | BELOW]
{overhang1 overhang2 | END overhang1 SIDE overhang2}
[WIDTH minWidth
[EXCEPTEXTRACUT cutWithin [PRL | NOSHAREDEDGE]]
| LENGTH minLength]
| EXTRACUT
| REDUNDANTCUT cutWithin
] ;..." ;

```

Where:
All other keywords are the same as the existing LEF cut layer ENCLOSURE syntax.

CUTCLASS className

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}

Defines the enclosure rule for a specific cut class (className). If a cut layer has more than one cut class, CUTCLASS must be specified. Specify individual rules with the CUTCLASS keyword for each cut class, if needed.

END overhang1 SIDE overhang2
Specifies that for rectangular cut vias, overhang1 applies to the end edges, and overhang2 applies to the side edges. You must use this syntax only with cut class having rectangular cut vias.

EXCEPTEXTRACUT cutWithin [PRL | NOSHAREDEDGE]
Indicates that if there is another via cut having same metal shapes on both metal layers less than or equal to cutwithin distance away, then the ENCLOSURE with WIDTH rule is ignored, and the ENCLOSURE rules for minimum width wires (that is, no WIDTH keyword) are applied to the via cuts instead. If the NOSHAREDEDGE keyword is specified, the via cuts cannot share the same failing wire edge. (See Figure 1-13 on page 51)

If the PRL keyword is used, the exemption will only be applied if there are neighbor cuts with common parallel run length greater than 0 on the opposite edges for all of the failing edges of a cut.

If you have more than one ENCLOSURE statement for a given WIDTH, only one of the ENCLOSURE statements for that WIDTH needs to be met.
Type: Float, specified in microns (for all values)
EXTRACUT Indicates that the enclosure rule only applies when there are two or more cuts having same metal shapes on both metal layers. If you have multiple ENCLOSURE statements (some with EXTRACUT) defined, only one of the rules need to be met.

\section*{LEF/DEF 5.7 Language Reference}

LEF Syntax

Specifies the enclosure on redundant cuts, which have the same metal shapes on both metal layers to a cut within cutWithin distance that fulfills a ENCLOSURE statement without the REDUNDANTCUT keyword.

If you specify the WIDTH keyword, the cut in a wide object with width greater than and equal to minWidth should fulfill the corresponding overhang values so that the redundant cuts follow the overhang values in another ENCLOSURE statement specified using the REDUNDANTCUT keyword. If multiple enclosure rules are specified with the REDUNDANTCUT keyword, the software only needs meet one of the rules. Type: Float, specified in microns.

\section*{Enclosure Rule Examples}

■ The following enclosure rule specifies that VC vias should have \(0.10 \mu \mathrm{~m}\) overhang on all four sides of the routing layers:
```

PROPERTY LEF58_ENCLOSURE
"ENCLOSURE CUTCLASS VC 0.10 0.10 ;" ;

```
- Figure 1-13 on page 51 illustrates the following enclosure rules:
```

ENCLOSURE 0.0 0.05 ; \#overhang 0.0 0.05
ENCLOSURE 0.02 0.02 ; \#or, overhang 0.02 0.02
PROPERTY LEF58_ENCLOSURE
"ENCLOSURE 0.03 0.03 WIDTH 0.3 EXCEPTEXTRACUT 0.2 PRL ;" ;

```

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}

Figure 1-12 Illustrations of Enclosure Rule With PRL

a) OK. Extra-cut is \(<=0.2\) away, with PRL \(>0\), so use min-width rule, both cuts meet the 0.00 .05 enclosure rule of 0.00 .05

c) Violation, the left 0.02 failing edges do not have a neighbor cut on the opposite right edges

b) Violation. Extra-cut is \(<=0.2\) away, but no PRL, so wide-wire enclosure of 0.030 .03 is required
- Figure 1-13 on page 51 illustrates the following enclosure rules:
```

ENCLOSURE 0.0 0.05 ;
ENCLOSURE 0.01 0.04 ; \#or overhang 0.01 0.04
PROPERTY LEF58_ENCLOSURE
"ENCLOSURE 0.03 0.03 WIDTH 0.3 EXCEPTEXTRACUT 0.2 ;" ;

```

Figure 1-13 Illustrations of Enclosure Rule With ExceptExtraCut and NoSharedEdge


c) Okay; meets wide-wire enclosure rule of 0.03 0.03.

e) Violation. Extra cut is \(<=0.2\) away; therefore, use minimum width rule, but cannot meet either 0.00 .05 or 0.010 .04 enclosure rules.

d) Okay. Extra cut is close enough so just need 0.00 .5 enclosure. Violation if NOSHAREDEDGE is specified; extra cut has shared edge, so wide-wire enclosure of 0.030 .03 is required.

f) Okay. Okay for NOSHAREDEDGE also. Extra cut is <= 0.2 away, there is no shared edge; so use minimum width rule; both cuts meet the minimum width enclosure rule of 0.00 .05 .

■ The following enclosure rule specifies that VB rectangular cut vias should have \(0.10 \mu \mathrm{~m}\) overhang on the end edges, and no overhang on the side edges on the routing layers. (See Figure 1-14 on page 52.)
```

PROPERTY LEF58_ENCLOSURE
"ENCLOSURE CUTCLASS VB END 0.10 SIDE 0.000 ;" ;

```

\section*{LEF/DEF 5.7 Language Reference}

LEF Syntax

Figure 1-14 Illustrations of Enclosure Rule With CutClass

a) Okay; has 0.0 and 0.10 overhang on proper sides.

b) Violation; overhang on wrong sides.

■ The following enclosure rule specifies that VA vias with two or more same-metal cuts should have \(0.15 \mu \mathrm{~m}\) overhang on any two opposite sides of the routing layers. (See Figure 1-15 on page 52).
```

PROPERTY LEF58_ENCLOSURE
"ENCLOSURE CUTCLASS VA 0.000 0.20 ;
"ENCLOSURE CUTCLASS VA 0.000 0.15 EXTRACUT;" ;

```

\section*{Figure 1-15 Illustrations of Enclosure Rule With CutClass}

a) Violation; only one cut.

b) Okay; has 0.15 overhang on two opposite sides with two or more same metal cuts.

■ The following enclosure rule indicates that a VA cut via must at least have either 0.10 \(\mu \mathrm{m}, 0.12 \mu \mathrm{~m}\) or \(0.0 \mu \mathrm{~m}\), or \(0.20 \mu \mathrm{~m}\) enclosures. For redundant cuts having same metal shapes on both metal layers, one of the VA cuts should at least have either \(0.10 \mu \mathrm{~m}\), \(0.12 \mu \mathrm{~m}\) or \(0.0 \mu \mathrm{~m}\), or \(0.20 \mu \mathrm{~m}\) enclosures, and the rest of the VA cuts within \(0.15 \mu \mathrm{~m}\) distance from it, should have at least \(0.0 \mu \mathrm{~m}, 0.05 \mu \mathrm{~m}\) enclosures.
```

PROPERTY LEF58_ENCLOSURE
"ENCLOSURE CUTCLASS VA 0.10 0.12 ;
"ENCLOSURE CUTCLASS VA 0 0 0.20 ;
"ENCLOSURE CUTCLASS VA 0.0 0.05 REDUNDANTCUT 0.15 ;" ;

```

\section*{Enclosure Edge Rule}

You can create a specific cut-edge enclosure rule that does not fit the normal enclosure rule semantics by using the following property definition:

\title{
LEF/DEF 5.7 Language Reference \\ LEF Syntax
}
```

PROPERTY LEF58_ENCLOSUREEDGE
"ENCLOSUREEDGE [CUTCLASS className] [ABOVE | BELOW] overhang
WIDTH minWidth PARALLEL parLength WITHIN parWithin
[EXCEPTEXTRACUT [cutWithin]]
[EXCEPTTWOEDGES]
;..." ;

```

Where:

ENCLOSUREEDGE overhang WIDTH minWidth PARALLEL parLength WITHIN parWithin

Indicates that any edge from this cut layer that is enclosed by metal that is greater than or equal to minWidth wide, and the enclosing metal edge is parallel to another metal edge greater than parLength in length and less than parWithin distance away, requires overhang enclosure. Type: Float, specified in microns (for all values)

CUTCLASS className Defines the enclosure edge rule for a specific cut class (className). If a cut layer has more than one cut class, CUTCLASS must be specified. Specify individual rules with the CUTCLASS keyword for each cut class, if needed.

ABOVE | BELOW If you specify ABOVE, the overhang is required on the routing layers above this cut layer. If you specify BELOW, the overhang is required on the routing layers below this cut layer. If you specify neither, the rule applies to both adjacent routing layers.

EXCEPTEXTRACUT [cutWithin]
Indicates that if there is another via cut in the same metal intersection, this rule is not checked. If you specify cutwithin, the other via cut should be less than and equal to cutWithin distance away in order to ignore this rule.

EXCEPTTWOEDGES
Specifies that if the enclosing metal edges have parallel metal edges greater than parLength that are less than parwithin distance away on the opposite sides, the rule does not apply.

\section*{Enclosure Edge Rule Example}
- Figure 1-16 on page 54 illustrates the following enclosure edge rule:
```

ENCLOSURE 0.0 0.05 ; \#normal enclosure rule
PROPERTY LEF58_ENCLOSUREEDGE

```
"ENCLOSUREEDGE 0.02 WIDTH 0.2 PARALLEL 0.25 WITHIN 0.11 ;" ;
Figure 1-16 Illustration of Enclosure Edge Rules

a) Okay. Width \(>=0.2\), but spacing to neighbor is \(>=0.11\), so edge enclosure rule is not required. Cut meets the normal 0.000 .05 enclosure rule.

b) Violation. Width \(>=0.2\), spacing to neighbor is \(<0.11\), parallel length is \(>\) 0.25 , so edge enclosure rule of 0.02 is required but not met.

c) Okay. Width \(>=0.2\), spacing to neighbor is \(<\) 0.11 , parallel length is \(>0.25\), so edge enclosure rule of 0.02 is required and met. Cut also meets the normal 0.000 .05 enclosure rule.
- Figure 1-17 on page 55 illustrates the following enclosure edge rule:

\section*{LEF/DEF 5.7 Language Reference}
```

"ENCLOSUREEDGE 0.05 WIDTH 0. 20 PARALLEL 0.50 WITHIN 0.10 EXCEPTTWOEDGES ;"
;

```

Figure 1-17 Illustration of Enclosure Edge Rules

a) Okay, since it has 2 parallel neighbors, the rule is ignored.

\section*{Spacing with Same Metal Rule}

You can use spacing with same metal rules to:
- Require extra space between cuts on different nets that overlap orthogonally, in order to avoid stress migration between the cuts. This rule does not apply if the cuts have the same metal above or below.
- Require extra spacing between different cut layers unless they are connected by a single metal shape.

You can create a spacing with same metal rule using the following property definition:
```

PROPERTY LEF58_SPACING
"SPACING cutSpacing
[MAXXY
| [CENTERTOCENTER]
[SAMENET | SAMEMETAL | SAMEVIA]
[LAYER secondLayerName [STACK]
| ADJACENTCUTS {2 | 3 | 4} [EXACTALIGNED exactAlignedCut]
WITHIN cutWithin [EXCEPTSAMEPGNET][CUTCLASS className]
[SIDEPARALLELOVERLAP]
| PARALLELOVERLAP [EXCEPTSAMENET | EXCEPTSAMEMETAL | EXCEPTSAMEVIA]
| PARALLELWITHIN within [EXCEPTSAMENET]

```

\title{
LEF/DEF 5.7 Language Reference
}

LEF Syntax
```

| SAMEMETALSHAREDEDGE parwithin [ABOVE][CUTCLASS className]
[EXCEPTTWOEDGES][EXCEPTSAMEVIA numCut]
| AREA cutArea] ;..." ;

```

Where:
All other keywords are the same as the existing LEF cut layer SPACING syntax.
\begin{tabular}{ll} 
MAXXY & \begin{tabular}{l} 
Indicates that the cutSpacing value is used as the largest \(x\) \\
or y distance for spacing between objects. This keyword can be \\
applied only when EUCLIDEAN is specified in \\
CLEARANCEMEASURE.
\end{tabular} \\
SAMEMETAL & \begin{tabular}{l} 
Indicates that the cutSpacing value only applies to cuts that \\
are overlapped with the same metal shape. The SAMEMETAL \\
\\
cutSpacing value should be smaller than the normal
\end{tabular} \\
SPACING cutSpacing value that applies to different-net cuts.
\end{tabular}

See Figure 1-19 on page 60 for an example of the difference between SAMEMETAL and SAMENET.

SAMEVIA
Indicates that the cutSpacing value only applies to cuts that share the same metal shapes above and below that cover the overlap area between the cuts. The SAMEVIA cutspacing value should be smaller than the normal SPACING cutSpacing value that applies to different-metal cuts.

CUTCLASS className
Defines the adjacent cut spacing rule for a specific cut class (className). If a cut layer has more than one cut class, CUTCLASS must be specified. Specify individual rules with the CUTCLASS keyword for each cut class, if needed.

ADJACENTCUTS \{2 | \(3 \mid 4\}\) [EXACTALIGNED exactAlignedCut] WITHIN cutWithin [SIDEPARALLELOVERLAP]

\section*{LEF/DEF 5.7 Language Reference}

LEF Syntax

The EXACTALIGNED keyword specifies that the adjacent cut spacing rule applies when the cut has exactAlignedCut via cuts that are perfectly aligned horizontally and/or vertically and are less than cutwithin distance from each other.
Otherwise, the adjacent cut spacing rule applies when nonperfectly aligned cuts are equal to the specified number of cuts after the ADJACENTCUTS keyword, which must be smaller than exactAlignedCut.

The SIDEPARALLELOVERLAP keyword indicates that the adjacent cut spacing rule applies only when there is a parallel edge overlap greater than 0 side by side between two rectangular cut vias.

Note: Do not use the SIDEPARALLELOVERLAP for square cut classes.

PARALLELOVERLAP

EXCEPTSAMENET

EXCEPTSAMEMETAL

EXCEPTSAMEVIA

Indicates that the cuts that have a parallel edge overlap greater than 0 require cutspacing distance between them. Only one PARALLELOVERLAP spacing value is allowed per cut layer.

Note: You should not use PARALLELOVERLAP along with SAMENET, SAMEMETAL, or SAMEVIA.

Indicates that the parallel overlap rule does not apply to samenet cuts.

Indicates that the parallel overlap rule does not apply to cuts that share the same metal shapes above or below metal layers that cover the overlap area between the cuts. This is the default rule, if EXCEPTSAMENET and EXCEPTSAMEVIA are not specified.

Indicates that the parallel overlap rule does not apply to cuts that share the same metal shapes both above and below the metal layers that cover the overlap area between the cuts.

PARALLELWITHIN within

\section*{LEF/DEF 5.7 Language Reference}

LEF Syntax

Specifies that if the edge of a neighbor cut is within within distance beyond the edge of another cut, cutSpacing is required between them. If a cut layer has more than one cut class, the parallel within rule could be applied among all cut classes, including via cuts belonging to different cut classes

Note: You should not use PARALLELWITHIN along with SAMENET, SAMEMETAL, or SAMEVIA. In addition, you can either specify PARALLELOVERLAP or PARALLELWITHIN.

EXCEPTSAMENET
Indicates that the parallel within rule does not apply to same-net cuts.

\section*{SAMEMETALSHAREDEDGE parWithin}
[ABOVE][EXCEPTTWOEDGES] [EXCEPTSAMEVIA numCut]
Specifies the spacing greater than and equal to cutSpacing between two via cuts that have a common parallel run length greater than 0 , have common above and /or below metal shapes covering the entire length of common projection between them and have neighbor wire(s) within parWithin distance from them on the same edge.

ABOVE specifies that the rule only applies if the via cut must have a common metal routing layer. This means that having a common below metal routing layer of the cuts is irrelevant.

EXCEPTTWOEDGES specifies that if the cuts have two neighbor wires within parWithin distance on the opposite sides, the spacing rule is ignored.

EXCEPTSAMEVIA numCut specifies that if there are greater than and equal to numCut of cuts having common same metal on both the above and below layers, the spacing rule is ignored. Type: Integer

\section*{Spacing Rule Examples}
- The following spacing rule indicates that cuts should have x or y distance of maximum \(0.12 \mu \mathrm{~m}\) between them:
```

PROPERTY LEF58_SPACING

```
"SPACING 0.12 MAXXY ;" ;

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}

\section*{Figure 1-18 Illustration of Spacing Rule with MAXXY}

a) Violation, a neighbor cut edge is within 0.02 of a cut edge, 0.1 spacing is required between them.

Figure 1-19 on page 60 illustrates the SAMEMETAL rules for the following examples.
- If the via3 layer has the following spacing rules:
```

SPACING 1.5 ; \#via3 to via3 spacing
SPACING 1.5 LAYER via2 ; \#via3 to via2 spacing

```

Then both a) and b) are violations.
- If the via3 layer has the following spacing rules, then a) is a violation, but b) is allowed:

SPACING 1.5 ;
SPACING 1.5 LAYER via2 ;
PROPERTY LEF58_SPACING
"SPACING 0 SAMEMETAL LAYER via2 STACK ;" ;

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}

Figure 1-19 Illustration of SAMEMETAL Rules

a) SAMENET rules apply, but not SAMEMETAL

b) SAMEMETAL and SAMENET rules apply.
- The following spacing rule specifies that a VA via can have at most one neighboring VA via within \(0.30 \mu \mathrm{~m}\) center-to-center distance away:
```

PROPERTY LEF58_SPACING
"SPACING 0.30 CENTERTOCENTER ADJACENTCUTS 2 WITHIN 0.30 CUTCLASS VA ;" ;

```

■ The following spacing rule specifies that \(0.1 \mu \mathrm{~m}\) spacing is required between two cuts if one cut is within \(0.02 \mu \mathrm{~m}\) beyond the edge of the other cut:
```

PROPERTY LEF58_SPACING
"SPACING 0.09 ;" ;
"SPACING 0.1 PARALLELWITHIN 0.02 ;" ;

```

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}

Figure 1-20 Illustration of PARALLELWITHIN Rules

a) Violation, a neighbor cut edge is within 0.02 of a cut edge, 0.1 spacing is required among them.

b) Okay, the neighbor cut is not within 0.02 beyond the other cut edge.

c) Violation, the 0.1 parallel within spacing applies to same-metal as well
- The following spacing rule indicates that cuts that share the same metal shapes on both above and below metal layers should be \(0.12 \mu \mathrm{~m}\) apart:
```

PROPERTY LEF58_SPACING
"SPACING 0.12 SAMEVIA ;" ;

```
- The following spacing rule indicates that a cut can have at the most two perfectly aligned neighbor cuts horizontally and/or vertically or at the most one non-perfectly aligned neighbor cut within \(0.2 \mu \mathrm{~m}\) distance:
```

PROPERTY LEF58_SPACING
"SPACING 0.2 CENTERTOCENTER ADJACENTCUTS 2 EXACTALIGNED 3 WITHIN 0.2 ;" ;

```

\section*{LEF/DEF 5.7 Language Reference}

\section*{Figure 1-21 Illustration of ADJACENTCUTS Rule with EXACTALIGNED}

a) Okay. Only 1 neighbor cut within 0.2

b) Violation. When there is 1 nonperfectly aligned neighbor cut (on the left), any other neighbor cut, perfectly aligned or not (on the right) would trigger the rule spacing of 0.2

d) Violation.Three perfectly aligned neighbor cuts would trigger the rule spacing of 0.2

■ The following spacing rule indicates that a VB via can at most have 1 neighbor VB via within \(0.45 \mu \mathrm{~m}\) distance if they have a side to side parallel edge overlap greater than 0 :
```

PROPERTY LEF58_SPACING
"SPACING 0.45 ADJACENTCUTS 2 WITHIN 0.45 CUTCLASS VB SIDEPARALLELOVERLAP ;" ;

```

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}

a) Violation, \(2 \mathrm{VB}<0.2\) with side by side parallel edge overlap > 0

c) OK, the left VB only has a side to end parallel edge overlap > 0
b) OK, the right VB does not have side by side parallel edge overlap >0

d) Violation, the side by side parallel edge overlap > 0 does not need to be on the same edge
- The following spacing rule indicates that cuts that do not share the same metal shapes both above and below metal layers and have a parallel edge overlap greater than 0 must have \(0.15 \mu \mathrm{~m}\) distance between them:
```

PROPERTY LEF58_SPACING
"SPACING 0.12 SAMEVIA ;" ;
"SPACING 0.13 ;" ;
"SPACING 0.15 PARALLELOVERLAP EXCEPTSAMEVIA ;" ;

```

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}

Figure 1-22 Illustration of PARALLELOVERLAP Rule with EXCEPTSAMEVIA

a) Violation, the cuts only share metal shape on one metal layer, and 0.15 parallel overlap spacing is needed. Okay, if EXCEPTSAMEVIA is not used.

b) OK, the cuts share metal shapes on both metal layers, and 0.12 SAMEVIA spacing is needed and met
- The following spacing rule indicates that two via cuts having common parallel run length greater than 0 , having common above and /or below metal shapes covering the entire length of common projection between them and having one neighbor wire within \(0.12 \mu \mathrm{~m}\) distance of them on the same edge must be, at least \(0.1 \mu \mathrm{~m}\) spacing apart:
```

PROPERTY LEF58_SPACING

```
"SPACING 0.1 SAMEMETALSHAREDEDGE 0.12 EXCEPTTWOEDGES ;" ;

Figure 1-23 Illustration of SAMEMETALSHAREDEDGE rule

a) Violation, there is a neighbor within 0.12 , and 0.1 spacing needed between the cuts

b) Okay, at least 1 cut having 2 neighbors within 0.12 on opposite sides will exempt the rule

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}

Figure 1-24 Illustration of SAMEMETALSHAREDEDGE rule
```

PROPERTY LEF58_SPACING "SPACING 0.1 SAMEMETALSHAREDEDGE 0.12 ;" ;

```

a) Okay, the cuts do not have common parallel run length greater than 0

c) Okay, the top cut does not have a neighbor

e) Okay, the cuts do not have common metal shapes

b) Violation, the neighbors could be different wires

d) Violation, parallel opposite neighbor edges, one neighbor per cuts, triggers the rule

f) Violation, the common metal shapes covering the entire length of the projection between the cuts

\section*{LEF/DEF 5.7 Language Reference}

LEF Syntax

\section*{Spacing Table Rule}

Spacing table rules can be used to define cut spacing between different cut classes.
You can create a spacing table rule using the following property definition:
```

[PROPERTY LEF58_SPACINGTABLE
"SPACINGTABLE
[ORTHOGONAL
{WITHIN cutWithin SPACING orthoSpacing} ... ;
|[DEFAULT defaultCutSpacing]
[SAMENET | SAMEMETAL]
[LAYER secondLayerName]
[CENTERTOCENTER { {className1 | ALL}| TO {className2 | ALL}
} . . .]
CUTCLASS { {className1 | ALL} [SIDE | END]}...
{{className2 | ALL} [SIDE | END] {- | cutSpacing}
{- | cutSpacing}...}...;
]
;..." ;

```

Where:
All other keywords are the same as the existing LEF cut layer SPACINGTABLE syntax.

DEFAULT defaultcutSpacing
Indicates the default cut spacing between cut classes.
Type: Float, specified in microns
Note: If a table entry contains -, the defaultCutSpacing value applies. In this case the DEFAULT keyword must be specified.

SAMENET Indicates that the cutSpacing values only apply to same-net cuts. The SAMENET cutSpacing values should be smaller than the normal SPACINGTABLE cutSpacing values that apply to different-net cuts.

SAMEMETAL Indicates that the cutSpacing values only apply to cuts that are overlapped with the same metal shape. The SAMEMETAL cutSpacing values should be smaller than the normal SPACINGTABLE cutSpacing values that apply to differentmetal cuts.

LAYER secondLayerName

\section*{LEF/DEF 5.7 Language Reference}

Defines the inter-cut-layer spacing between className1 in the first row of the table on the current layer, to className 2 in the first column on secondLayerName cut layer. This cut spacing ignores same-metal cuts, that is, cuts that are overlapped with the same metal shape, unless the SAMEMETAL keyword is used in a separate spacing table to specify inter-cutlayer spacing for same-metal cuts. The second layer must be a cut layer already defined in the LEF file, and immediately below the current ("one layer look ahead" is not supported).

If an inter-cut-layer spacing table is defined for same-net cuts using the SAMENET keyword, the cuts on two different layers can always be stacked if they are exactly aligned (that is, the centers of the cuts are aligned) for same sized cuts. For different sized cuts, it is legal if the smaller cut is completely covered by the bigger cut. Otherwise, the cuts must have cutSpacing between them.

CENTERTOCENTER \{ \{className1 | ALL\} TO \{className2 | ALL\} \}
Computes the cutSpacing distance from cut-center to cutcenter, instead of cut-edge to cut-edge (the default behavior), for the given list of class name pairs. The className 1 is one of the cut classes in the first row of the table and className 2 is one of the cut classes in the first column of the table. The ALL keyword applies to all the vias on a cut layer that has only one cut class without an explicit CUTCLASS definition. The keyword should be specified only if one of the layers does not have a cut class. Do not use CENTERTOCENTER rule for non-square cut classes.

CUTCLASS \{ \{className1 | ALL\} [SIDE | END|]\}

\section*{LEF/DEF 5.7 Language Reference}

LEF Syntax

Specifies a list of cut classes. The cut class list may not cover all the cut classes in the cut layer. In this case, cut spacing requirements are not needed for cut classes that are not specified. (The ALL keyword is the same as described earlier.)

If an intercut layer is specified (using the LAYER keyword), the cut classes in className1 are defined for the layer for which the spacing table is defined. When intercut layer spacing is needed between a cut layer with multiple cut classes and a cut layer without a cut class, this cut class spacing table should be specified, and the "SPACING ... LAYER . . . ; " statement cannot be used.

If the cut class has a rectangular cut shape, the SIDE and END keywords can be used to specify cut spacing on a certain edge side/long or end/short (see Figure 1-25 on page 69). The diagram indicates the regions that the other cut via should be fully contained on certain edges to be applied.
```

{ {className2 |ALL} [SIDE | END] {- | cutSpacing} {- |
cutSpacing}

```

Indicates that cutSpacing is applied between className2 and className 1 in the first row of the table. (The ALL, SIDE, and END keywords are the same as described earlier.)

There are two sets of cutSpacing values for each table entry. The first cutSpacing value applies if there is no parallel edge overlap between the via cuts. The second cutSpacing value applies if there is a parallel edge overlap greater than 0 . If CENTERTOCENTER keyword is used for two cut classes, both the cutspacing values between the cut classes should be identical. If - is specified, the defaultCutSpacing value (specified with the DEFAULT keyword) is used.

If interlayer cut spacing is specified with the LAYER keyword, the cut class in className 2 is defined for the secondLayerName (specified with the LAYER keyword). If LAYER is not specified, then the table must be a NxN symmetrical table.

You can specify up to two cut class SPACINGTABLE rules, one with the SAMENET or SAMEMETAL rule, and one with neither of them. For the same cut layer spacing, you can specify up to two tables for intercut layer spacing. You cannot mix with any other cut layer

\section*{LEF/DEF 5.7 Language Reference}

LEF Syntax

\section*{spacing statments, except for ADJACENTCUTS, PARALLELWITHIN, and SAMEMETALSHAREDEDGE.}

Multiple spacing among different cut classes is possible. For cut layer shapes in PIN or OBS statement that belong to a macro of class CORE, the cut size of the via should match one of the sizes of the cut classes so that the tools can determine the proper spacing for the cut. If not, specific spacing should be defined for the cut in the macro definition using the SPACING keyword that is part of the layer geometry specification in MACRO. If the SPACING keyword is not specified, minimum spacing in the cut layer is used. If the cut size of the abstracted cuts does not match one of the cut class sizes, a single spacing value is applied to all four sides of the cut. This may cause DRC violations.

As with any OBS shapes, a cut layer OBS shape is always considered to belong to a net that is different from any pin, even if it is overlapping with a pin geometry on the adjacent metal layer. In this case, different-net cut-to-cut spacing is used to compute the cut-to-cut distance between the OBS and any cut that is connected to the corresponding pin.

Note: It is recommended not to define a large cut layer OBS shape abstracting cut shapes, even in a macro for a non-standard cell. If defined, minimum cut spacing is applied to prevent blocking via access of nearby pins. This may, however, cause DRC violations. The cut layer blockage shapes (defined using the BLOCKAGES keyword) will use minimum cut spacing around them, similar to OBS.

\section*{Spacing Table Rule Examples}
- The following illustration shows the regions that the cut via should be overlapped with when SIDE or END keywords are used.

Figure 1-25 Illustration of Spacing Table Rule With Side and End

Regions of the other cut that should be fully contained when SIDE spacing is used.


\section*{LEF/DEF 5.7 Language Reference}

LEF Syntax
- The following spacing table rules specify the spacing requirements between VA via and end edge of VB via, and end edge of VB via and VA via:

Cut-to-cut spacing between two center-to-center VA vias \(0.20 \mu \mathrm{~m}\)
Cut-to-cut spacing between two center-to-center VC vias
\(0.50 \mu \mathrm{~m}\)
Edge-to-edge spacing between the end edge of VB and VA or VC via with parallel edge overlap greater than 0

Edge-to-edge spacing between the end edge of VB via and an edge of \(0.40 \mu \mathrm{~m}\) another VB via with a parallel edge overlap greater than 0

Edge-to-edge spacing for the rest of the combinations \(0.15 \mu \mathrm{~m}\)

The rules translate into the following SPACINGTABLE property definition:

- The following spacing table rule indicates that center-to-center spacing between two square cut VA vias must be greater than or equal to \(0.20 \mu \mathrm{~m}\) (see Figure 1-26 on page 70):
```

PROPERTY LEF58_SPACINGTABLE CENTERTOCENTER VA TO VA
CUTCLASS VA
VA 0.20 0.20

```

Figure 1-26 Illustration of Spacing Table Rule With CenterToCenter

a) Violation. Center-tocenter spacing < 0.20.

b) Okay. Center-to-center spacing \(>=0.20\).

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}
- The following spacing table rule indicates that a default spacing of \(0.15 \mu \mathrm{~m}\) is required between via VC and end edge of via VB when parallel edge overlap is less than 0 (see Figure 1-27 on page 71):
```

PROPERTY LEF58_SPACINGTABLE DEFAULT 0.15
CUTCLASS VB SIDE VB END VC

VB SIDE	-	-	-	0.40	-	-
VB END	-	0.40	-	0.40	-	0.30

| vC | - | 0.30 | 0.50 | 0.50 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```

Figure 1-27 Illustration of Spacing Table Rule With Default

a) Violation. Spacing < 0.30 between end edge of VB via and VC via.

c) Okay. No parallel edge overlap >0 with the end edge of VB. Violation if non-parallel edge overlap value is 0.30 .

b) Okay. No parallel edge overlap >0 with the end edge of VB. Only default 0.15 spacing is needed.

d) Okay. No parallel edge overlap >0 with the end edge of VB. Violation if nonparallel edge overlap value is 0.30 .
- The following spacing table rule indicates the spacing requirements between two VB vias when default spacing of \(0.15 \mu \mathrm{~m}\) is specified (see Figure 1-28 on page 72):
```

PROPERTY LEF58_SPACINGTABLE DEFAULT 0.15
CUTCLASS VB SIDE VB END

```
\begin{tabular}{lllll} 
VB SIDE & - & 0.40 & - & - \\
VB END & - & - & - & -
\end{tabular}

Figure 1-28 Illustration of Spacing Table Rule With Default

a) Violation. Spacing < 0.40 between two VB vias on the side edges.

b) Okay. No parallel edge overlap > 0 between two VB vias. Violation if non-parallel edge overlap value is 0.40 .

c) Okay. Spacing (default spacing) >= 0.15 between side edge of VB and end edge of VB.
- The following spacing table rules specify the intercut layer spacing of different metals between vias:

Intercut layer center-to-center spacing between two VA vias, \(0.10 \mu \mathrm{~m}\)
when one of the vias is on the current cut layer and the other is on V1 cut layer

Intercut layer spacing between the side edge of VB to VA via, when one of the vias is on the current cut layer and the other is on V1 cut layer

Intercut layer spacing between the side edge of two VB vias, \(0.30 \mu \mathrm{~m}\) when one of the vias is on the current cut layer and the other is on V1 cut layer.

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}

Note: All the intercut layer spacings are excluded for same metal cuts.
The rules translate into the following SPACINGTABLE property definition:
\begin{tabular}{lclllll} 
PROPERTY & LEF58_SPACINGTABLE LAYER V1 CENTERTOCENTER VA TO VA \\
CUTCLASS & VA & & VB SIDE & \\
VA & 0.10 & 0.10 & 0.20 & 0.20 \\
VB SIDE & 0.20 & 0.20 & 0.30 & 0.30 &
\end{tabular}

■ The following spacing table rule indicates that via VA should not overlap with the projection line from the side edge of via VB (see Figure 1-29 on page 73):
\begin{tabular}{lcllllll} 
PROPERTY & LEF58_SPACINGTABLE DEFAULT & 0.0 & LAYER V1 \\
CUTCLASS & VA & & VB SIDE \\
VA & - & - & 0.20 & 0.22 & \\
VB SIDE & 0.20 & 0.22 & - & - &
\end{tabular}

Figure 1-29 Illustration of Spacing Table Rule With Layer


VA is on V1 cut layer, and does not have a common same metal shape with VB

b) Violation. Spacing < 0.20 with or without parallel edge overlap >0.

c) Okay. VA is not fully above the projection line from the SIDE edge
- The following spacing table rule specifies that the intercut layer spacing between VA via on the current cut layer to any center-to-center vias on c1 cut layer, when the cuts do not share a common same metal shape, must be \(0.15 \mu \mathrm{~m}\) :
```

PROPERTY LEF58_SPACINGTABLE LAYER C1 CENTERTOCENTER VA TO ALL
CUTCLASS VA

```

\section*{LEF/DEF 5.7 Language Reference}

LEF Syntax

ALL \(0.15 \quad 0.15\)

\section*{Layer (Implant)}
```

LAYER layerName
TYPE IMPLANT ;
[WIDTH minWidth ;]
[SPACING minSpacing [LAYER layerName2] ;] ...
[PROPERTY propName propVal ;] ...
END layerName

```

Defines implant layers in the design. Each layer is defined by assigning it a name and simple spacing and width rules. These spacing and width rules only affect the legal cell placements. These rules interact with the library methodology, detailed placement, and filler cell support. You must define implant layers separately, with their own layer statements.
LAYER layerName
LAYER IayerName2

Specifies the name for the layer. This name is used in later references to the layer.

LAYER layerName2
Specifies the name of another implant layer that requires extra spacing that is greater than or equal to minspacing from this implant layer.

PROPERTY propName propVal
Specifies a numerical or string value for a layer property defined in the PROPERTYDEFINITIONS statement. The propName you specify must match the propName listed in the PROPERTYDEFINITIONS statement.

SPACING minSpacing
Specifies the minimum spacing for the layer. This value affects the legal cell placement.
Type: Float, specified in microns

TYPE IMPLANT
WIDTH minWidth

Identifies the layer as an implant layer.
Specifies the minimum width for this layer. This value affects the legal cell placement.
Type: Float, specified in microns

\section*{Example 1-1 Implant Layer}

Typically, you define high-drive cells on one implant layer and low-drive cells on another implant layer. The following example defines high-drive cells on implant1 and low-drive cells

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}
on implant2. Both implant layers cover the entire cell. The placer and filler cell creation attempt to legalize the cell overlaps in abutting rows to ensure that the minimum width and spacing values are met.
```

LAYER implant1
TYPE IMPLANT ;
WIDTH 0.50 ; \#implant rectangles must be >=0.50 microns wide
SPACING 0.50 ; \#implant rectangles must be >=0.50 microns apart
END implant1
LAYER implant2 \#low-drive implant layer
TYPE IMPLANT ;
WIDTH 0.50 ; \#implant rectangles must be >=0.50 microns wide
SPACING 0.50 ; \#implant rectangles must be >=0.50 microns apart

```
END implant2

Assume that the high-drive cells and low-drive cells are completely covered by their respective implant layers. Because there is no spacing between implant1 and implant2 specified, you might see a placement like that illustrated in Figure 1-30 on page 75.

Figure 1-30


MS = Minimum spacing error
MW = Minimum width error
Note that you can correct A, C, D, and E by putting in filler cells with the appropriate implant type. However, B cannot be corrected by a filler cell-either the placer must avoid it, or you

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}
must allow the filler cell or post-process command to move cells or modify the implant layer to correct the error.

\section*{Layer (Masterslice or Overlap)}
```

LAYER layerName
TYPE {MASTERSLICE | OVERLAP} ;
[PROPERTY propName propVal ;] ...
[PROPERTY LEF58 TYPE
"TYPE {NWELL | PWELL};" ;]
[PROPERTY LEF58 SPACING
"SPACING minSpacing [SAMENET | LAYER secondLayerName];..." ;]
[PROPERTY LEF58 WIDTH
"WIDTH defaultWidth;" ;]
END layerName

```

Defines masterslice (nonrouting) or overlap layers in the design. Masterslice layers are typically polysilicon layers and are only needed if the cell MACROs have pins on the polysilicon layer.

The overlap layer should normally be named OVERLAP. It can be used in MACRO definitions to form rectilinear-shaped cells and blocks (that is, an "L"-shaped block).

Each layer is defined by assigning it a name and design rules. You must define masterslice or overlap layers separately, with their own layer statements.

You must define layers in process order from bottom to top. For example:
```

poly masterslice
cut01 cut
metal1 routing
cut12 cut
metal2 routing
cut23 cut
metal3 routing

```

LAYER layerName
Specifies the name for the layer. This name is used in later references to the layer.

\section*{LEF/DEF 5.7 Language Reference \\ LEF Syntax}

TYPE
Specifies the purpose of the layer.
MASTERSLICE Layer is fixed in the base array. If pins appear in the masterslice layers, you must define vias to permit the routers to connect those pins and the first routing layer. Wires are not allowed on masterslice layers.

Routing tools can use only one masterslice layer. If a masterslice layer is defined, exactly one cut layer must be defined between the masterslice layer and the adjacent routing layers.
OVERLAP Layer used for overlap checking for rectilinear blocks. Obstruction descriptions in the macro obstruction statements refer to the overlap layer.

PROPERTY propName propVal
Specifies a numerical or string value for a layer property defined in the PROPERTYDEFINITIONS statement. The propName you specify must match the propName listed in the PROPERTYDEFINITIONS statement.

\section*{Defining Masterslice Layer Properties to Create 32nm and 45nm Rules}

You can include masterslice layer properties in your LEF file to create 32nm and 45nm rules that currently are not supported by existing LEF syntax. The properties are specified inside the LAYER MASTERSLICE statements, where they can be seen with other rules.

Before you can reference them, properties must be defined at the beginning of the LEF file in the PROPERTYDEFINITIONS statement, immediately before the first LAYER statement.
- Properties belong to the LAYER object and have a type of STRING.
- Property strings cannot have new lines or carriage returns inside the string definitions (that is, between the double quotation marks). This means that the entire string definition for a property must be on the same line.
- The property names used for these rules all start with LEF58_.

All properties use the following syntax within the LEF PROPERTYDEFINITIONS statement:
```

PROPERTYDEFINITIONS
LAYER propName STRING ["stringValue"] ;

```

END PROPERTYDEFINITIONS
The property definitions for the masterslice layer properties are as follows:

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}
```

PROPERTYDEFINITIONS
LAYER LEF58_TYPE STRING ;
LAYER LEF58_SPACING STRING ;
LAYER LEF58_WIDTH STRING ;
END PROPERTYDEFINITIONS

```

\section*{Type Rule}

A type rule can be used to further classify a masterslice layer.
You can create a type rule using the following property definition:
```

TYPE MASTERSLICE;
PROPERTY LEF58_TYPE
"TYPE {NWELL | PWELL} ;" ;

```

Where:

NWELL Indicates that the layer is a nwell layer.
PWELL Indicates that the layer is a pwell layer.

\section*{Spacing Rule}

A spacing rule can be used to specify the minimum spacing allowed between objects on the same well layer or objects on different well layers.
```

PROPERTY LEF58_SPACING
"SPACING minSpacing [SAMENET | LAYER secondLayerName] ;..." ;

```

Where:
minSpacing Specifies the default minimum spacing in a well layer.
Type: Float, specified in microns
SAMENET Indicates that the cutSpacing value only applies to same-net cuts. The SAMENET cutSpacing value should be smaller than the normal SPACING cutSpacing value that applies to different-net cuts.

LAYER secondLayerName
Applies the spacing rule between objects on this well layer and objects on another previously defined well layer
(secondLayerName) for specifying an inter-well layer spacing.

\section*{LEF/DEF 5.7 Language Reference LEF Syntax}

\section*{Width Rule}

A width rule can be used to specify a default width for a well layer.
You can create a width rule using the following property definition:
```

PROPERTY LEF58_WIDTH
"WIDTH defaultWidth;" ;

```

Where:

WIDTH defaultWidth
Specifies the default width for the well layer.

\section*{Layer (Routing)}
```

LAYER layerName
TYPE ROUTING ;
[PROPERTY LEF58 TYPE
"TYPE {POLYROUTING | MIMCAP}] ;" ;
[PROPERTY LEF58 BACKSIDE
"BACKSIDE ;" ;]
DIRECTION {HORIZONTAL | VERTICAL | DIAG45 | DIAG135} ;
PITCH {distance | xDistance yDistance} ;
[DIAGPITCH {distance | diag45Distance diag135Distance} ;]
WIDTH defaultWidth ;
[OFFSET {distance | xDistance yDistance} ;]
[DIAGWIDTH diagWidth ;]
[DIAGSPACING diagSpacing ;]
[DIAGMINEDGELENGTH diagLength ;]
[AREA minArea ;]
[PROPERTY LEF58 AREA
"AREA minArea
[[EXCEPTMINWIDTH minWidth]
| [EXCEPTEDGELENGTH minLength]
[EXCEPTMINSIZE minWidth minLength]
]
;..." ;]
[MINSIZE minWidth minLength [minWidth2 minLength2] ... ;]
[[SPACING minSpacing
[RANGE minWidth maxWidth
[USELENGTHTHRESHOLD
| INFLUENCE value [RANGE stubMinWidth stubMaxWidth]
| RANGE minWidth maxWidth]
| LENGTHTHRESHOLD maxLength [RANGE minWidth maxWidth]
| ENDOFLINE eolWidth WITHIN eolWithin
[PARALLELEDGE parSpace WITHIN parWithin [TWOEDGES]]

```

\section*{LEF/DEF 5.7 Language Reference} LEF Syntax
```

 | SAMENET [PGONLY]
 | NOTCHLENGTH minNotchLength
 | ENDOFNOTCHWIDTH endOfNotchWidth NOTCHSPACING minNotchSpacing
 NOTCHLENGTH minNotchLength
]
 ;] ...
 [SPACINGTABLE
PARALLELRUNLENGTH {length} ...
{WIDTH width {spacing} ...} ... ;
[SPACINGTABLE
INFLUENCE {WIDTH width WITHIN distance SPACING spacing} ... ;]
| TWOWIDTHS {WIDTH width [PRL runLength] {spacing} ...} ... ;
]
]
[PROPERTY LEF58 SPACINGTABLE
"SPACINGTABLE
PARALLELRUNLENGTH {length} ...
{WIDTH width {spacing} ...} ... ;
[SPACINGTABLE
INFLUENCE {WIDTH width WITHIN distance SPACING spacing} ... ;]
| TWOWIDTHS {WIDTH width [PRL runLength] {spacing} ...} ... ;
| PARALLELSPANLENGTH PRL runLength {SPANLENGTH spanLength {spacing} ...
};
;";
[PROPERTY LEF58 SPACING
"SPACING eolSpace EOLPERPENDICULAR eolWidth perWidth ;" ;]
[PROPERTY LEF58 SPACING
"SPACING eolSpace ENDOFLINE eolWidth [OPPOSITEWIDTH oppositeWidth]
WITHIN eolWithin
[ENDTOEND endToEndSpace [OTHERENDWIDTH otherEndWidth]]
[MAXLENGTH maxLength | MINLENGTH minLength [TWOSIDES]]
[EQUALRECTWIDTH]
[PARALLELEDGE [SUBTRACTEOLWIDTH] parSpace WITHIN parWithin
[MINLENGTH minLength] [TWOEDGES]]
[ENCLOSECUT [BELOW | ABOVE] encloseDist CUTSPACING cutToMetalSpace]
;..." ;]
[PROPERTY LEF58 FILLTOFILLSPACING
"FILLTOFILLSPACING spacing ;" ;]
[PROPERTY LEF58 OPPOSITEEOLSPACING
"OPPOSITEEOLSPACING WIDTH width
ENDWIDTH eolWidth [MINLENGTH minLength]
[JOINTWIDTH jointWidth] JOINTLENGTH spanLength
{[JOINTTOEDGEEND jointToEdgeEndLength]
{[EXCEPTEDGELENGTH edgeLength [PRL maxPRL]]}...
ENDTOEND endSpacing endSpacing
ENDTOJOINT endSpacing jointSpacing
JOINTTOEND jointSpacing endSpacing
JOINTTOJOINT jointSpacing jointSpacing ;
;" ;
[WIREEXTENSION value ;]
[MINIMUMCUT numCuts WIDTH width [WITHIN cutDistance]

```

\section*{LEF/DEF 5.7 Language Reference} LEF Syntax
```

 [FROMABOVE | FROMBELOW]
 [LENGTH length WITHIN distance] ;] ...
 [PROPERTY LEF58 MINIMUMCUT
"MINIMUMCUT numCuts WIDTH width [WITHIN cutDistance]
[FROMABOVE | FROMBELOW]
[LENGTH length WITHIN distance
|AREA area [WITHIN distance]
] ;..." ;]
[MAXWIDTH width ;]
[MINWIDTH width ;]
[MINSTEP minStepLength
[[INSIDECORNER | OUTSIDECORNER | STEP] [LENGTHSUM maxLength]
| [MAXEDGES maxEdges] ;]
[PROPERTY LEF58 MINSTEP
"MINSTEP minStepLength
[MAXEDGES maxEdges]
[MINADJACENTLENGTH minAdjLength
[CONVEXCORNER | minAdjLength2]
| MINBETWEENLENGTH minBetweenLength [EXCEPTSAMECORNERS]
] ;..." ;]
[PROPERTY LEF58 EOLEXTENSIONSPACING
"EOLEXTENSIONSPACING spacing
{ENDOFLINE eolWidth EXTENSION extension
[ENDTOEND endToEndExtension]} ...
[MINLENGTH minLength [TWOSIDES]]
;" ;]
[MINENCLOSEDAREA area [WIDTH width] ;] ...
[PROTRUSIONWIDTH width1 LENGTH length WIDTH width2 ;]
[RESISTANCE RPERSQ value ;]
[CAPACITANCE CPERSQDIST value ;]
[HEIGHT distance ;]
[THICKNESS distance ;]
[SHRINKAGE distance ;]
[CAPMULTIPLIER value ;]
[EDGECAPACITANCE value ;]
[MINIMUMDENSITY minDensity ;]
[MAXIMUMDENSITY maxDensity ;]
[DENSITYCHECKWINDOW windowLength windowWidth ;]
[DENSITYCHECKSTEP stepValue ;]
[FILLACTIVESPACING spacing ;]
[ANTENNAMODEL {OXIDE1 | OXIDE2 | OXIDE3 | OXIDE4} ;] ...
[ANTENNAAREARATIO value ;] ...
[ANTENNADIFFAREARATIO {value | PWL ((d1 r1) (d2 r2) ...) } ;] ...
[ANTENNACUMAREARATIO value ;] ...
[ANTENNACUMDIFFAREARATIO {value | PWL ((d1 r1) (d2 r2) ...) } ;] ...
[ANTENNAAREAFACTOR value [DIFFUSEONLY] ;] ...
[ANTENNASIDEAREARATIO value ;] ...
[ANTENNADIFFSIDEAREARATIO {value | PWL ((d1 r1) (d2 r2) ...) } ;] ...
[ANTENNACUMSIDEAREARATIO value ;] ...
[ANTENNACUMDIFFSIDEAREARATIO {value | PWL ((d1 r1) (d2 r2) ...) } ;] ...
[ANTENNASIDEAREAFACTOR value [DIFFUSEONLY] ;] ...

```

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}
```

[ANTENNACUMROUTINGPLUSCUT ;]
[ANTENNAGATEPLUSDIFF plusDiffFactor ;]
[ANTENNAAREAMINUSDIFF minusDiffFactor ;]
[ANTENNAAREADIFFREDUCEPWL ((diffArea1 diffMetalFactor1)
(diffArea2 diffMetalFactor2) ...) ;]
[PROPERTY propName propVal ;] ...
[ACCURRENTDENSITY {PEAK | AVERAGE | RMS}
{ value
| FREQUENCY freq_1 freq_2 ... ;
[WIDTH width_1 width_2 ... ;]
TABLEENTRIES
v_freq_1_width_1 v_freq_1_width_2 ...
v_freq_2_width_1 v_freq_2_width_2 ...
} ;]
[DCCURRENTDENSITY AVERAGE
{ value
| WIDTH width_1 width_2 ... ;
TABLEENTRIES value_1 value_2 ...
} ;]

```

END layerName
Defines routing layers in the design. Each layer is defined by assigning it a name and design rules. You must define routing layers separately, with their own layer statements.

You must define layers in process order from bottom to top. For example:
```

poly masterslice
cut01 cut
metal1 routing
cut12 cut
metal2 routing
cut23 cut
metal3 routing

```

\section*{ACCURRENTDENSITY}

Specifies how much AC current a wire on this layer of a certain width can handle at a certain frequency in units of milliamps per micron ( \(\mathrm{mA} / \mu \mathrm{m}\) ).
Note: The true meaning of current density would have units of milliamps per square micron ( \(\mathrm{mA} / \mu \mathrm{m}^{2}\) ); however, the thickness of the metal layer is implicitly included, so the units in this table are milliamps per micron, where only the wire width varies.
The ACCURRENTDENSITY syntax is defined as follows:
```

{PEAK | AVERAGE | RMS}
{ value
| FREQUENCY freq_1 freq_2 ... ;
[WIDTH width_1 width_2 ... ;]

```

\section*{LEF/DEF 5.7 Language Reference}

\section*{LEF Syntax}

\section*{TABLEENTRIES}
```

v_freq_1_width_1 v_freq_1_width_2 ...
v_freq_2_width_1 v_freq_2_width_2 ...

```
\} ;

PEAK Specifies the peak current limit of the layer.
AVERAGE Specifies the average current limit of the layer.

\section*{RMS}
value

FREQUENCY Specifies frequency values, in megahertz. You can specify more than one frequency. If you specify multiple frequency values, the values must be specified in ascending order.

If you specify only one frequency value, there is no frequency dependency, and the table entries are assumed to apply to all frequencies.

\section*{Type: Float}

WIDTH Specifies wire width values, in microns. You can specify more than one wire width. If you specify multiple width values, the values must be specified in ascending order.

If you specify only one width value, there is no width dependency, and the table entries are assumed to apply to all widths.
Type: Float
TABLEENTRIES Defines the maximum current for each of the frequency and width pairs specified in the FREQUENCY and WIDTH statements, in mA/ \(\mu \mathrm{m}\).

The pairings define each width for the first frequency in the FREQUENCY statement, then the widths for the second frequency, and so on.

The final value for a given wire width and frequency is computed from a linear interpolation of the table values. the widths are not adjusted for any process shrinkage, so the should be correct for the "drawn width".
Type: Float

\section*{Example 1-2 AC Current Density Statements}

\section*{LEF/DEF 5.7 Language Reference LEF Syntax}

The following examples define AC current density tables:
```

LAYER met1

```

ACCURRENTDENSITY PEAK
FREQUENCY 100400 ;
WIDTH
0.40 .81 .65 .010 .0 ;

TABLEENTRIES
\(9.0 \quad 7.5 \quad 6.5 \quad 5.4 \quad 4.7\)
7.56 .86 .04 .84 .0 ;

ACCURRENTDENSITY AVERAGE
50.0;

ACCURRENTDENSITY RMS
FREQUENCY 1 ;
WIDTH
0.40 .81 .65 .020 .0 ;

TABLEENTRIES
7.56 .86 .04 .84 .0 ;
...
END met1 ;
The PEAK current density at \(.4 \mu \mathrm{~m}, 100 \mathrm{MHz}\) is \(9.0 \mathrm{~mA} / \mu \mathrm{m}\). Therefore, a \(0.4 \mu \mathrm{~m}\) wide wire can carry \(9.0 \times .4=3.6 \mathrm{~mA}\) of PEAK current.

The RMS current density at \(.4 \mu \mathrm{~m}\) is \(7.5 \mathrm{~mA} / \mu \mathrm{m}\). Therefore, a \(0.4 \mu \mathrm{~m}\) wide wire can carry 7.5 \(\mathrm{x} .4=3.0 \mathrm{~mA}\) of RMS current.
```

LAYER cut12

```

\section*{ACCURRENTDENSITY PEAK}

FREQUENCY 10200 ;
CUTAREA 0.160 .32 ;
TABLEENTRIES
0.50 .4
0.40 .35 ;

ACCURRENTDENSITY AVERAGE
\[
10.0 ;
\]

ACCURRENTDENSITY RMS
FREQUENCY 1 ;
CUTAREA 0.161 .6 ;
TABLEENTRIES
10.0 9.0;
```

\#peak AC current limit for one cut
\#2 freq values in MHz
\#2 cut areas in um squared
\#mA/um squared for 2 cut areas at freq_1 (10 Mhz)
\#mA/um squared for 2 cut areas at freq_2 (200 Mhz)
\#average AC current limit for via cut12
\#mA/um squared for any cut area at any frequency
\#RMS AC current limit for via cut12
\#1 freq (required by syntax; not really used)
\#2 cut areas in um squared
\#mA/um squared for 2 cut areas at any frequency

```

\section*{LEF/DEF 5.7 Language Reference}

LEF Syntax
```

END cut12 ;

```

ANTENNAAREADIFFREDUCEPWL ( ( diffAreal diffMetalFactor1 )
( diffArea2 diffMetalFactor2 ) ...)
Indicates that the metal area is multiplied by a diffMetalReduceFactor that is computed from a piece-wise linear interpolation based on the diff_area attached to the metal. (See Example 4 in Routing Layer Process Antenna Model Examples, in "Calculating and Fixing Process Antenna Violations" on page 369.) This means that the ratio is calculated as:
ratio \(=(\) metalFactor x metal_area x diffMetalReduceFactor) \(/\) gate_area
The diffArea values are floats, specified in microns squared. The diffArea values should start with 0 and monotonically increase in value to the maximum size diffArea allowed. The diffMetalFactor values are floats with no units. The diffmetalFactor values are normally between 0.0 and 1.0. If no rule is defined, the diffMetalReduceFactor value in the \(\operatorname{PAR}\left(m_{\mathrm{j}}\right)\) equation defaults to 1.0 .
For more information on the \(\operatorname{PAR}\left(m_{i}\right)\) equation and process antenna models, see
Calculating a PAR, in "Calculating and Fixing Process Antenna Violations" on page 369.
ANTENNAAREAFACTOR value [DIFFUSEONLY]
Specifies the multiply factor for the antenna metal area calculation. DIFFUSEONLY specifies that the current antenna factor should only be used when the corresponding layer is connected to the diffusion.
Default: 1.0
Type: Float
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."
Note: If you specify a value that is greater than 1.0, the computed areas will be larger, and violations will occur more frequently.

\section*{ANTENNAAREAMINUSDIFF minusDiffFactor}

Indicates that the antenna ratio metal area should subtract the diffusion area connected to it. This means that the ratio is calculated as:
ratio \(=(\) metalFactor x metal_area - minusDiffFactor x diff_area) /gate_area
If the resulting value is less than 0 , it should be truncated to 0 . For example, if a metal2 shape has a final ratio that is less than 0 because it connects to a diffusion shape, then the cumulative check for metal3 (or via2) connected to the metal2 shape adds in a cumulative value of 0 from the metal2 layer. (See Example 1 in Routing Layer Process Antenna Model Examples, in "Calculating and Fixing Process Antenna Violations" on page 369.)
Type: Float
Default: 0.0

\section*{LEF/DEF 5.7 Language Reference}

LEF Syntax

For more information on process antenna models, see Calculating a PAR, in "Calculating and Fixing Process Antenna Violations" on page 369.

ANTENNAAREARATIO value
Specifies the maximum legal antenna ratio, using the area of the metal wire that is not connected to the diffusion diode. For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."
Type: Integer

ANTENNACUMAREARATIO value
Specifies the cumulative antenna ratio, using the area of the wire that is not connected to the diffusion diode. For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."
Type: Integer

Specifies the cumulative antenna ratio, using the area of the metal wire that is connected to the diffusion diode. You can supply and explicit ratio value or specify piece-wise linear format (PWL), in which case the cumulative ratio value is calculated using linear interpolation of the diffusion area and ratio input values. The diffusion input values must be specified in ascending order.
Type: Integer
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."

ANTENNACUMDIFFSIDEAREARATIO \{value | PWL ( \(\quad\) d1 r1 ) ( d2
r2 ) ...) \}
Specifies the cumulative antenna ratio, using the side wall area of the metal wire that is connected to the diffusion diode. You can supply and explicit ratio value or specify piece-wise linear format (PWL), in which case the cumulative ratio value is calculated using linear interpolation of the diffusion area and ratio input values. The diffusion input values must be specified in ascending order.
Type: Integer
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."

\section*{ANTENNACUMROUTINGPLUSCUT}

Indicates that the cumulative ratio rules (ANTENNACUMAREARATIO and ANTENNACUMDIFFAREARATIO) accumulate with the previous cut layer instead of the previous metal layer. Use this to combine metal and cut area ratios into one cumulative ratio rule.

\section*{LEF/DEF 5.7 Language Reference}

LEF Syntax

Note: This rule does not affect ANTENNACUMSIDEAREARATIO and ANTENNACUMDIFFSIDEAREA models.
For more information on process antenna models, see Calculating a PAR, in "Calculating and Fixing Process Antenna Violations" on page 369.

ANTENNACUMSIDEAREARATIO value
Specifies the cumulative antenna ratio, using the side wall area of the metal wire that is not connected to the diffusion diode. For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."

\section*{ANTENNADIFFAREARATIO \{value | PWL ( ( d1 r1 ) ( d2 r2 )...) \}}

Specifies the antenna ratio, using the area of the metal wire that is connected to the diffusion diode. You can supply and explicit ratio val ue or specify piece-wise linear format (PWL), in which case the ratio value is calculated using linear interpolation of the diffusion area and ratio input values. The diffusion input values must be specified in ascending order.
Type: Integer
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."

ANTENNADIFFSIDEAREARATIO \{value | PWL ( ( d1 r1 ) ( d2 r2 )...) \}
Specifies the antenna ratio, using the side wall area of the metal wire that is connected to the diffusion diode. You can supply and explicit ratio value or specify piece-wise linear format (PWL), in which case the ratio value is calculated using linear interpolation of the diffusion area and ratio input values. The diffusion input values must be specified in ascending order.
Type: Integer
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."

\section*{ANTENNAGATEPLUSDIFF plusDiffFactor}

Indicates that the antenna ratio gate area includes the diffusion area multiplied by plusDiffFactor. This means that the ratio is calculated as:
ratio \(=(\) metalFactor \(x\) metal_area \() /(\) gate_area + plusDiffFactor \(x\) diff_area \()\)
The ratio rules without "DIFF" (the ANTENNAAREARATIO, ANTENNACUMAREARATIO, ANTENNASIDEAREARATIO, and ANTENNACUMSIDEAREARATIO statements), are unnecessary for this layer if the ANTENNAGATEPLUSDIFF rule is specified because a zero diffusion area already is accounted for by the ANTENNADIFF *RATIO statements. (See Example 3 in Routing Layer Process Antenna Model Examples in "Calculating and Fixing Process Antenna Violations" on page 369.)
Type: Float
Default: 0.0

\section*{LEF/DEF 5.7 Language Reference \\ LEF Syntax}

For more information on process antenna models, see Calculating a PAR, in "Calculating and Fixing Process Antenna Violations" on page 369.

ANTENNAMODEL \{OXIDE1 | OXIDE2 | OXIDE3 | OXIDE4\}
Specifies the oxide model for the layer. If you specify an ANTENNAMODEL statement, that value affects all ANTENNA* statements for the layer that follow it until you specify another ANTENNAMODEL statement.
Default: OXIDE1, for a new LAYER statement
Because LEF is sometimes used incrementally, if an ANTENNA statement occurs twice for the same oxide model, the last value specified is used. For any given ANTENNA keyword, only one value or PWL table is stored for each oxide metal on a given layer.

\section*{Example 1-3 Antenna Model Statement}

The following example defines antenna information for oxide models on layer metal1.
```

LAYER metal1
ANTENNAMODEL OXIDE1 ; \#OXIDE1 not required, but good practice
ANTENNACUMAREARATIO 5000 ; \#OXIDE1 values
ANTENNACUMDIFFAREARATIO 8000 ;
ANTENNAMODEL OXIDE2 ; \#OXIDE2 model starts here
ANTENNACUMAREARATIO 500 ; \#OXIDE2 values
ANTENNACUMDIFFAREARATIO 800 ;
ANTENNAMODEL OXIDE3 ;
ANTENNACUMAREARATIO 300 ;
ANTENNACUMDIFFAREARATIO 600 ;
END metal1
ANTENNASIDEAREAFACTOR value [DIFFUSEONLY]
Specifies the multiply factor for the antenna metal side wall area calculation.
DIFFUSEONLY specifies that the current antenna factor should only be used when the corresponding layer is connected to the diffusion.
Default: 1.0
Type: Float
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."

```

\section*{ANTENNASIDEAREARATIO value}
```

Specifies the antenna ratio, using the side wall area of the metal wire that is not connected to the diffusion diode. For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations." Type: Integer

```

\section*{LEF/DEF 5.7 Language Reference}

LEF Syntax

\section*{AREA minArea}

Specifies the minimum metal area required for polygons on the layer. All polygons must have an area that is greater than or equal to minArea, if no MINSIZE rule exists. If a MINSIZE rule exists, all polygons must meet either the MINSIZE or the AREA rule. For an example using these rules, see Example 1-8 on page 97.
Type: Float, specified in microns squared

CAPACITANCE CPERSQDIST value
Specifies the capacitance for each square unit, in picofarads per square micron. This is used to model wire-to-ground capacitance.

\section*{CAPMULTIPLIER value}

Specifies the multiplier for interconnect capacitance to account for increases in capacitance caused by nearby wires.
Default: 1
Type: Integer

\section*{DCCURRENTDENSITY}

Specifies how much DC current a wire on this layer of a given width can handle in units of milliamps per micron ( \(\mathrm{mA} / \mu \mathrm{m}\) ).
The true meaning of current density would have units of milliamps per square micron \(\left(\mathrm{mA} / \mathrm{mm}^{2}\right)\); however, the thickness of the metal layer is implicitly included, so the units in this table are milliamps per micron, where only the wire width varies.
The DCCURRENTDENSITY syntax is defined as follows:
```

AVERAGE
{ value
| WIDTH width_1 width_2 ... ;
TABLEENTRIES value_1 value_2...
} ;

```

AVERAGE Specifies the average current limit of the layer.
value \(\quad\) Specifies the current limit for the layer, in \(\mathrm{mA} / \mu \mathrm{m}\).
WIDTH Specifies wire width values, in microns. You can specify more than one wire width. If you specify multiple width values, the values must be specified in ascending order.
Type: Float

\section*{LEF/DEF 5.7 Language Reference LEF Syntax}

TABLEENTRIES Specifies the value of current density for each specified width, in \(\mathrm{mA} / \mu \mathrm{m}\).

The final value for a given wire width is computed from a linear interpolation of the table values. The widths are not adjusted for any process shrinkage, so they should be correct for the "drawn width".
Type: Float

\section*{Example 1-4 DC Current Density Statements}

The following examples define DC current density tables:
```

LAYER met1
DCCURRENTDENSITY AVERAGE
50.0 ;
\#avg. DC current limit for met1
\#mA/um for any width
(or)
DCCURRENTDENSITY AVERAGE
\#avg. DC current limit for met1
WIDTH
0.4 0.8 1.6 5.0 20.0 ; \#5 width values in microns
TABLEENTRIES
7.5 6.8 6.0 4.8 4.0 ; \#mA/um for 5 widths
END met1 ;

```

The AVERAGE current density at \(0.4 \mu \mathrm{~m}\) is \(7.5 \mathrm{~mA} / \mu \mathrm{m}\). Therefore, a \(0.4 \mu \mathrm{~m}\) wide wire can carry \(7.5 \times .4=3.0 \mathrm{~mA}\) of AVERAGE DC current.
```

LAYER cut12
DCCURRENTDENSITY AVERAGE
10.0 ;

```
```

\#avg. DC current limit for via cut12

```
#avg. DC current limit for via cut12
#mA/um squared for any cut area
#mA/um squared for any cut area
(or)
    DCCURRENTDENSITY AVERAGE
#avg. DC current limit for via cut12
        CUTAREA 0.16 0.32 ;
    #2 cut areas in }\mu\mp@subsup{m}{}{2
    TABLEENTRIES
    10.0 9.0 ;
#mA/um squared for 2 cut areas
```


LEF/DEF 5.7 Language Reference

LEF Syntax

DENSITYCHECKSTEP stepValue

Specifies the stepping distance for metal density checks, in distance units. Type: Float

DENSITYCHECKWINDOW windowLength windowWidth
Specifies the dimensions of the check window, in distance units.
Type: Float

DIAGMINEDGELENGTH diagLength
Specifies the minimum length for a diagonal edge. Any 45-degree diagonal edge must have a length that is greater than or equal to diagLength.
Type: Float, specified in microns
DIAGPITCH \{distance | diag45Distance diag135Distance\}
Specifies the 45-degree routing pitch for the layer. Pitch is used by the router to get the best routing density.
Default: None
Type: Float, specified in microns
distance Specifies one pitch value that is used for both the 45-degree angle and 135-degree angle directions.
diag45Distance diag135Distance
Specifies the 45-degree angle pitch (the center-to-center space between 45 -degree angle routes) and the 135-degree angle pitch.

DIAGSPACING diagSpacing
Specifies the minimum spacing allowed for a 45-degree angle shape.
Default: None
Type: Float, specified in microns

DIAGWIDTH diagWidth

Specifies the minimum width allowed for a 45-degree angle shape.
Default: None
Type: Float, specified in microns

DIRECTION \{HORIZONTAL | VERTICAL | DIAG45 | DIAG135\}

Specifies the preferred routing direction. Automatic routing tools attempt to route in the preferred direction on a layer. A typical case is to route horizontally on layers metal1 and metal3, and vertically on layer metal2.

HORIZONTAL Routing parallel to the x axis is preferred.

LEF/DEF 5.7 Language Reference
 LEF Syntax

VERTICAL Routing parallel to the y axis is preferred.
DIAG45 Routing along a 45-degree angle is preferred.
DIAG135 Routing along a 135-degree angle is preferred.
Note: Angles are measured counterclockwise from the positive x axis.

EDGECAPACITANCE value
Specifies a floating-point value of peripheral capacitance, in picofarads per micron. The place-and-route tool uses this value in two situations:

- Estimating capacitance before routing
- Calculating segment capacitance after routing

For the second calculation, the tool uses value only if you set layer thickness, or layer height, to 0 . In this situation, the peripheral capacitance is used in the following formula:
segment capacitance $=($ layer capacitance per square x segment width x segment length $)+$ (peripheral capacitance x 2 (segment width + segment length))

FILLACTIVESPACING spacing

Specifies the spacing between metal fills and active geometries. Type: Float

HEIGHT distance

Specifies the distance from the top of the ground plane to the bottom of the interconnect. Type: Float

LAYER layerName

Specifies the name for the layer. This name is used in later references to the layer.

MAXIMUMDENSITY maxDensity

Specifies the maximum metal density allowed for the layer, as a percentage. The minDensity and maxDensity values represent the metal density range within which all areas of the design must fall. The metal density must be greater than or equal to minDensity and less than or equal to maxDensity.
Type: Float
Value: Between 0.0 and 100.0

Example 1-5 Minimum and Maximum Density

LEF/DEF 5.7 Language Reference

LEF Syntax

The following example specifies a metal density range in which the minimum metal density must be greater than or equal to 20 percent and the maximum metal density must be less than or equal to 70 percent.
MINIMUMDENSITY 20.0 ;
MAXIMUMDENSITY 70.0 ;
MAXWIDTH width
Specifies the maximum wire width, in microns, allowed on the layer. Maximum wire width is defined as the smaller value of the width and height of the maximum enclosed rectangle. For example, MAXWIDTH 10.0 specifies that the width of every wire on the layer must be less than or equal to $10.0 \mu \mathrm{~m}$.
Type: Float
MINENCLOSEDAREA area [WIDTH width]
Specifies the minimum area size limit for an empty area that is enclosed by metal (that is, a donut hole formed by the metal).
area Specifies the minimum area size of the hole, in microns squared. Type: Float
width Applies the minimum area size limit only when a hole is created from a wire that has a width that is greater than width, in microns. If any of the wires that surround the donut hole are larger than this value, the rule applies.
Type: Float

Example 1-6 Min Enclosed Area Statement

The following MINENCLOSEDAREA example specifies that a hole area must be greater than or equal to $0.40 \mu \mathrm{~m}^{2}$.

```
LAYER m1
```

MINENCLOSEDAREA 0.40 ;
The following MINENCLOSEDAREA example specifies that a hole area must be greater than or equal to $0.30 \mu \mathrm{~m}^{2}$. However, if any of the wires enclosing the hole have a width that is greater than $0.15 \mu \mathrm{~m}$, then the hole area must be greater than or equal to $0.40 \mu \mathrm{~m}^{2}$. If any of the wires enclosing the hole are larger than $0.50 \mu \mathrm{~m}$, then the hole area must be greater than or equal to $0.80 \mu \mathrm{~m}^{2}$.

```
LAYER m1
    MINENCLOSEDAREA 0.30 ;
```


LEF/DEF 5.7 Language Reference

LEF Syntax

```
MINENCLOSEDAREA 0.40 WIDTH 0.15 ;
MINENCLOSEDAREA 0.80 WIDTH 0.50 ;
```

MINIMUMCUT
Specifies the number of cuts a via must have when it is on a wide wire or pin whose width is greater than width. The MINIMUMCUT rule applies to all vias touching this particular metal layer. You can specify more than one MINIMUMCUT rule per layer. (See Example 1$\underline{7}$ on page 95.)
The MINIMUMCUT syntax is defined as follows:

```
[MINIMUMCUT numCuts WIDTH width
            [WITHIN cutDistance]
        [FROMABOVE | FROMBELOW]
        [LENGTH length WITHIN distance]
;] ...
```

numcuts \quad Specifies the number of cuts a via must have when it is on a
wire or pin whose width is greater than width.
Type: Integer
WIDTH width Specifies the width of the wire or pin, in microns.
Type: Float
WITHIN cutDistance

Indicates that numCuts via cuts must be less than cutDistance from each other in order to be counted together to meet the minimum cut rule. (See Figure 1-32 on page 96.)

FROMABOVE FROMBELOW

Indicates whether the rule applies only to connections from above this layer or from below.
Default: The rule applies to connections from above and below.
LENGTH length WITHIN distance

LEF/DEF 5.7 Language Reference
 LEF Syntax

Indicates that the rule applies for thin wires directly connected to wide wires, if the wide wire has a width that is greater than width and a length that is greater than length, and the vias on the thin wire are less than distance from the wide wire. (See Figure 1-31 on page 96). The length value must be greater than or equal to the width value.

If LENGTH and WITHIN are present, this rule only checks the thin wire connected to a wide wire, and does not check the wide wire itself. A separate MINIMUMCUT x WIDTH y ; statement without LENGTH and WITHIN is required for any wide wire minimum cut rule.
Type: Float, specified in microns

Example 1-7 Minimum Cut Rules

The following MINIMUMCUT definitions show different ways to specify a MINIMUMCUT rule.

- Minimum Cut Rule Example 1

The following syntax specifies that two via cuts are required for metal4 wires that are greater than $0.5 \mu \mathrm{~m}$ when connecting from metal3 or metal5.

```
LAYER metal4
    MINIMUMCUT 2 WIDTH 0.5 ;
```


- Minimum Cut Rule Example 2

The following syntax specifies that four via cuts are required for metal4 wires that are greater than $0.7 \mu \mathrm{~m}$, when connecting from metal3.

```
LAYER metal4
```

MINIMUMCUT 4 WIDTH 0.7 FROMBELOW ;

Minimum Cut Rule Example 3

The following syntax specifies that four via cuts are required for metal4 wires that are greater than $1.0 \mu \mathrm{~m}$, when connecting from metal5.

```
LAYER metal4
    MINIMUMCUT 4 WIDTH 1.0 FROMABOVE ;
```


- Minimum Cut Rule Example 4

The following syntax specifies that two via cuts are required for metal4 wires that are greater than $1.1 \mu \mathrm{~m}$ wide and greater than $20.0 \mu \mathrm{~m}$ long, and the via cut is less than 5.0 $\mu \mathrm{m}$ from the wide wire. Figure 1-31 on page 96 illustrates this example.
LAYER metal4

LEF/DEF 5.7 Language Reference

LEF Syntax

```
MINIMUMCUT 2 WIDTH 1.1 LENGTH 20.0 WITHIN 5.0 ;
```

Figure 1-31 Minimum Cut Rule

Minimum Cut Rule Example 5

The following syntax specifies that two via cuts are required for metal4 wires that are greater than $1.0 \mu \mathrm{~m}$ wide. The via cuts must be less than $0.3 \mu \mathrm{~m}$ from each other in order to meet the minimum cut rule. Figure 1-32 on page 96 illustrates this example.

MINIMUMCUT 2 WIDTH 1.0 WITHIN 0.3;
Figure 1-32 Minimum Cut Within Rule

a) Violation. The wire width is $>1.0 \mu \mathrm{~m}$, therefore 2 cuts are needed. However, the 2 cuts are $>=0.3 \mu \mathrm{~m}$ apart, therefore they cannot be counted together.

b) Okay. The wire width is $>1.0 \mu \mathrm{~m}$, therefore 2 cuts are needed. The 2 cuts are $<0.3 \mu \mathrm{~m}$ apart, therefore they are counted together and meet the rule.

MINIMUMDENSITY minDensity
Specifies the minimum metal density allowed for the layer, as a percentage. The minDensity and maxDensity values represent the metal density range within which

LEF/DEF 5.7 Language Reference

LEF Syntax

all areas of the design must fall. The metal density must be greater than or equal to minDensity and less than or equal to maxDensity. For an example of this statement, see Example 1-5 on page 92.
Type: Float
Value: Between 0.0 and 100.0
MINSIZE minWidth minLength [minWidth2 minLength2]
Specifies the minimum width and length of a rectangle that must be able to fit somewhere within each polygon on this layer (see Figure 1-33 on page 98). All polygons must meet this MINSIZE rule, if no AREA rule is specified. If an AREA rule is specified, all polygons must meet either the MINSIZE or the AREA rule.
You can specify multiple rectangles by specifying a list of minWidth2 and minLength 2 values. If more than one rectangle is specified, the MINSIZE rule is satisfied if any of the rectangles can fit within the polygon.
Type: Float, specified in microns, for all values

Example 1-8 Minimum Size and Area Rules

Assume the following minimum size and area rules:

```
LAYER metal1
    TYPE ROUTING ;
    AREA 0.07 ; #0.20 um x 0.35 um = 0.07 um^2
    MINSIZE 0.14 0.30 ; #0.14 um x 0.30 um = 0.042 um^2
```

Figure 1-33 on page 98 illustrates how these rules behave when one or both of the rules are present in the LAYER statement:

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-33 Minimum Size and Area Rules

MINSIZE rule
a)

$x=0.4 \mu \mathrm{~m}$
$y=0.14 \mu \mathrm{~m}$ area $=0.056 \mu \mathrm{~m}^{2}$

AREA only: violation MINSIZE only: legal AREA and MINSIZE: legal

$$
\begin{aligned}
& x=0.3 \mu \mathrm{~m} \\
& \mathrm{y}=0.26 \mu \mathrm{~m} \\
& \text { area }=0.072 \mu \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& x=0.3 \mu \mathrm{~m} \\
& \mathrm{y}=0.2 \mu \mathrm{~m} \\
& \text { area }=0.054 \mu \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x}=0.32 \mu \mathrm{~m} \\
& \mathrm{y}=0.2 \mu \mathrm{~m} \\
& \text { area }=0.056 \mu \mathrm{~m}^{2}
\end{aligned}
$$

d)

$$
x=0.2 \mu \mathrm{~m}
$$

$$
\mathrm{y}=0.32 \mu \mathrm{~m}
$$

e)

$$
\text { area }=0.056 \mu \mathrm{~m}^{2}
$$

MINSIZE only: legal AREA and MINSIZE: legal
AREA only: legal MINSIZE only: violation AREA and MINSIZE: legal

AREA only: violation MINSIZE only: violation AREA and MINSIZE: violation

AREA only: violation

AREA only: violation
MINSIZE only: legal AREA and MINSIZE: legal

The following statement defines a MINSIZE rule that specifies that every polygon must have a minimum area of $0.07 \mu^{2}$, or that a rectangle of $0.14 \times 0.30 \mu \mathrm{~m}$ must be able to fit within the polygon, or that a rectangle of $0.16 \times 0.26 \mu \mathrm{~m}$ must be able to fit within the polygon:

[^1]
LEF/DEF 5.7 Language Reference

LEF Syntax

TYPE ROUTING ;
AREA 0.07 ; \#0.20 x $0.35 \mathrm{um}=0.07 \mathrm{um}^{\wedge} 2$
MINSIZE 0.140 .300 .160 .26 ; \#0.14 x $0.30 \mathrm{um}=0.042 \mathrm{um}^{\wedge} 2$
$\# 0.16 \times 0.26 \mathrm{um}=0.0416 \mathrm{um}^{\wedge} 2$

END metal1

MINSTEP

Specifies the minimum step size, or shortest edge length, for a shape. The MInSTEP rule ensures that Optical Pattern Correction (OPC) can be performed during mask creation for the shape.
Note: A single layer should only have one type of MINSTEP rule. It should include either INSIDECORNER, OUTSIDECORNER, or STEP statements (with an optional LENGTHSUM value), or one LENGTHSUM statement, or one MAXEDGES statement.
For an illustration of the minSTEP rules, see Figure 1-34 on page 102. For an example, see Example 1-9 on page 101.
The syntax for MINSTEP is as follows:

```
[MINSTEP minStepLength
    [ [INSIDECORNER | OUTSIDECORNER | STEP]
            [LENGTHSUM maxLength]
    | [MAXEDGES maxEdges] ;]
```

minStepLength Specifies the minimum step size, or shortest edge length, for a shape. The edge of a shape must be greater than or equal to this value, or a violation occurs.
Type: Float, specified in microns
INSIDECORNER Indicates that a violation occurs if two or more consecutive edges of an inside corner are less than minStepLength.

If LENGTHSUM is also defined, a violation only occurs if the total length of all consecutive edges (that are less than minStepLength) is greater than maxLength.

Shape b in Figure 1-34 on page 102 shows an inside corner. It is considered an inside corner because the two edges >= minStepLength (shown with thick lines) that abut the consecutive short edges < minStepLength (shown with dashed lines) form an inside corner (or concave shape). Default: OUTSIDECORNER

LEF/DEF 5.7 Language Reference

LEF Syntax

OUTSIDECORNER Indicates that a violation occurs if two or more consecutive edges of an outside corner are less than minStepLength.

If LENGTHSUM is also defined, a violation only occurs if the total length of all consecutive edges (that are less than minStepLength) is greater than maxLength.

Shape a in Figure 1-34 on page 102 shows an outside corner. It is considered an outside corner because the two edges >= minStepLength (shown with thick lines) that abut the consecutive short edges < minstepLength (shown with dashed lines) form an outside corner (or convex shape).

Note: This is the default rule, if INSIDECORNER, OUTSIDECORNER, or STEP is not specified.

STEP Indicates that a violation occurs if one or more consecutive edges of a step are less than minStepLength.

If LENGTHSUM is also defined, a violation only occurs if the total length of all consecutive edges (that are less than minStepLength) is greater than maxLength.

Shape fin Figure 1-34 on page 102 shows a step. It is considered a step because the two edges >=minStepLength (shown with thick lines) that abut the consecutive short edges < minStepLength (shown with dashed lines) form a step instead of a corner.
Default: OUTSIDECORNER

LENGTHSUM maxLength

Specifies the maximum total length of consecutive short edges (edges that are less than minStepLength) that OPC can correct without causing new DRC violations.

If the total length of the edges is greater than maxLength, a violation occurs. No violation occurs if the total length is less than or equal to maxLength.

MAXEDGES maxEdges
Specifies that up to maxEdges consecutive edges that are less than minStepLength in length are allowed, but more than maxEdges in a row is a violation. Typically, most tools only allow a maxEdges value of 0,1 , or 2 . A maxEdges value of 0 means that no edge can be less than minStepLength.
Type: Integer

LEF/DEF 5.7 Language Reference

Example 1-9 Minimum Step Rules

- The following table shows the results of the specified MINSTEP rules using the shapes in Figure 1-34 on page 102. For these rules, assume minStepLength equals 0.05 $\mu \mathrm{m}$, and that each dashed edge is $0.04 \mu \mathrm{~m}$ in length.

MINSTEP	R Rule	Result
MINSTEP 0	0.05	OUTSIDECORNER is the default behavior. Therefore, shapes a and d are violations because their consecutive edges are less than $0.05 \mu \mathrm{~m}$. Shapes $\mathrm{b}, \mathrm{c}, \mathrm{e}$, and f are not outside corner checks.
MInstep 0	0.04 ;	OUTSIDECORNER is the default behavior. Therefore, shapes a and d are checked and are legal because their consecutive edges are greater than or equal to $0.04 \mu \mathrm{~m}$.
MINSTEP 0	0.05 LENGTHSUM 0.08	Shape a is legal because its consecutive edges are less than $0.05 \mu \mathrm{~m}$, and the total length of the edges is less than or equal to $0.08 \mu \mathrm{~m}$. Shape d is a violation because even though its consecutive edges are less than $0.05 \mu \mathrm{~m}$, the total length of the edges is greater than $0.08 \mu \mathrm{~m}$.
MINSTEP 0	0.05 LENGTHSUM 0.16	Shapes a and d are legal because the total length of their consecutive edges is less than or equal to $0.16 \mu \mathrm{~m}$.
MINSTEP 0	0.05 INSIDECORNER	Shapes b and e are violations because their consecutive edges are less than $0.05 \mu \mathrm{~m}$. Shapes a, c, d, and f are not inside corner checks.
MINSTEP LENGTHS	0.05 INSIDECORNER SUM 0.15 ;	Shape b is legal because its consecutive edges are less than $0.05 \mu \mathrm{~m}$, and the total length of the edges is less than or equal to $0.15 \mu \mathrm{~m}$. Shape e is a violation because even though its consecutive edges are less than $0.05 \mu \mathrm{~m}$, the total length of the edges is greater than $0.15 \mu \mathrm{~m}$.
MINSTEP 0	0.05 STEP;	Shapes c and f are violations because their consecutive edges are less than $0.05 \mu \mathrm{~m}$. Shapes a, b, d, and e are not step checks.

LEF/DEF 5.7 Language Reference

MINSTEP Rule	Result
MINSTEP 0.05 STEP LENGTHSUM $0.08 ;$	Shape c is legal because its consecutive edges are less than $0.05 \mu \mathrm{~m}$, and the total length of the edges is less than or equal to $0.08 \mu \mathrm{~m}$. Shape f is a violation because even though its consecutive edges are less than $0.05 \mu \mathrm{~m}$, the total length of the edges is greater than $0.08 \mu \mathrm{~m}$. MINSTEP $0.04 \mathrm{STEP} ;$ Shapes cand f are legal because their consecutive edges are greater than or equal to $0.04 \mu \mathrm{~m}$.

Figure 1-34

Note: All dashed edges are $0.04 \mu \mathrm{~m}$ in length.

b) INSIDECORNER
$0.08 \mu \mathrm{~m}$ LENGTHSUM

e) INSIDECORNER
$0.16 \mu \mathrm{~m}$ LENGTHSUM

c) STEP
$0.04 \mu \mathrm{~m}$

f) STEP
$0.12 \mu \mathrm{~m}$ LENGTHSUM

- Figure 1-35 on page 103 shows the results of the following MINSTEP MAXEDGES rule: minstep 1.0 MAXEDGES 2 ;

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-35

a) Violation; there is more than two edges in a row that are $<1.0 \mu \mathrm{~m}$ in length.

b) Violation; there is more than two edges in a row that are $<1.0 \mu \mathrm{~m}$ in length.

c) No violation; there are only two edges in a row that ares < 1.0 $\mu \mathrm{m}$ in length.

MINWIDTH width

Specifies the minimum legal object width on the routing layer. For example, MINWIDTH 0.15 specifies that the width of every object must be greater than or equal to $0.15 \mu \mathrm{~m}$. This value is used for verification purposes, and does not affect the routing width. The WIDTH statement defines the default routing width on the layer.
Default: The value of the WIDTH statement
Type: Float, specified in microns

OFFSET \{distance |xDistance yDistance\}

Specifies the offset for the routing grid for the layer. This value is used to align routing tracks with standard cell boundaries, which helps routers get good on-grid access to the cell pin shapes. For the best routing results, most standard cells have a $1 / 2$ pitch offset between the MACRO SIZE boundary and the center of cell pins that should be aligned with the routing grid. If some other offset is required to get more pins to align, specify an OFFSET value.
Generally, it is best for all of the horizontal layers to have the same offset and all of the vertical layers to have the same offset, so that routing grids on different layers align with each other. Higher layers can have a larger pitch, but for best results, they should still align with a lower layer routing grid every few track.
Default: Half the routing pitch for the layer
Type: Float, specified in distance units
distance \quad Specifies one offset value that is used for both the x and y offsets.
$x D i s t a n c e ~ y D i s t a n c e$

LEF/DEF 5.7 Language Reference

LEF Syntax

Specifies the x offset for vertical routing tracks, and the y offset for horizontal routing tracks.

PITCH \{distance | xDistance yDistance\}
Specifies the required routing pitch for the layer. Pitch is used to generate the routing grid (the DEF TRACKS). For more information, see "Routing Pitch" on page 171.
Type: Float, specified in microns

> distance \quad Specifies one pitch value that is used for both the x and y pitch.
> $x D i s t a n c e ~ y D i s t a n c e$

Specifies the x pitch (the space between each vertical routing track), and the y pitch (the space between each horizontal routing track).

PROPERTY propName propVal
Specifies a numerical or string value for a layer property defined in the PROPERTYDEFINITIONS statement. The propName you specify must match the propName listed in the PROPERTYDEFINITIONS statement.

PROTRUSIONWIDTH width1 LENGTH length WIDTH width2
Specifies that the width of a protrusion must be greater than or equal to width1 if it is shorter than length, and it connects to a wire that has a width greater than or equal to width2 (see Figure 1-36 on page 105). Length is determined by the shortest possible path among all of the protrusion wires with width smaller width1, and is measured by the shortest outside edges of the wires.
Type: Float, specified in microns

Example 1-10 Protrusion

The following example specifies that a protrusion must have a width that is greater than or equal to $0.28 \mu \mathrm{~m}$, if the length of the protrusion is less than $0.60 \mu \mathrm{~m}$ and the wire it connects to has a width that is greater than or equal to $1.20 \mu \mathrm{~m}$.

```
LAYER m1
```

PROTRUSIONWIDTH 0.28 LENGTH 0.60 WIDTH 1.20;

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-36

a) Okay; length $>=0.60$ among all protrusion wires.

b) Violation; length <0.60 is measured among all protrusion wires with width <0.28.

LEF/DEF 5.7 Language Reference

LEF Syntax

c) Violation; length <0.60 for shortest possible path.

RESISTANCE RPERSQ value
Specifies the resistance for a square of wire, in ohms per square. The resistance of a wire can be defined as

RPERSQU x wire length/wire width

SHRINKAGE distance
Specifies the value to account for shrinkage of interconnect wiring due to the etching process. Actual wire widths are determined by subtracting this constant value.
Type: Float

SPACING

Specifies the spacing rules to use for wiring on the layer. You can specify more than one spacing rule for a layer. See "Using Spacing Rules" on page 112.
Note: You cannot mix SPACING rules and SPACINGTABLE rules inside a single LAYER statement. You must specify either SPACING statements or SPACINGTABLE statements for a single routing layer, but not both.
The syntax for describing spacing rules is defined as follows:

```
[SPACING minSpacing
    [ RANGE minWidth maxWidth
            [ USELENGTHTHRESHOLD
            | INFLUENCE influenceLength
                [RANGE stubMinWidth stubMaxWidth]
            | RANGE minWidth maxWidth]
            | LENGTHTHRESHOLD maxLength
```


LEF/DEF 5.7 Language Reference

LEF Syntax

```
            [RANGE minWidth maxWidth]
    | ENDOFLINE eolWidth WITHIN eolWithin
        [PARALLELEDGE parSpace WITHIN parWithin
            [TWOEDGES] ]
        SAMENET [PGONLY]
    NOTCHLENGTH minNotchLength
    ENDOFNOTCHWIDTH endOfNotchWidth
        NOTCHSPACING minNotchSpacing
            NOTCHLENGTH minNotchLength
    ]
;] ...
SPACING minSpacing
```

Specifies the default minimum spacing, in microns, allowed between two geometries on different nets.
Type: Float
RANGE minWidth maxWidth
Indicates that the minimum spacing rule applies to objects on the layer with widths in the indicated RANGE (that is, widths that are greater than or equal to minWidth and less than or equal to maxWidth). If you do not specify a range, the rule applies to all objects.
Type: Float
Note: If you specify multiple RANGE rules, the range values should not overlap.

Indicates that the threshold spacing rule should be used if the other object meets the previous LENGTHTHRESHOLD value.

LEF/DEF 5.7 Language Reference

LEF Syntax

INFLUENCE influenceLength
[RANGE stubMinWidth stubMaxWidth]
Indicates that any length of the stub wire that is less than or equal to influenceLength from the wide wire inherits the wide wire spacing.
Type: Float
The influence rule applies to stub wires on the layer with widths in the indicated RANGE (that is, widths that are greater than or equal to stubMinWidth and less than or equal to stubMaxWidth). If you do not specify a range, the rule applies to all stub wires. Type: Float

Note: Specifying the INFLUENCE keyword denotes that the statement only checks the influence rule, and does not check normal spacing. You must also specify a separate SPACING statement for normal spacing checks.

RANGE minWidth maxWidth
Specifies an optional second width range. The spacing rule applies if the widths of both objects fall in the ranges defined (each object in a different range). For an object's width to fall in a range, it must be greater than or equal to minWidth and less than or equal to maxWidth.
Type: Float
Note: If you specify multiple RANGE rules, the range values should not overlap.

LEF/DEF 5.7 Language Reference

LEF Syntax

LENGTHTHRESHOLD maxLength
[RANGE minWidth maxWidth]
Specifies the maximum parallel run length or projected length with an adjacent metal object for this spacing value. The minSpacing value should be less than or equal to the "default" minSpacing value when no LENGTHTHRESHOLD is specified for this range of widths. For an example, see "Using Spacing Rules" on page 112.

The threshold spacing rule applies to objects with widths in the indicated RANGE (that is, widths that are greater than or equal to minWidth and less than or equal to maxWidth). If you do not specify a range, the rule applies to all objects.
Type: Float
Note: If you specify multiple RANGE rules, the range values should not overlap.

ENDOFLINE eolWidth WITHIN eolWithin
Indicates that an edge that is shorter than eolwidth, noted as end-of-line (EOL from now on) edge requires spacing greater than or equal to eolspace beyond the EOL anywhere within (that is, less than) eolWithin distance (see Figure 1-37 on page 109).

Typically, eolSpace is slightly larger than the minimum allowed spacing on the layer. The eolwithin value must be less than the minimum allowed spacing.
Figure 1-37

a) EOL width <eolwidth requires eolSpace beyond EOL to either side by <eolWithin distance.

LEF/DEF 5.7 Language Reference

LEF Syntax

PARALLELEDGE parSpace WITHIN parWithin

Indicates the EOL rule applies only if there is a parallel edge that is less than parspace away, and is also less than parwithin from the EOL and eolwithin beyond the EOL (see Figure 1-38 on page 110).

Figure 1-38

b) EOL space rule with PARALLELEDGE is triggered only if there is a parallel edge that overlaps inside the illustrated shaded box.

If TWOEDGES is specified, the EOL rule applies only if there are two parallel edges that meet the PARALLELEDGE parSpace, eolWithin, and parWithin parameters (see Figure 1-39 on page 111).

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-39

c) EOL rule with TWOEDGES is triggered only if both sides have parallel edge overlaps inside the illustrated shaded boxes.

SAMENET [PGONLY]
Indicates that the minSpacing value only applies to same-net metal. If PGONLY also is specified, the minSpacing value only applies to same-net metal that is a power or ground net.

This rule typically is used when a technology has wider spacing for wider width wires; however, it still allows minimum spacing for same-net wires, even if they are wide. (See Example 1-12 on page 118.)

NOTCHLENGTH minNotchLength
Indicates that any notch with a notch length less than minNotchLength must have a notch spacing of less than or equal to minspacing. (See illustration a in Figure 1-46 on page 120.)

The value you specify for minspacing should be only slightly larger than the normal minimum spacing rule (typically, between $1 x$ and $1.5 x$ minimum spacing).
Type: Float, specified in microns
Note: You can specify only one NOTCHLENGTH rule per layer.

LEF/DEF 5.7 Language Reference
 LEF Syntax

ENDOFNOTCHWIDTH endOfNotchWidth
 NOTCHSPACING minNotchSpacing
 NOTCHLENGTH minNotchLength

Indicates that the notch metal at the bottom end of a U-shaped notch requires spacing that is greater than or equal to minSpacing, if the notch has a width that is less than endOfNotchWidth, notch spacing that is less than or equal to minNotchSpacing, and notch length that is greater than or equal to minNotchLength. The spacing is required for the extent of the notch.

The values you specify for notchSpacing and minSpacing should be only slightly larger than the normal minimum spacing rule (typically between $1 x$ and $1.5 x$ minimum spacing). The value you specify for endOfNotchWidth should be only slightly larger than the minimum width rule (typically, between $1 x$ and $1.5 x$ minimum width).
Type: Float, specified in microns (for all values)
Note: You can specify only one ENDOFNOTCHWIDTH rule per layer.

Using Spacing Rules

Spacing rules apply to pin-to-wire, obstruction-to-wire, via-to-wire, and wire-to-wire spacing. These requirements specify the default minimum spacing allowed between two geometries on different nets.

When defined with a RANGE argument, a spacing value applies to all objects with widths within a specified range. That is, the rule applies to objects whose widths are greater than or equal to the specified minimum width and less than or equal to the specified maximum width.

Note: If you specify multiple RANGE arguments, the RANGE values should not overlap.
In the following example, the default minimum allowed spacing between two adjacent objects is $0.3 \mu \mathrm{~m}$. However, for objects between 0.5 and $1.0 \mu \mathrm{~m}$ in width, the spacing is $0.4 \mu \mathrm{~m}$. For objects between 1.01 and $2.0 \mu \mathrm{~m}$ in width, the spacing is $0.5 \mu \mathrm{~m}$.

```
SPACING 0.3 ;
SPACING 0.4 RANGE 0.5 1.0 ;
SPACING 0.5 RANGE 1.01 2.0 ; #The RANGE begins at 1.01 and not 1.0 because
    #RANGE values should not overlap.
```


LEF/DEF 5.7 Language Reference

LEF Syntax

Threshold spacing is a function of both the wire width and the length of the neighboring object. It is typically used when vias are wider than the wire to allow tighter wire-to-wire spacing, even when the vias are present.

In the following example, a slightly tighter spacing of $.24 \mu \mathrm{~m}$ is needed if the other object is less than or equal to $1.0 \mu \mathrm{~m}$ in length (see Figure 1-40 on page 113).

```
SPACING 0.28 ;
SPACING 0.24 LENGTHTHRESHOLD 1.0 ;
```

Figure 1-40

The USELENGTHTHRESHOLD argument specifies that the threshold spacing rule should be applied if the other object meets the previous LENGTHTHRESHOLD value.

In the following example, a larger spacing of $0.32 \mu \mathrm{~m}$ is needed for wire widths between 1.5 and $9.99 \mu \mathrm{~m}$. However, if the other object is less than or equal to $1.0 \mu \mathrm{~m}$ in length, the smaller $.0 .28 \mu \mathrm{~m}$ spacing is applied (see Figure 1-41 on page 114).

```
SPACING 0.28 ; #Default minimum spacing is >=0.28 um.
SPACING 0.28 LENGTHTHRESHOLD 1.0 ; #For short parallel lengths of <= 1.0 um,
    #0.28 spacing is allowed.
SPACING 0.32 RANGE 1.5 9.99 USELENGTHTHRESHOLD ;
#Wide wires with 1.5 <= width <=9.99 need
#0.32 spacing unless the parallel run
#length is <= 1.0 from the previous rule.
```


LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-41

c.) Violation.

d.) No violation.

Influence spacing rules are used to support the inheritance of wide wire spacing by nets connected to the wide wires. For example, a larger spacing is needed for stub wires attached to large objects like pre-routed power wires. A piece of metal connecting to a wider wire will inherit spacing rules for a user-defined distance from the wider wire.

In Figure 1-42 on page 115, a minimum space of N is required between two metal lines when at least one metal line has a width that is $>=Y$. This spacing must be maintained for any small piece of metal $(<Y)$ that is connected to the wide metal within X range of the wide metal. Outside of this range, normal spacing rules (Z) apply.

LEF/DEF 5.7 Language Reference

 LEF SyntaxFigure 1-42

In the following example, the $0.5 \mu \mathrm{~m}$ spacing applies for the first $1.0 \mu \mathrm{~m}$ of the stub sticking out from the large object. This rule only applies to the stub wire; the previous rule must be included for the wide wire spacing. The spacing 0.5 RAnge 2.012000 .0 statement is required to get extra spacing for the wide-wire itself.

```
SPACING 0.5 RANGE 2.01 2000.0 ;
SPACING 0.28 ; #Minimum spacing is >= 0.28 um.
SPACING 0.5 RANGE 2.01 2000.0 ; #wide-wire >= 2.01 um wide requires 0.5um spacing
SPACING 0.5 RANGE 2.01 2000.0 INFLUENCE 1.000 ;
    #Stub wires <= 1.0 um from wide wires >= 2.01
    #require 0.5 um spacing.
```

Some processes only need the INFLUENCE rule for certain widths of the stub wire. In the following example, the $0.5 \mu \mathrm{~m}$ spacing is required only for stub wires between 0.5 and $1.0 \mu \mathrm{~m}$ in width.

```
SPACING 0.28 ; #Minimum spacing is >= 0.28 um.
SPACING 0.5 RANGE 2.01 2000.0 ; #wide-wire >= 2.01 um wide requires 0.5um spacing
SPACING 0.5 RANGE 2.01 2000.0 INFLUENCE 1.00 RANGE 0.5 1.0 ;
    #Stub wires with 0.5 <= width <= 1.0, and <= 1.0 um from
    #wide wide wires >= 2.01 require 0.5 um spacing.
```


Example 1-11 EOL Spacing Rules

- If you include the following routing layer rules in your LEF file:

SPACING 1.0 ; \#minimum spacing is $1.0 \mu \mathrm{~m}$
SPACING 1.2 ENDOFLINE 1.3 WITHIN 0.6;

LEF/DEF 5.7 Language Reference

LEF Syntax

Any EOL that is less than $1.3 \mu \mathrm{~m}$ wide requires spacing that is greater than or equal to $1.2 \mu \mathrm{~m}$ beyond the EOL, within $0.6 \mu \mathrm{~m}$ to either side. Figure 1-43 on page 116 includes examples of legal spacing for, and violations of, this rule.

Figure 1-43

a) No violation. Has $1.2 \mu \mathrm{~m}$ spacing.
b) Violation; has only
$1.0 \mu \mathrm{~m}$ spacing.
c) Violation; has $<1.2 \mu \mathrm{~m}$ spacing within $0.6 \mu \mathrm{~m}$ away.
d) No violation. Has $>=1.2 \mu \mathrm{~m}$ spacing within

$$
\text { (<) } 6 \mu \mathrm{~m} \text { away. }
$$

- If you include the following routing layer rules in your LEF file:

SPACING 1.0 ; \#minimum spacing is $1.0 \mu \mathrm{~m}$
SPACING 1.2 ENDOFLINE 1.3 WITHIN 0.6 PARALLELEDGE 1.1 WITHIN 0.5 ;
Any line that is less than $1.3 \mu \mathrm{~m}$ wide, with a parallel edge that is less than $1.1 \mu \mathrm{~m}$ away, and is within $0.5 \mu \mathrm{~m}$ of the EOL, requires spacing greater than or equal to $1.2 \mu \mathrm{~m}$ beyond the EOL, within $0.6 \mu \mathrm{~m}$ to either side of the EOL. Figure 1-44 on page 117 includes examples of legal spacing for, and violations of, this rule.

LEF Syntax

Figure 1-44

LEF/DEF 5.7 Language Reference

LEF Syntax

g) No violation. Has overlap on the left side, but no parallel edge.

■ The following routing layer rule creates an EOL spacing rule for two parallel edges:

```
SPACING 1.0 ; #minimum spacing is 1.0 \mum
SPACING 1.2 ENDOFLINE 1.3 WITHIN 0.6 PARALLELEDGE 1.1 WITHIN 0.5 TWOEDGES ;
```


Example 1-12 Same Net Spacing Rule

If you include the following routing layer rules in your LEF file, same-net power or ground nets can use $1.0 \mu \mathrm{~m}$ spacing, even if they are $2 \mu \mathrm{~m}$ to $5 \mu \mathrm{~m}$ wide, as shown in Figure 1-45 on page 119:

```
LAYER M1
TYPE ROUTING ;
SPACING 1.0 ; #min spacing is 1.0
SPACING 1.5 RANGE 2.0 5.0 ; #need 1.5 spacing for 2 to 5 \mum wide wires
SPACING 1.0 SAMENET PGONLY ;
```


LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-45

a) Okay if both wires are the same net and are either a power or ground net.

b) Okay if both wires are the same net and are either a power or ground net.

Example 1-13 Notch Length Spacing Rule

Figure 1-46 on page 120 illustrates the following routing layer rules:

```
SPACING 0.10 ;
SPACING 0.12 NOTCHLENGTH 0.15 ;
```


LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-46 Notch Length Rule Definitions

a) Illustration of notch spacing rule.

c) Violation

b) Okay; notchLength is not <0.15.

d) Violation

Example 1-14 End Of Notch Width Spacing Rule

If you include the following routing layer rules in your LEF file, the notch metal at the bottom end of a U-shaped notch must have spacing that is greater than or equal to $0.14 \mu \mathrm{~m}$, if the notch metal has a width that is less than $0.15 \mu \mathrm{~m}$, notch spacing that is less than or equal to $0.16 \mu \mathrm{~m}$, and notch length that is greater than or equal to $0.08 \mu \mathrm{~m}$. See Figure 1-47 on page 121 for different layout examples for these rules.

```
SPACING 0.10 ; #default spacing
SPACING 0.14 ENDOFNOTCHWIDTH 0.15 NOTCHSPACING 0.16 NOTCHLENGTH 0.08 ;
```


LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-47 End Of Notch Width Rule Definitions

a) ENDOFNOTCHWIDTH rule definitions. The gray box shows where extra space is required.

c) Okay. No overlap with notch above; therefore only default spacing of 0.10 required.

e) Violation. Notch metal width is <0.15 for part of the overlap; therefore 0.14 spacing is required.

LEF/DEF 5.7 Language Reference

LEF Syntax

SPACINGTABLE

Specifies the spacing tables to use for wiring on the layer. You can specify only one parallel run length and one influence spacing table for a layer. For information on and examples of using spacing tables, see "Using Spacing Tables" on page 123.
Note: You cannot mix SPACING rules and SPACINGTABLE rules inside a single LAYER statement. You must specify either SPACING statements or SPACINGTABLE statements for a single routing layer, but not both.
The syntax for describing spacing tables is defined as follows:

```
[SPACINGTABLE
    PARALLELRUNLENGTH {length} ...
        {WIDTH width {spacing} ...}... ;
        [SPACINGTABLE
            INFLUENCE {WIDTH width WITHIN distance
                SPACING spacing} ... ;]
    | TWOWIDTHS {WIDTH width [PRL runLength]
            {spacing} ...} ... ;
;]
PARALLELRUNLENGTH {length} ...
    {WIDTH width {spacing} ...}
```

Specifies the maximum parallel run length between two objects, in microns. If the maximum width of the two objects is greater than width, and the parallel run length is greater than length, then the spacing between the objects must be greater than or equal to spacing. The first spacing value is the minimum spacing for a given width, even if the PRL value is not met.

You must specify length, width, and spacing values in increasing order.
Type: Float, specified in microns (for all values)
TWOWIDTHS \{WIDTH width [PRL runLength] \{spacing\} ...\}
Creates a table in which the spacing between two objects depends on the widths of both objects (instead of just the widest width). Optionally, it also can depend on the parallel run length between the two objects (PRL). For more information, see "Two-Width Spacing Tables."

The first width value should be 0 without an accompanied run length definition.
Type: Float, specified in microns (for all values)
INFLUENCE \{WIDTH width WITHIN distance SPACING spacing ...\}

LEF/DEF 5.7 Language Reference
 LEF Syntax

Creates a table that enforces wide wire spacing rules between nearby perpendicular wires. If an object has a width that is greater than width, and is located less than distance from two perpendicular wires, then the spacing between the perpendicular wires must be greater than or equal to spacing.

You must specify width values in increasing order.
Type: Float, specified in microns (for all values)
Note: You can only specify an INFLUENCE table if you specify a PARALLELRUNLENGTH table first.

Specifying SPACING Statements with SPACINGTABLE

You can specify some of the the SPACING statements with the SPACINGTABLE statements. For example, the following SPACING statements can be specified with SPACINGTABLE:

```
SPACING x SAMENET
```

\qquad

```
SPACING x ENDOFLINE
```

\qquad

``` ;
SPACING x NOTCHLENGTH ___ ;
SPACING x ENDOFNOTCHWIDTH
``` \(\qquad\)
``` ;
```

These SPACING checks are orthogonal to the SPACINGTABLE checks.
However, you cannot specify some SPACING statements (as given below) with
SPACINGTABLE as these would generate semantic errors.

```
SPACING x ;
```

SPACING x SPACING RANGE \qquad ;
SPACING x SPACING LENGTHTHRESHOLD \qquad ;

Using Spacing Tables

Some processes have complex width and length threshold rules. Instead of creating multiple SPACING rules with different LENGTHTHRESHOLD and RANGE statements, you can define the information in a spacing table.

For example, for Figure 1-48 on page 124, a typical 90nm DRC manual might have the following rules described:

Minimum spacing
Either width $>0.25 \mu \mathrm{~m}$ and parallel length $>0.50 \mu \mathrm{~m}$
Either width $>1.50 \mu \mathrm{~m}$ and parallel length $>0.50 \mu \mathrm{~m}$
$0.15 \mu \mathrm{~m}$ spacing
$0.20 \mu \mathrm{~m}$ spacing
$0.50 \mu \mathrm{~m}$ spacing

LEF/DEF 5.7 Language Reference

LEF Syntax

Either width $>3.00 \mu \mathrm{~m}$ and parallel length $>3.00 \mu \mathrm{~m}$
Either width $>5.00 \mu \mathrm{~m}$ and parallel length $>5.00 \mu \mathrm{~m}$
$1.00 \mu \mathrm{~m}$ spacing
$2.00 \mu \mathrm{~m}$ spacing

Figure 1-48

These rules translate into the following SPACINGTABLE PARALLELRUNLENGTH statement: LAYER metal1

SPACINGTABLE

PARALLELRUNLENGTH	0.00	0.50	3.00	5.00	
WIDTH 0.00	0.15	0.15	0.15	0.15	\#lengths must be increasing
WIDTH 0.25	0.15	0.20	0.20	0.20	\#max width>0.00
WIDTH 1.50	0.15	0.50	0.50	0.50	\#max width>0.25
WIDTH 3.00	0.15	0.50	1.00	1.00	\#max width>1.50
WIDTH 5.00	0.15	0.50	1.00	$2.00 ;$	\#max width>3.00
W					

END metal1
Using the SPACINGTABLE PARALLELRUNLENGTH statement, the rules can be described in the following way:

1. Find the maximum width of the two objects.

LEF/DEF 5.7 Language Reference

LEF Syntax

2. Find the lowest table row where the maximum width is greater than the table-row width value. The first row is used even if the maximum width is less than and equal to the tablerow width.
3. Find the right-most table column where the parallel run length is greater than the table PRL value. The first column spacing value is used even if the object's parallel run length is less than and equal to the table PRL value. The spacing value listed where the row and column intersect is the required spacing for that maximum width and parallel run length.

By definition, the width is the smaller dimension of the object (that is, the width of each object must be less than or equal to its length).

Influence Spacing Tables

Processes often require a second spacing table to enforce the wide wire spacing rules between nearby perpendicular wires, even if the wires are narrow. Figure 1-49 on page 126 illustrates this situation. Use the following SPACINGTABLE INFLUENCE syntax to describe this table:

SPACINGTABLE INFLUENCE
\{WIDTH width WITHIN distance SPACING spacing\} ... ;
If a wire has a width that is greater than width, and the distance between it and two other wires is less than distance, the other wires must be separated by spacing that is greater than or equal to spacing. Typically, the distance and spacing values are the same. Note that the distance halo extends horizontally, but not into the corners.

By definition, the width is the smaller dimension of the object (that is, the width is less than or equal to the length of the large wire).

LEF/DEF 5.7 Language Reference

Figure 1-49

The wide wire rules often match the larger width and spacing values in the SPACINGTABLE PARALLELRUNLENGTH values. The previously described rules translate into the following SPACINGTABLE INFLUENCE statement:

```
LAYER metal1
SPACINGTABLE INFLUENCE
    WIDTH 1.50 WITHIN 0.50 SPACING 0.50 #w>1.50, dist<0.50, needs sp>=0.50
    WIDTH 3.00 WITHIN 1.00 SPACING 1.00 #widths must be increasing
    WIDTH 5.00 WITHIN 2.00 SPACING 2.00 ;
```

END metal1

Two-Width Spacing Tables

You can create a table that enforces spacing rules that depends on the width of both objects instead of just the widest width, and optionally depends on the parallel run length between the two objects. You can use this table to replace existing SPACING .. . RANGE. . . RANGE rules to make it easier to read, and to include parallel run length effects in one common table. Use the following SPACINGTABLE TWOWIDTHS syntax to describe this table:

```
SPACINGTABLE
    TWOWIDTHS {WIDTH width [PRL runLength] {spacing} ... } ... ;
```


LEF/DEF 5.7 Language Reference

LEF Syntax

To find the required spacing, a 2-dimensional table is used that implicitly has the same widths (and optional parallel run lengths) for the row and column headings. There must be exactly as many spacing values in each WIDTH row as there are WIDTH rows. The width and runLength values must be the same or increasing from top to bottom in the table. The spacing values must be the same or increasing from left to right, and from top to bottom in the table.

Given two objects with width1, width2, and a parallel overlap of runLength, you find the spacing using the following method:

1. Find the last row where both width1 is greater than the table row width, and runLength is greater than the table row run length. If no table row run length exists, the runLength value is not checked for that row (only that width1 is greater than table row width is checked).
2. Find the right-most column where both width 2 is greater than table column width and runLength is greater than table column run length. If no table column run length exists, the runLength value is not checked for that column (only that width2 is greater than table column width is checked).
3. The intersection of the matching row and column gives the required spacing.

For example, assume a DRC manual has the following rules described:
Minimum spacing
Either width $>0.25 \mu \mathrm{~m}$ and parallel length $>0.0 \mu \mathrm{~m}$
Both width $>0.25 \mu \mathrm{~m}$ and parallel length $>0.0 \mu \mathrm{~m}$
Either width $>1.50 \mu \mathrm{~m}$ and parallel length $>1.50 \mu \mathrm{~m}$
Both width $>1.50 \mu \mathrm{~m}$ and parallel length $>1.50 \mu \mathrm{~m}$
Either width $>3.00 \mu \mathrm{~m}$ and parallel length $>3.00 \mu \mathrm{~m}$
Both width $>3.00 \mu \mathrm{~m}$ and parallel length $>3.00 \mu \mathrm{~m}$

The rules translate into the following SPACINGTABLE:

SPACINGTABLE	TWOWIDTHS				
\#	width=	0.00	0.25	1.50	3.0
\#	prl=	none	0.00	1.50	3.0
\#					
WITDH 0.00		0.15	0.20	0.50	1.00
WIDTH 0.25 PRL	0.0	0.20	0.25	0.50	1.00
WIDTH 1.50 PRL	1.50	0.50	0.50	0.60	1.00
WIDTH 3.00 PRL	3.00	1.00	1.00	1.00	1.20

LEF/DEF 5.7 Language Reference

LEF Syntax

Note that both width and parallel run length (if specified) must be exceeded to index into the row and column. Therefore, in this example:

If width1 $=0.25$, width2 $=0.25$, and prl $=0.0$, then spacing $=0.15$.
If width1 $=0.25$, width2 $=0.26$, and $\mathrm{prl}=0.0$, then spacing $=0.15$.
If width1 $=0.25$, width2 $=0.26$, and prl $=0.1$, then spacing $=0.20$.
If width1 $=0.26$, width2 $=0.26$, and prl $=0.1$, then spacing $=0.25$.

THICKNESS distance

Specifies the thickness of the interconnect.
Type: Float

TYPE ROUTING
Identifies the layer as a routable layer.
WIDTH defaultWidth
Specifies the default routing width to use for all regular wiring on the layer.
Type: Float
WIREEXTENSION value
Specifies the distance by which wires are extended at vias. You must specify a value that is more than half of the routing width.
Default: Wires are extended half of the routing width
Type: Float

Defining Routing Layer Properties to Create 32nm and 45nm Rules

You can include routing layer properties in your LEF file to create 32 nm and 45 nm rules that currently are not supported by existing LEF syntax. The properties are specified inside the LAYER ROUTING statements, where they can be seen with other rules.

Before you can reference them, properties must be defined at the beginning of the LEF file in the PROPERTYDEFINITIONS statement, immediately before the first LAYER statement.

- Properties belong to the LAYER object and have a type of STRING.
- Property strings cannot have new lines or carriage returns inside the string definitions (that is, between the double quotation marks). This means that the entire string definition for a property must be on the same line.
- The property names used for these rules all start with LEF58_.

LEF/DEF 5.7 Language Reference LEF Syntax

All properties (with the exception of MAXFLOATINGAREA and MAXVIASTACK) use the following syntax within the LEF PROPERTYDEFINITIONS statement:

```
PROPERTYDEFINITIONS
    LAYER propName STRING ["stringValue"] ;
END PROPERTYDEFINITIONS
```

The property definitions for the routing layer properties are as follows:

```
PROPERTYDEFINITIONS
    LIBRARY LEF58_MAXFLOATINGAREA STRING ;
    LIBRARY LEF58_MAXVIASTACK STRING ;
    LAYER LEF58_TYPE STRING ;
    LAYER LEF58_FILLTOFILLSPACING STRING ;
    LAYER LEF58_OPPOSITEEOLSPACING STRING ;
    LAYER LEF58_BACKSIDE STRING ;
    LAYER LEF58_MINSTEP STRING ;
    LAYER LEF58_MINIMUMCUT STRING ;
    LAYER LEF58_EOLEXTENSIONSPACING STRING ;
    LAYER LEF58_AREA STRING ;
    LAYER LEF58_SPACINGTABLE STRING;
    LAYER LEF58_SPACING STRING ;
END PROPERTYDEFINITIONS
```


EOL Spacing Rule

An EOL spacing rule ensures that Optical Proximity Correction (OPC) can be performed without interference between the OPC shapes added at the EOLs.

You can create an EOL spacing rule using the following property definition:

```
PROPERTY LEF58_SPACING
    "SPACING eolSpace ENDOFLINE eolWidth [OPPOSITEWIDTH oppositeWidth]
                WITHIN eolWithin
        [ENDTOEND endToEndSpace [OTHERENDWIDTH otherEndWidth]]
        [MAXLENGTH maxLength | MINLENGTH minLength [TWOSIDES]]
        [EQUALRECTWIDTH]
        [PARALLELEDGE [SUBTRACTEOLWIDTH] parSpace WITHIN parWithin
            [MINLENGTH minLength] [TWOEDGES]]
        [ENCLOSECUT [BELOW | ABOVE] encloseDist CUTSPACING cutToMetalSpace]
    ;..." ;
```

Where:

LEF/DEF 5.7 Language Reference

LEF Syntax

SPACING (including ENDOFLINE and WITHIN), PARALLELEDGE, and TWOEDGES are the same as the existing LEF syntax.

OPPOSITEWIDTH oppositeWidth

Indicates that the rule applies only if a wire beyond the end of the line edge has a perpendicular span to the EOL edge less than oppositewidth.
Type: Float for all parameters, specified in microns
ENDTOEND endToEndSpace
Specifies two EOL spacings. For an end-to-end situation when the parallel run length is greater than 0 between two EOL edges, with eolWithin extension on the EOL edge being checked, endToEndSpace is applied. Otherwise, eolSpace is applied to the end-to-line situation.

OTHERENDWIDTH otherEndWidth
Indicates that the rule only applies if the width of the other wire is less than the otherEndWidth.

MAXLENGTH maxLength
Indicates that if the EOL is more than maxLength along both sides, the rule does not apply. (See Figure 1-55 on page 137.) Type: Float, specified in microns

MINLENGTH minLength
Indicates that if the EOL length is less than minLength along both sides, the rule does not apply.
Type: Float, specified in microns
TWOSIDES

EQUALRECTWIDTH Indicates that if the length of the EOL edge is larger than the wire width, the rule does not apply. If there are multiple EOL statements with the EQUALRECTWIDTH keyword for a given layer, they must all have the EQUALRECTWIDTH keyword.

PARALLELEDGE [SUBTRACTEOLWIDTH] parspace WITHIN parwithin

LEF/DEF 5.7 Language Reference

LEF Syntax

Indicates that the EOL rule applies only if there is a paralleledge less than parSpace away that is also less than parWithin from the end of the wire.

SUBTRACTEOLWIDTH Indicates that the parSpace value should be subtracted by the width of the EOL edge to define the distance required to search for a parallel neighbor edge.

MINLENGTH minLength [TWOEDGES]
Indicates that if the EOL length is less than minLength, then any parallel-edge is ignored, and the rule does not apply. If TWOEDGES is specified, the EOL rule applies only if there are two parallel edges on each side of the EOL edge that meet the PARALLELEDGE.
Type: Float, specified in microns
ENCLOSECUT [BELOW
ABOVE] encloseDist CUTSPACING
cutToMetalSpace
Indicates that the rule only applies if there is a cut below or above this metal that is less than encloseDist away from the EOL edge, and the the cut-edge to metal-edge space beyond the EOL edge is less than cutTometalSpace. If there is more than one cut connecting the same metal shapes above and below, only one cut needs to meet this rule. (See Figure 154 on page 136, and Figure 1-56 on page 138.)
Type: Float, specified in microns (for both values)
If you specify BeLow, encloseDist and cutToMetalSpace are checked for the cut layer below this routing layer. If you specify $A B O V E$, they are checked for the cut layer above this routing layer. If you specify neither, the rule applies to both adjacent cut layers.

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-50 EOL Spacing Rule Illustrations

```
    PROPERTY LEF58_SPACING "SPACING 0.12 ENDOFLINE 0.1
```

OPPOSITEWIDTH 0.08 WITHIN 0.05 MINLENGTH 0.06 ;" ;

a) Violation, the length on the right side $>=0.06$, and the opposite wire width <0.08. OK if TWOSIDES is used

c) OK, opposite wire width $>=0.08$, and the rule does not apply

d) Violation, swapping the wire width of the wires becomes a violation

b) OK, the opposite wire has a perpendicular span (to the EOL edge) of $0.15>=0.08$

e) Violation, if part of the opposite wire width <0.08 (the left segment), it is a violation

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-51 EOL Spacing Rule Illustrations

```
PROPERTY LEF58_SPACING "SPACING 0.15 ENDOFLINE 0.1 WITHIN 0.05
```

PARALLELEDGE SUBTRACTEOLWIDTH 0.16 WITHIN 0.03 ;" ;

a) Violation, the top wire needs to be 0.15 away to avoid the EOL violation

b) OK, the combined EOL wire width \& the gap of the parallel edge is 0.17 ($>=0.16$), and the EOL rule does not apply

d) Okay, the parallel edge is searched by extending the outline of the wire dynamically based on the wire width. Hence, 0.1 (0.160.06) on top, and 0.01 (0.16-0.15) on bottom.

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-52 EOL Spacing Rule Illustrations

```
PROPERTY LEF58_SPACING "SPACING 0.10 ENDOFLINE 0.15 WITHIN 0.05
ENDTOEND 0.12 MINLENGTH 0.11 TWOSIDES ;" ;
```


a) OK, the length of the left EOL side <0.11, and the rule does not apply. Violation without TWOSIDES

b) Violation, the length of both of the sides $>=0.11$. and EOL spacing < 0.1

c) OK, the right edge is not a EOL edge, and 0.1 is needed

d) Violation, this is an end-to-end situation, and EOL spacing <0.12

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-53

e) OK, it fulfills the end-to-line EOL spacing of 0.1 , and the 2 EOL edges do not have common parallel run length such that end-to-end EOL spacing is ignored.

f) Violation, it does not satisfy end-toend EOL spacing

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-54 EOL Spacing Rule Illustrations

a) Basic EOL rule: EOL width < eolWidth requires >=eolSpace beyond EOL edge to opposite edges to either side by <eolwithin distance (gray box).

c) EOL with ENCLOSECUT rule is triggered if EOL edge has a cut edge that has
<encloseDist enclosure, and the cut edge is c cutToMetalSpace
 needed.
b) EOL with PARALLELEDGE is triggered only if an EOL side also has a parallel edge < parspace and <eolwithin above, or < parWithin below, EOL edge (gray box). If minLength is given, and the EOL side is < minLength, the parallel edge does not matter, and no extra space is needed.

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-55 Examples of EOL Spacing Rule with MaxLength and MinLength

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-56 Example of More Complex EOL Spacing Rule

PROPERTY LEF58_SPACING
"SPACING 0.15 ENDOFLINE 0.10 WITHIN 0.05 PARALLELEDGE 0.10
WITHIN 0.07 MINLENGTH 0.10 ENCLOSECUT BELOW 0.06 CUTSPACING 0.16 ;" ;

a) No violation. No parallel edge inside gray box (parspace < 0.10 , eolWithin <0.05, and parWithin < 0.07), so do not check eolSpace.

c) No violation. Meets min length, has parallel edge, but cut enclosure encloseDist >= 0.06, so do not check eolSpace.

b) Violation. Meets min length, has parallel edge, cut enclosure encloseDist < 0.06, cutToMetalSpace <0.16, so needs 0.15 eolSpace.

d) No violation. Meets min length, has parallel edge, cut enclosure encloseDist < 0.06, but cutToMetalSpace >= 0.16, so do not check eolspace.

LEF/DEF 5.7 Language Reference

LEF Syntax

e) No violation. Does not meet minLength >=0.06, so do not check eolSpace.

f) Violation. The minLength $=0.08$ means no left parallel edge, but the right side has a parallel edge, so needs 0.15 eol Space or cutToMetalSpace >=0.16.

Figure 1-57 Example of EOL Spacing Rule with EQUALRECTWIDTH

a) No violation. The 0.24 edge is not a valid EOL edge with the EQUALRECTWIDTH keyword since its length is not the same as the wire width of 0.1 .

b) Violation. The 0.1 edge is a valid EOL edge, even with the EQUALRECTWIDTH keyword, and EOL spacing is <0.15.

PROPERTY LEF58_SPACING
"SPACING 0.15 ENDOFLINE 0.25 WITHIN 0.10 EQUALRECTWIDTH;

Type Rule

A type rule can be used to further classify a routing layer.

LEF/DEF 5.7 Language Reference

LEF Syntax

You can create a type rule using the following property definition:

```
TYPE ROUTING;
    PROPERTY LEF58_TYPE
        "TYPE {POLYRŌUTING | MIMCAP};" ;
```

Where:

POLYROUTING Indicates that the polysilicon layer should be considered as a routing layer. Polysilicon layers provide extra routing resources for designs with limited metal routing layers.

MIMCAP Indicates that the layer is a mimcap layer. A mimcap layer is a metal layer that is not to be used as a routing layer.

Fill to Fill Spacing Rule

A fill to fill spacing rule can be used to define spacing between metal fills.
You can create a fill to fill spacing rule using the following property definition:

```
PROPERTY LEF58_FILLTOFILLSPACING
    "FILLTOFILLSPACING spacing ;" ;
```

Where:

FILLTOFILLSPACING Specifies the spacing between metal fills.
Type: Float, specified in microns

Opposite EOL Spacing Rule

An opposite EOL spacing rule can be used to define spacing on a wire with two neighbor wires on the opposite edges.

You can create an opposite EOL spacing rule using the following property definition:

```
PROPERTY LEF58_OPPOSITEEOLSPACING
    "OPPOSITEEOLSPACING WIDTH width ;" ;
        ENDWIDTH eolWidth [MINLENGTH minLength]
        [JOINTWIDTH jointWidth] JOINTLENGTH spanLength
            [JOINTTOEDGEEND jointToEdgeEndLength]
        {[EXCEPTEDGELENGTH edgeLength [PRL maxPRL]]}...
        ENDTOEND endSpacing endSpacing
        ENDTOJOINT endSpacing jointSpacing
```


LEF/DEF 5.7 Language Reference

LEF Syntax

```
JOINTTOEND jointSpacing endSpacing
JOINTTOJOINT jointSpacing jointSpacing ;
    ;" ;
```

Where:
\(\left.$$
\begin{array}{ll}\text { OPPOSITEEOLSPACING } & \begin{array}{l}\text { Defines the spacing requirements on a wire with two neighbor } \\
\text { wires on opposite edges that have a projected parallel run } \\
\text { length greater than } 0 \text {. The neighbor wires are classified either }\end{array}
$$

as a EOL or a T or L joint.\end{array}\right]\)| Specifies that the rule applies only if the width of the middle |
| :--- |
| wire is less than width. |
| Type: Float, specified in microns |

JOINTLENGTH spanLength

LEF/DEF 5.7 Language Reference

LEF Syntax

Specifies that the neighbor wire end edge is a joint if it has width less than eolwidth and span greater than spanLength, and it is not an EOL, that is, it is either a T or L joint pattern.
Type: Float, specified in microns
\{EXCEPTEDGELENGTH edgeLength [PRL maxPRL]\}...
Specifies that the rule does not apply if both the end or joint neighbor edges have a length greater than and equal to edgeLength and projected parallel run length is less than and equal to maxPRL, if PRL is also specified. At the most, two such statements can be specified and supported.
Type: Float, specified in microns
ENDTOEND endSpacing endSpacing
ENDTOJOINT endSpacing jointSpacing
JOINTTOEND jointSpacing endSpacing
JOINTTOJOINT jointSpacing jointSpacing
Specifies the spacing between the neighbor edges to the middle wire. There are four groups of two spacings. The keywords define the category of the neighbors, either as an end or a joint. For example, in the case of EndTOJOInt, the first spacing, endSpacing, specifies the minimum spacing between the end neighbor edge to the middle wire, and the second spacing, jointSpacing, specifies the minimum spacing between the joint neighbor edge to the middle wire. To satisfy the rule, for both end/joint neighbors, either both the neighbor spacings must be greater than and equal to the minimum of the specified spacings, or at least one neighbor spacing must be greater than and equal to the maximum of the specified spacings in EndTOEND or Jointtojoint. For end and joint neighbors, both Endtojoint and Jointotend statements must be fulfilled individually. To fulfill one statement either joint spacing greater than or equal to jointSpacing, or end spacing greater than or equal to endSpacing, must be true.
Type: Float, specified in microns (for all values)

LEF/DEF 5.7 Language Reference

 LEF Syntax
Examples

■ The following example shows END and JOINT with ENDWIDTH 0.1 and JOINTLENGTH 0.15 :

Figure 1-58 Illustration of END and JOINT

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-59 Illustration of OPPOSITEEOLSPACING

```
PROPERTY LEF58_OPPOSITEEOLSPACING
    WIDTH 0.08
    ENDWIDTH 0.1
    JOINTLENGTH 0.15
    EXCEPTEDGELENGTH 0.08 PRL 0.03
    ENDTOEND 0.11 0.13
    ENDTOJOINT 0.12 0.10
    JOINTTOEND 0.12 0.10
    JOINTTOJOINT 0.12 0.16;
```


a) Okay, both of the neighbor spacings $>=0.11$ (minimum of the spacings)

c) Violation, left spacing < 0.11 to trigger the rule

b) Okay, right spacing $>=0.13$ (maximum of the spacings)

d) Okay, no projected parallel run length

LEF/DEF 5.7 Language Reference

LEF Syntax

e) Okay, the exception conditions are met

f) Violation, ENDTOJOINT is fine, but JOINTTOEND is bad

Backside Rule

A backside rule can be used to specify that the routing layer is used on the underside of the die.

You can create a backside rule using the following property definition:

```
PROPERTY LEF58_BACKSIDE
    "BACKSIDE ;" ;
```

Where:

Indicates that the routing layer is a backside routing layer.

Perpendicular EOL Spacing Rule

LEF/DEF 5.7 Language Reference

LEF Syntax

Perpendicular EOL spacing rules can be specified to allow a different spacing rule for perpendicular edges versus opposite edges.

You can create a perpendicular EOL spacing rule using the following property definition:

```
PROPERTY LEF58_SPACING
    "SPACING eolSpace EOLPERPENDICULAR eolWidth perWidth ;" ;
```

Where:

SPACING eolSpace EOLPERPENDICULAR eolWidth perWidth Indicates that an EOL edge with a width that is less than eolWidth requires spacing greater than or equal to eolSpace beyond the EOL, to a perpendicular edge with a width that is less than perwidth. Typically, eolSpace is slightly larger than the minimum allowed spacing on this layer. Type: Float, specified in microns (for all values)

Examples

Figure 1-60 Illustration of Perpendicular EOL Spacing Parameters

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-61 Example of Perpendicular EOL Spacing Rule

PROPERTY LEF58_SPACING "SPACING 1.2 EOLPERPENDICULAR 1.1 1.5 ;";

a) Violation. EOL is < 1.1 wide, and has a perpendicular edge <1.5 wide that is < 1.2 distance from EOL edge.

c) Violation. EOL is <1.1 wide, and has a perpendicular edge <1.5 wide that is <1.2 distance from EOL edge.

b) No violation. Perpendicular edge is not "seen" by EOL edge, so it is not checked.

d) No violation. Perpendicular edge is not "seen" by EOL edge, so it is not checked.

LEF/DEF 5.7 Language Reference

LEF Syntax

Maximum Floating Area Rule

Maximum area rules exist for floating metal shapes that are not connected to a diffusion or polysilicon gate. Similar to process antenna rules, maximum floating area rules apply only to the current layer and any lower layers (that is, all layers that have been fabricated up to the layer of interest). Maximum floating area rules can be used to avoid shorts between floating and non-floating metal wires that are caused by arcing due to charge buildup during processing steps.

You can create a global maximum floating area rule using the following PROPERTYDEFINITIONS statement:

```
PROPERTYDEFINITIONS
LIBRARY LEF58 MAXFLOATINGAREA STRING
    "MAXFLOATING\overline{A}REA maxArea
        {SINGLELAYER | CONNECTED | ALLCONNECTED} minRoutingLayer maxRoutingLayer
        [[LAYERS minRoutingLayer maxRoutingLayer]
            SPACING minSpacing [PARSPACING minParSpacing minParallelLength ...]] ...
;" ;
END PROPERTYDEFINITIONS
```


LEF/DEF 5.7 Language Reference

LEF Syntax

Where:

MAXFLOATINGAREA maxArea
Indicates that floating metal shapes must have a total area that is less than or equal to maxArea.
Type: Float, specified in units of microns squared
Floating metal is defined as metal on the current layer that cannot trace a path to a diffusion connection or polysilicon gate, using only same-layer or lower-layer metal connections. Grounded metal is defined as metal that can connect to a diffusion connection or polysilicon gate using only same-layer or lower-layer connections.

Note: The MAXFLOATINGAREA rule depends on the existing LEF MACRO PIN ANTENNADIFFAREA and ANTENNAGATEAREA statements to indicate which pins are connected to diffusion or polysilicon gates.

You can have two MAXFLOATINGAREA statements: one for SINGLELAYER, and one for CONNECTED or ALLCONNECTED.

SINGLELAYER minRoutingLayer maxRoutingLayer
Indicates the rule applies to each individual floating metal shape on any routing layer between minRoutingLayer and maxRoutingLayer inclusive. Each shape must have an area that is less than or equal to maxArea, or meet the minimum spacing to other grounded shapes. The names you specify for minRoutingLayer and maxRoutingLayer must be two previously defined LEF routing layers.

CONNECTED minRoutingLayer maxRoutingLayer
Indicates that the rule applies to the area of floating metal shapes connected together on each layer between minRoutingLayer and maxRoutingLayer inclusive. The connected area on a current layer must be less than or equal to maxArea, or meet the minimum spacing to other grounded shapes on this layer and all lower connected layer shapes. The names you specify for minRoutingLayer and maxRoutingLayer must be two previously defined LEF routing layers.

ALLCONNECTED minRoutingLayer maxRoutingLayer

LEF/DEF 5.7 Language Reference

LEF Syntax

Indicates that the rule applies to the connected area of floating metal shapes connected together on each layer between minRoutingLayer and maxRoutingLayer inclusive. The total connected area on the current and lower layers must be less than or equal to maxArea, or meet the minimum spacing to other grounded shapes on this layer and all lower-connected layer shapes. The names you specify for minRoutingLayer and maxRout ingLayer must be two previously defined LEF routing layers.

LAYERS minRoutingLayer maxRoutingLayer
Indicates that layers between minRoutingLayer and maxRoutingLayer inclusive must meet the specified SPACING rules. The names you specify for minRoutingLayer and maxRoutingLayer must be previously defined LEF routing layers, and can be the same layer.

SPACING minSpacing Indicates that if the current layer floating metal has an area that is greater than maxArea, the floating metal on the current layer (and all connected lower layers with CONNECTED or ALLCONNECTED) must be greater than or equal to minSpacing distance from grounded metal for all layers that have MAXFLOATINGAREA rules. If you define SPACING for the same layer more than once (due to overlapping LAYERS layer ranges) the last SPACING value overwrites the previous values. Type: Float, specified in microns

PARSPACING minParSpacing minParallelLength ...

LEF/DEF 5.7 Language Reference

LEF Syntax

Indicates that floating metal that is greater than or equal to minParSpacing from grounded metal must have greater than or equal to minParallellength at the minimum spacing distance. If more than one pair of values is given, the smallest spacing value that matches is used. (See Example 2.) Type: Float, specified in microns (for both values)
The minParSpacing values must be defined in decreasing value, and be smaller than SPACING minSpacing. The intent of the PARSPACING rule is to spread out the charge build up on floating shapes to reduce the chance of spark; therefore, smaller spacing values require larger parallel lengths in order to be legal.

If you define PARSPACING for the same layer more than once (due to overlapping LAYERS layer ranges) the last PARSPACING values overwrite the previous values.

Definition of minSpace and minParallellength for MAXFLOATINGAREA rule.
minParspace

Maximum Floating Area Rule Examples

- Example 1

Assume the following rule exists:

```
PROPERTYDEFINITIONS
    LIBRARY LEF58_MAXFLOATINGAREA STRING
        "MAXFLOATIN\overline{GAREA 1000 SINGLELAYER m1 m6 SPACING 1.0 ;" ;}
END PROPERTYDEFINITIONS
```

Every shape on layers $m 1$ to $m 6$ with maximum floating area greater than $1000 \mu \mathrm{~m}^{2}$ must have spacing of greater than or equal to $1.0 \mu \mathrm{~m}$ to any grounded metal.

- Example 2

Assume the following rule exists:

LEF/DEF 5.7 Language Reference

LEF Syntax

```
PROPERTYDEFINITIONS
    LIBRARY LEF58 MAXFLOATINGAREA STRING
        "MAXFLOATIN\overline{G}AREA 1000 CONNECTED m1 m6
            LAYERS m1 m1 SPACING 1.0 PARSPACING 0.5 0.8 0.2 2.0
            LAYERS m2 m6 SPACING 0.6 PARSPACING 0.3 0.9 ;" ;
END PROPERTYDEFINITIONS
```

For layer $m 1$, any floating metal must be either greater than or equal to $1.0 \mu \mathrm{~m}$ distance from grounded metal, or:

- If it is greater than or equal to $0.5 \mu \mathrm{~m}$ distance away, there must be at least $0.8 \mu \mathrm{~m}$ of parallel length at the minimum spacing.
- If it is greater than or equal to $0.2 \mu \mathrm{~m}$ distance away, there must be at least $2.0 \mu \mathrm{~m}$ of parallel length at the minimum spacing.

Spacing that is less than $0.2 \mu \mathrm{~m}$ is not allowed.
Any floating $m 2$ through $m 6$ shapes with area that is greater than $1000 \mu \mathrm{~m}^{2}$, must either be greater than or equal to $0.6 \mu \mathrm{~m}$ distance from grounded metal, or they must be greater than or equal to $0.3 \mu \mathrm{~m}$ distance away with greater than or equal to $0.9 \mu \mathrm{~m}$ of parallel length.

See Figure 1-62 on page 153 for different layout examples using this rule.

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-62

a) m 2 violation, m 1 okay. m 2 did not meet the spacing rule (0.5 $\mu \mathrm{m}$ spacing requires $0.9 \mu \mathrm{~m}$ parallel length). m 1 met the 1.0 $\mu \mathrm{m}$ spacing rule.

c) Violation for m1. m2 spacing is okay, but m 2 floating area is connected to m 1 floating area; therefore m 1 must meet the required parallel length of 2.0 $\mu \mathrm{m}$ for minSpacing $>=0.2 \mu \mathrm{~m}$.
d) Violation for m1. m2 spacing is okay, but total m 2 floating area is $>1000 \mu \mathrm{~m}^{2}$ connected to m 1 floating area; therefore m 1 must meet the required parallel length of $2.0 \mu \mathrm{~m}$ for $\mathrm{minSpacing}>=0.2$ $\mu \mathrm{m}$.
e) Okay. m 1 area $<1000 \mu \mathrm{~m}^{2}$, therefore no spacing required. m 2 area is $<1000 \mu \mathrm{~m}^{2}$; therefore no spacing required, and m2 has no effect on m 1 spacing. If ALLCONNECTED was present, then this is a violation ($\mathrm{m} 1+\mathrm{m} 2$ area $>1000 \mu \mathrm{~m}^{2}$).

LEF/DEF 5.7 Language Reference

Maximum Via Stack Rule

You can create a maximum via stack rule to require a series of stacked vias to all be multicut vias. A via is considered to be in a stack with other vias if the cuts of all the vias partially overlap (the boolean AND of the cut layer shapes from every via in the stack is not empty). A multi-cut via interrupts the stack, unless the NOSINGLE keyword is specified.

You can define a maximum via stack rule using the following PROPERTYDEFINITIONS statement:

```
PROPERTYDEFINITIONS
LIBRARY LEF58 MAXVIASTACK STRING
    "MAXVIASTACK maxStack [NOSINGLE] [RANGE bottomLayer topLayer] ;" ;
END PROPERTYDEFINITIONS
```

Where:

MAXSTACK maxStack

Specifies the maximum number of single-cut vias that are
allowed on top of each other (that is, in one continuous stack).
Type: Integer

RANGE bottomLayer topLayer

Specifies a range of routing layers for which the maximum stacked via rule applies. If you do not specify a range, the maxStack value applies for all routing layers. The bot tomLayer and topLayer values are routing layer names. The specified topLayer layer must be above the layer specified for bottomLayer.

NOSINGLE
Indicates that any single-cut via in a stack that is larger than maxStack is a violation, and multi-cut vias do not interrupt a stack. Therefore, any stack larger than maxStack must consist of all multi-cut vias.

Maximum Via Stack Rule Examples

- If the following rule exists:

```
PROPERTYDEFINITIONS
    LIBRARY LEF58 MAXVIASTACK STRING
        "MAXVIASTAC\overline{K}}3\mathrm{ RANGE m1 m6 ;" ;
END PROPERTYDEFINITIONS
```

Only three single-cut vias can be stacked between layers $m 1$ and $m 6$. See Figure 1-63 on page 155 for different layout examples using this rule.

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-63 Max Via Stack Rule Examples

```
Library LEF58_MAXVIASTACK STRING "MAXVIASTACK 3 RANGE m1 m6 ;" ;
Library LEF58_MAXVIASTACK STRING "MAXVIASTACK 3 NOSINGLE RANGE
m1 m6 ;" ;
```


c) 1-cut max
stack $=1$, so default is okay. For NOSINGLE, max-stack $=5$, so violation.

d) 1-cut maxstack $=3$, so default is okay. For nosingle, max-stack $=5$, so violation.

e) 1-cut maxstack $=1$, so default is okay. For NoSINGLE, max-stack $=3$ (see arrow), so okay.

Minimum Area Rule

In some cases, it is necessary to allow a smaller minimum area for "simple rectangles" and simple polygon shapes, but require a larger minimum area for complex polygons. This is done with multiple AREA statements.

You can define a minimum area rule that requires a larger area

1. When all the edges of the polygon are short
or
2. If a minimum-sized rectangle cannot fit inside the polygon.

LEF/DEF 5.7 Language Reference

LEF Syntax

You can also combine the two into one statement, in which case the larger area is required if all the edges are short and a minimum-sized rectangle cannot fit inside the polygon.

You can create a minimum area rule using the following property definition:

```
PROPERTY LEF58_AREA
    "AREA minArea
    [[EXCEPTMINWIDTH minWidth]
    | [EXCEPTEDGELENGTH minLength]
    [EXCEPTMINSIZE minWidth minLength]
    ]
    ;..." ;
```

Where:
AREA is the same as the existing AREA LEF syntax.

EXCEPTMINWIDTH minWidth

Specifies that the rule does not apply if the width of a wire is greater than or equal to the minWidth.
Type: Float, specified in microns

EXCEPTEDGELENGTH minLength

Indicates that the minArea rule applies for a given polygon except if at least one edge length is greater than or equal to minLength.
Type: Float, specified in microns
EXCEPTMINSIZE minWidth minLength
Indicates the minArea rule applies for a given polygon except if a minimum-sized rectangle of dimensions minWdith minLength can fit inside the polygon.
Type: Float, specified in microns (for both values)

Minimum Area Rule Examples

- If you have the following AREA definition in your routing layer statement:

AREA 0.4 ;
All polygons on the layer must have a minimum area of $0.4 \mu \mathrm{~m}$.

- If the following minimum area rule exists:

PROPERTY LEF58_AREA "AREA 0.6 EXCEPTEDGELENGTH 0.5 ;" ;

LEF/DEF 5.7 Language Reference

LEF Syntax

All polygons on the layer must have a minimum area of $0.6 \mu \mathrm{~m}$, except if a polygon has at least one edge that is greater than or equal to $0.5 \mu \mathrm{~m}$.

■ If the following minimum area rule exists:

```
PROPERTY LEF58_AREA
    "AREA 0.6 EX\overline{CEPTEDGELENGTH 0.5 EXCEPTMINSIZE 0.1 0.5 ;" ;}
```

Any polygon on the layer must have a minimum area of $0.6 \mu \mathrm{~m}$ when neither of the following conditions hold:

- The polygon has at least one edge that is greater than or equal to $0.5 \mu \mathrm{~m}$
- A rectangle of size 0.1 m by $0.5 \mu \mathrm{~m}$ can fit inside the polygon

If the following minimum area rule exists:

```
AREA 0.1 ;
PROPERTY LEF58 AREA
    "AREA 0.15 EXCEPTMINWIDTH 0.05 ;" ;
```

All polygons with any width less than $0.05 \mu \mathrm{~m}$ must have a minimum area of $0.15 \mu \mathrm{~m}^{2}$. Otherwise, a minimum area of $0.1 \mu \mathrm{~m}^{2}$ is needed.

Minimum Cut Rule

Minimum cut rules exist for thin wires connected to a wide wire or pin.
You can define a minimum cut rule using the following property definition:

```
PROPERTY LEF58_MINIMUMCUT
    "MINIMUMCUT numCuts WIDTH width [WITHIN cutDistance]
        [FROMABOVE | FROMBELOW]
            [LENGTH length WITHIN distance
            |AREA area [WITHIN distance]
            ] ;..." ;
```

All other keywords are the same as the existing LEF routing layer minImumcut syntax. Where:

```
AREA area [WITHIN distance]
```


LEF/DEF 5.7 Language Reference

LEF Syntax

Applies the minimum cut rule when the wide object has a width that is greater than width, and an area that is greater than area.

The area of a polygon is determined by a process in which the polygon is shrunk by an amount equal to width/2, then grown by an amount equal to width/2. The resulting polygon at the connection location is used for area comparison. If the connection is made at a thin wire (width less than and equal to width) that connects to the wide object, the biggest remaining neighbor should be checked individually with their own areas. If it is followed by a WITHIN distance syntax, the within distance is measured from the edges of the remaining neighbors.

Note: You can specify either AREA WITHIN or LENGTH WITHIN in a routing layer.

If WITHIN cutDistance is absent, only cuts belonging to the same via are considered as multiple cuts.

If width is less than width of the default routing wire is used along with the AREA keyword, the minimum cut requirement on the routing vias can vary depending on the area of the routing wire on the layer. This should be used cautiously. A small area can result in longer routing run times, and more DRC violations.

WITHIN cutDistance
Indicates that the rule applies for thin wires directly connected to a wide object, if the cuts on the thin wire are less than distance from the wide object. If AREA and WITHIN are defined, this rule only checks the thin wire connected to a wide wire; it does not check the wide wire itself. A separate MINIMUMCUT numCuts WIDTH width statement without AREA and WITHIN is required for any wide wire minimum cut rule.
Type: Float, specified in microns
Note: You can define either AREA WITHIN or LENGTH WITHIN in a routing layer.

Minimum Cut Rule Examples

- The following minimum cut rule indicates that vias with 2 cuts (placed at a distance less than $0.05 \mu \mathrm{~m}$ apart) are required, if the wire has a width greater than $0.09 \mu \mathrm{~m}$, an area

LEF/DEF 5.7 Language Reference

LEF Syntax

greater than $2.0 \mu \mathrm{~m}^{2}$, and width is less than the default routing width of $0.10 \mu \mathrm{~m}$. (See Figure 1-64 on page 159).

```
PROPERTY LEF58_MINIMUMCUT
    "MINIMUMCUT 2 WIDTH 0.09 WITHIN 0.05 AREA 2.0 ;" ;
```


Figure 1-64 Minimum Cut Rule Example 1

Violation; all three vias should have two cuts. If wITHIN 0.05 is not specified, it is still a violation as two cuts are needed for all end points by definition.

- The following minimum cut rules indicate that 3 via cuts are required, if a thin wire is connected to a wide wire with a width greater than $0.24 \mu \mathrm{~m}$ and an area greater than $1.6 \mu \mathrm{~m}^{2}$, and the distance between the vias and the wide wire is less than $3.0 \mu \mathrm{~m}$. (See Figure 1-65 on page 160).

```
PROPERTY LEF58_MINIMUMCUT
    "MINIMUMCUT 2 WIDTH 0.24 ;
    "MINIMUMCUT 3 WIDTH 0.40 ;
    "MINIMUMCUT 2 WIDTH 0.24 AREA 0.3 WITHIN 10.0 ;
    "MINIMUMCUT 3 WIDTH 0.24 AREA 1.6 WITHIN 3.0 ;" ;
```


LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-65 Minimum Cut Rule Example 2

a) Okay; width of $B<0.24$, only area of $A, 1.5$, would require two cuts.

c) Okay; the area of C only needs 2 cuts, and the area of A needs 3 cuts, but the cut is farther than the WITHIN distance of 3, and it also fulfills the 2 cuts requirement. Same situation occurs if a 2 cut via is directly connected to B instead of a wire.

b) Violation; sum of all three areas (A, B, and C) is 2.09, which would require three cuts.

d) Okay; MINImUMCUT 2 WIDTH 0.24 rule applies. The WITHIN rules do not apply when direct via is dropped.

LEF/DEF 5.7 Language Reference
 LEF Syntax

Minimum Step Rules

Minimum step rules allow you to require a minimum adjacent edge length following edges that are less than the specified minimum step length.

You can define a minimum step rule using the following property definition:

```
PROPERTY LEF58_MINSTEP
    "MINSTEP minStepLength
        [MAXEDGES maxEdges]
            [ MINADJACENTLENGTH minAdjLength
            [CONVEXCORNER | minAdjLength2]
            | MINBETWEENLENGTH minBetweenLength [EXCEPTSAMECORNERS]
            ] ;..." ;
```

Where:
MAXEDGES is the same as the existing LEF routing layer MINSTEP syntax.

MINADJACENTLENGTH minAdjLength [CONVEXCORNER | minAdjLength2]
Indicates that the edges adjacent to min-step edges that are less than minstepLength must be greater than or equal to minAdjLength in length in order to be allowed; otherwise, it is considered a violation.
If minAdjLength 2 is specified, then one adjacent edge must be greater than or equal to minAdjLength and the other adjacent edge must be greater than or equal to minAdjLength2. See Minimum Step Rule Examples on page 162.
Type: Float, specified in microns
CONVEXCORNER indicates that if a convex corner is between two concave corners, and if one of the length of the edges to form the convex corner is less than minAdjLength, then the other length must be greater than or equal to minStepLength.

MINBETWEENLENGTH minBetweenLength
Indicates that one of the edges between min-step edges that are less than MinStepLength must be greater than or equal to minBetweenLength in length in order to be allowed; otherwise, it is considered a violation.
Type: float, specified in microns

LEF Syntax

Indicates that a minBetweenLength length is not required for an edge that has the same type of 90 -degree corner at each end (that is, both corners are convex, or both are concave). See Figure 1-66 on page 162 for an illustration of EXCEPTSAMECORNERS in a MINSTEP rule.

Minimum Step Rule Examples

Figure 1-66 Illustration of ExceptSameCorners Definition

The EXCEPTSAMECORNERS definition of same-corners edges refers to any edge that ends in two convex or two concave 90degree corners. All of the thick edges in the object above have same-corner edges, and would not be checked by this rule..
"Stair-step" edges are shown in thin lines.

- The following minimum step rule indicates that there can only be one edge less than 1.0 $\mu \mathrm{m}$ in a row. The adjacent edges must be greater than or equal to $1.0 \mu \mathrm{~m}$.

```
PROPERTY LEF58_MINSTEP
    "MINSTEP 1.0 MAXEDGES 1 ;" ;
```


LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-67 MinStep Rule Example 1

PROPERTY LEF58_MINSTEP "MINSTEP 1.0 MAXEDGES 1 ;";

a) Violation, more than 1 edges in a row that are < 1.0 in length.

b) Violation, more than 1 edges in a row that are < 1.0 in length.

c) OK, only 1 edge in a row that is <1.0 in length.

- The following minimum step rule indicates that an edge less than $0.6 \mu \mathrm{~m}$ must have adjacent edges greater than or equal to $1.0 \mu \mathrm{~m}$.

PROPERTY LEF58_MINSTEP
"MINSTEP 0.6 MĀXEDGES 1 MINADJACENTLENGTH 1.0 ;" ;
Figure 1-68 MinStep Rule Example 2

a) Violation, an edge <0.6 long has adjacent edges < 1.0 .

b) Okay, all edges < 0.6 long have >=1.0 adjacent edges.

c) Violation, the edges <0.5 have an adjacent edge < 1.0.

- The following minimum step rule indicates that no edge less than $0.2 \mu \mathrm{~m}$, and any edge less than $0.6 \mu \mathrm{~m}$ must have one adjacent edge greater than or equal to $1.0 \mu \mathrm{~m}$, and the other adjacent edge greater than or equal to $1.2 \mu \mathrm{~m}$.

```
MINSTEP 0.2 MAXEDGES 0 ;
PROPERTY LEF58_MINSTEP
"MINSTEP 0.6 MA\overline{XEDGES 1 MINADJACENTLENGTH 1.0 1.2 ;" ;}
```


LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-69 MinStep Rule Example 3

a) Violation: an edge <0.6 long has adjacent edge < 1.0 .

b) OK, an edge < 0.6 long has adjacent edge >=1.0, and $>=1.2$.

c) Violation, an edge < 0.6 long has adjacent edge >=1.0, but only 1.1 for the other edge ($>=1.2$ required).

- The following minimum step rule illustrates CONVEXCORNER:

PROPERTY LEF58_MINSTEP
"MINSTEP 0.6 MĀXEDGES 1 MINADJACENTLENGTH 1.0 CONVEXCORNER ;" ;

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-70 MinStep Rule with CONVEXCORNER

a) Violation, the convex corner of 0.4 and 0.8 edges is between 2 concave corners, and their lengths are smaller than 0.6 and 1.0 correspondingly

c) OK, no convex corner is found between 2 concave corners

b) OK, the convex corner of 0.5 and 0.9 edges is not between 2 concave corners

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-71 MinStep Rule Example 5

```
PROPERTY LEF58_MINSTEP "MINSTEP 0.6 MAXEDGES 1 MINBETWEENLENGTH 1.0 ; " ;
```


a) Okay, an edge < 0.6 long has a>1.0 edge between it and any other <0.6 edge.

b) Okay, the edges $<0.6 \mu \mathrm{~m}$ long have a $>=1.0 \mu \mathrm{~m}$ edge between them.

This is a same-corners edge.

c) Violation, the edges <0.6 do not have an edge >= 1.0 between them.
d) Okay if the rule includes EXCEPTSAMECORNERS, because then 1.0 length is not required for the same corners edge.

e) Okay, there is an edge >= 1.0 between the 0.5 edges.

f) Violation, an edge <0.6 long has no edge $>=1.0$ before another edge <0.6.

Parallel Span Length Spacing Table Rule

Parallel span length spacing table rules can be used to define supplement spacing constraints based on span length of the objects.

You can define a parallel span length spacing table rule using the following property definition:

```
PROPERTY LEF58_SPACINGTABLE
    "SPACINGTABLE
        PARALLELSPANLENGTH PRL runLength {SPANLENGTH spanLength {spacing} ...
    };
        ;";
```


LEF/DEF 5.7 Language Reference

Where:
All other keywords are the same as the existing LEF routing layer SPACINGTABLE syntax.

PARALLELSPANLENGTH PRL runLength \{SPANLENGTH spanLength \{spacing\}\}

Creates a table in which spacing between two objects depends on the span length of both the objects that have a parallel run length greater than runLength. To find the required spacing, a NxN two-dimensional table is used that implicitly has the same span lengths for row and column headings. There must be exactly as many spacing values in each SPANLENGTH row as the number of SPANLENGTH rows. The spanLength values must increase from top to bottom in the table. The spacing values must be the same, or increase from left to right and from top to bottom across the table. Consider two objects with spanLength1 and spanLength2. You need to find the last row where spanLength1 is greater than the table row spanLength, and the right-most column where spanLength2 is greater than the table column spanLength. The intersection of the matching row and column provides the required spacing.

The parallel run length is measured as a sum of lengths between objects. Turning corners may break up the parallel run length thus resulting in inaccurate calculations. These are supplement spacing constraints, in addition to the regular spacing based on wire width.
Type: Float, specified in microns (for all values)

Spacing Table Rule Examples

- Figure 1-72 on page 168 illustrates the following spacing table rules with SPANLENGTH $0,0.10$, and 0.20 :

PROPERTY LEF58_SPACINGTABLE
"SPACINGTABLE
PARALLELSPANLENGTH PRL 0.15
SPANLENGTH $00.10 \quad 0.150 .20$
SPANLENGTH $0.10 \quad 0.150 .170 .23$
SPANLENGTH 0.200 .200 .230 .25 ; " ;

LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-72 Spacing Table Rule Example

a) Violation, the continuous parallel run length of $0.1 \& 0.06=0.16(>0.15)$, and top \& bottom edges on the left have span length $>0.1,0.15$ spacing is needed

c) OK, parallel run length $<=$ 0.15

b) OK, parallel run length does not count for opposite sides

d) OK , parallel run length is not continuous, and each of the individual ones of $0.09<=0.15$ would not trigger the rule

LEF/DEF 5.7 Language Reference

EOL Extension Spacing Rule

EOL extension spacing rule can be used to indicate that for a given width of an end-of-line certain extension should be applied to the EOL edge before checking for edge-to-edge spacing to any neighbor wires.

You can define a EOL extension spacing rule using the following property definition:

```
PROPERTY LEF58_EOLEXTENSIONSPACING
    "EOLEXTENSIONSPACING spacing
        {ENDOFLINE eolWidth EXTENSION extension
        [ENDTOEND endToEndExtension]} ...
        [MINLENGTH minLength [TWOSIDES]]
    ;" ;
```

Where:

```
EOLEXTENSIONSPACING spacing {ENDOFLINE eolWidth EXTENSION
extension [ENDTOEND endToEndExtension]} ...
```


LEF/DEF 5.7 Language Reference

LEF Syntax

Specifies that for a given width of an end-of-line, find the last row where the width is less than eolwidth, the corresponding extension should be applied to the EOL edge before checking for edge-to-edge spacing to any neighbor wires. The eolWidth values should be increased for each subsequent ENDOFLINE statement, and at the most three statements can be specified and supported.
Type: Float, specified in microns
ENDTOEND endToEndExtension specifies that endToEndExtension is applied if the neighbor wire is also an end-of-line, and extension is applied for an end-to-side situation.
Type: Float, specified in microns
MINLENGTH minLength [TWOSIDES]
Indicates that the rule does not apply if the end-of-line length is less than minLength along both sides.
Type: Float, specified in microns
TWOSIDES means that the rule only applies when the end-ofline length is greater than or equal to minLength along both the sides. In other words, the rule does not apply if the end-ofline length is less than minLength along any one side.

EOL Extension Spacing Rule Examples

- The following EOL extension spacing rule indicates that an end-of-line edge with width less than $0.11 \mu \mathrm{~m}$ should have $0.14 \mu \mathrm{~m}$ extension, and an end-of-line edge with width less than $0.15 \mu \mathrm{~m}$ and greater than or equal to $0.11 \mu \mathrm{~m}$ should have $0.13 \mu \mathrm{~m}$ extension in end-to-end situation or $0.12 \mu \mathrm{~m}$ extension in end-to-side situation. Then $0.1 \mu \mathrm{~m}$ edge to edge spacing must be enforced with proper extension on the end-of-line edge(s).

```
PROPERTY LEF58_EOLEXTENSIONSPACING
    "EOLEXTENSIONSPACING 0.1 ENDOFLINE 0.11 EXTENSION 0.14
    ENDOFLINE 0.15 EXTENSION 0.12 ENDTOEND 0.13 ;" ;
```

Figure 1-73 EOL Extension Spacing Rule Example

a) Violation, 0.14 extension is applied for width <0.11, and 0.1 spacing is required after the extension
b) Violation, for end-to-end situation, 0.14 extension is applied for width < 0.11 on the left, 0.13 extension is applied for width >=0.11, and 0.1 spacing is required

c) Violation, for end-to-end situation,
d) Violation, 0.12 extension is applied 0.13 extension is applied for both wires with width $>=0.11$, and 0.1 spacing is required

Routing Pitch

The PITCH statements define the detail routing grid generated when you initialize a floorplan. The pitch for a given routing layer defines the distance between routing tracks in the preferred direction for that layer. The complete routing grid is the union of the tracks generated for each routing layer.

The spacing of the grid should be no less than line-to-via spacing in both the horizontal and vertical directions. Grid spacing less than line-to-via spacing can result in routing problems and can decrease the utilization results.

LEF/DEF 5.7 Language Reference

LEF Syntax

The grid should normally allow for diagonal vias. Via spacing on all layers included in the via definition in LEF determines whether or not diagonal vias can be used. The router is capable of avoiding violations between diagonal vias. If you allow diagonal vias, less time is needed for routing and the layout creates a smaller design.

Macro

```
MACRO macroName
    [CLASS
        { COVER [BUMP]
        | RING
        | BLOCK [BLACKBOX | SOFT]
        | PAD [INPUT | OUTPUT | INOUT | POWER | SPACER | AREAIO]
        | CORE [FEEDTHRU | TIEHIGH | TIELOW | SPACER | ANTENNACELL | WELLTAP]
        | ENDCAP {PRE | POST | TOPLEFT | TOPRIGHT | BOTTOMLEFT | BOTTOMRIGHT}
        }
    ;]
    [FOREIGN foreignCellName [pt [orient]] ;] ...
    [ORIGIN pt ;]
    [EEQ macroName ;]
    [SIZE width BY height ;]
    [SYMMETRY {X | Y | R90} ... ;]
    [SITE siteName [sitePattern] ;] ...
    [PIN statement] ...
    [OBS statement] ...
    [DENSITY statement] ...
    [PROPERTY propName propVal ;] ...
```

END macroName
Defines macros in the design.

CLASS

Specifies the macro type. If you do not specify CLASS, the macro is considered a CORE macro, and a warning prints when the LEF file is read in. You can specify macros of the following types:

COVER Macro with data that is fixed to the floorplan and cannot change, such as power routing (ring pins) around the core. The placers understand that CLASS COVER cells have no active devices (such as diffusion or polysilicon), so the MACRO SIZE statement does not affect the placers, and you do not need an artificial OVERLAP layer. However, any pin or obstruction geometry in the COVER cells can affect the pin access checks done by the placers.

A cover macro can be of the following sub-class:
BUMP—A physical-only cell that has bump geometries and pins. Typically a bump cell has geometries only on the top-most "bump" metal layer, although it might contain a via and pin to the metal layer below.

RING Large macro that has an internal power mesh, and only exposes powerpin shapes that form a ring along the macro boundary. When power stripes are added across the macro, they connect to each side of the ring-pin but do not go inside the ring. The CLASS RING macro can also be used for power-switch cells that are abutted together to form a powerring around a power-domain. In that case, their power-pins have the same effect of interrupting power stripes as the ring-pins in a single block RING macro.

BLOCK Predefined macro used in hierarchical design.
A block macro can have one of the following sub-classes:
BLACKBOX—A block that sometimes only contains a SIZE statement that estimates its total area. A blackbox can optionally contain pins, but in many cases, the pin names are taken from a Verilog description and do not need to match the LEF MACRO pin names.

SOFT—A cell that also contains a version of the sub-block that is not fully implemented. Normally, a soft block LEF can still have certain parts of it modified (for example, the aspect ratio, or pin locations) because the sub-block is not yet fully implemented. Any changes should be passed to the sub-block implementation. In contrast, a BLACKBOX has no sub-block implementation available.

LEF/DEF 5.7 Language Reference

LEF Syntax

PAD I/O pad. A pad can be one of the following types: INPUT, OUTPUT, INOUT, POWER, or SPACER, for I/O rows; INPUT, OUTPUT, INOUT, or POWER, for I/O corner pads; AREAIO for area I/O driver cells that do not have the bump built in as part of the macro (and therefore require routing to a CLASS COVER BUMP macro for a connection to the IC package).

For an example of a macro pad cell, see Example 1-15 on page 174.
CORE A standard cell used in the core area. CORE macros should always contain a SITE definition so that standard cell placers can correctly align the CORE macro to the standard cell rows.

A core macro can be one of the following types:
FEEDTHRU—Used for connecting to another cell.
TIEHIGH,TIELOW-Used for connecting unused I/O terminals to the power or ground bus.

SPACER-Sometimes called a filler cell, this cell is used to fill in space between regular core cells.

ANTENNACELL—Used for solving process antenna violations. This cell has a single input to a diode to bleed off charge that builds up during manufacturing.

WELLTAP—Standard cell that connects N and P diffusion wells to the correct power or ground wire.

ENDCAP A macro placed at the ends of core rows (to connect with power wiring).
If the library includes only one corner I/O macro, then appropriate SYMMETRY must be included in its macro description. An ENDCAP macro can be one of the following types:
PRE-A left-end macro
POST-A right-end macro
TOPLEFT-A top left I/O corner cell
TOPRIGHT-A top right I/O corner cell
BOTTOMLEFT -A bottom left I/O corner cell
BOTTOMRIGHT—A bottom right I/O corner cell

Example 1-15 Macro Pad Cell

The following example defines a power pad cell that illustrates when to use the CLASS CORE keywords on power ports. For the VDD pin, there are two ports: one to connect to the interior core power ring, and one to complete the I/O power ring. Figure 1-1 on page 6 illustrates this pad cell.

LEF/DEF 5.7 Language Reference

 LEF Syntax```
MACRO PAD_0
 CLASS PAD ;
 FOREIGN PAD_0 0.000 0.000 ;
 ORIGIN 0.000 0.000 ;
 SIZE 100.000 BY 300.000;
 SYMMETRY X Y R90 ;
 SITE PAD_SITE ;
Define pin VDD with SHAPE ABUTMENT because there are no obstructions
to block a straight connection to the pad rings. The port without
CLASS CORE is used for completing the I/O power ring.
 PIN VDD
 DIRECTION INOUT ;
 USE POWER ;
 SHAPE ABUTMENT ;
 PORT
 LAYER metal2 ;
 RECT 0.000 250.000 100.000 260.000;
 LAYER metal3 ;
 RECT 0.000 250.000 100.000 260.000;
 END
Define VDD port with PORT CLASS CORE to indicate that the port connects
to the core area instead of to the pad ring.
 PORT
 CLASS CORE ;
 LAYER metal2 ;
 RECT 0.000 290.000 100.000 300.000;
 LAYER metal3 ;
 RECT 0.000 290.000 100.000 300.000;
 END
 END VDD
Define pins VCC and GND with SHAPE FEEDTHRU because these pins
cannot make a straight connection to the pad rings due to obstructions.
 PIN VCC
 DIRECTION INOUT ;
 USE POWER ;
 SHAPE FEEDTHRU ;
 PORT
```


## LEF/DEF 5.7 Language Reference LEF Syntax

```
LAYER metal2 ;
 RECT 0.000 150.000 20.000 160.000 ;
 RECT 20.000 145.000 80.000 155.000 ;
 RECT 80.000 150.000 100.000 160.000;
LAYER metal3 ;
 RECT 0.000 150.000 20.000 160.000 ;
 RECT 20.000 145.000 80.000 155.000;
 RECT 80.000 150.000 100.000 160.000;
END
 END VCC
 PIN GND
 DIRECTION INOUT ;
 USE GROUND ;
 SHAPE FEEDTHRU ;
 PORT
 LAYER metal2 ;
 RECT 0.000 50.000 20.000 60.000 ;
 RECT 80.000 50.000 100.000 60.000;
 END
 END GND
 OBS
 LAYER metal1 ;
 RECT 0.000 0.000 100.000 300.000 ;
 LAYER metal2 ;
 RECT 25.000 50.000 75.000 60.000 ;
 RECT 30.500 157.000 70.500167.000;
 END
END PAD_0
```

Figure 1-74 Power Pad Cell


## DENSITY statement

Specifies the metal density for large macros.
The DENSITY rectangles on a layer should not overlap, and should cover the entire area of the macro. You can choose the size of the rectangles based on the uniformity of the density of the block. If the density is uniform, a single rectangle can be used. If the density is not very uniform, the size of the rectangles can be specified to be 10 to 20 percent of the density window size, so that any error due to non-uniform density inside each rectangle area is small.
For example, if the metal density rule is for a $100 \mu \mathrm{~m} \times 100 \mu \mathrm{~m}$ window, the density rectangles can be $10 \times 10 \mu \mathrm{~m}$ squares. Any non-uniformity will have little impact on the density calculation accuracy.

## LEF/DEF 5.7 Language Reference

## LEF Syntax

If two adjacent rectangles have the same or similar density, they can be merged into one larger rectangle, with one average density value. The choice between accuracy and abstraction is left to the abstract generator.
The DENSITY syntax is defined as follows:

```
[DENSITY
 {LAYER layerName ;
 {RECT x1 y1 x2 y2 densityValue ;} ...
 } ...
END] ...
```

    densityValue Specifies the density for the rectangle, as a percentage. For
        example, 50.0 indicates that the rectangle has a density of 50
        percent on layerName.
        Type: Float
        Value: 0 to 100
    layerName Specifies the layer on which to create the rectangle.
    $x 1$ y1 x2 y2 Specifies the coordinates of a rectangle.
Type: Float, specified in microns

## Example 1-16 Macro Density

The following statement specifies the density for macro testMacro:

```
MACRO testMacro
 CLASS ...
 PIN ...
 OBS ...
 DENSITY
 LAYER metal1 ;
 RECT 0 0 100 100 45.5 ; #rect from (0,0) to (100,100), density of 45.5%
 RECT 100 0 200 100 42.2 ; #rect from (100,0) to (200, 100), density of 42.2%
 END
```


## LEF/DEF 5.7 Language Reference

LEF Syntax

END testMacro

EEQ macroName Specifies that the macro being defined should be electrically equivalent to the previously defined macroName. EEQ macros include devices such as OR-gates or inverters that have several implementations with different shapes, geometries, and orientations.

Electrically equivalent macros have the following requirements:
■ Corresponding pins must have corresponding functionality.

- Pins must be defined in the same order.
- For each group of corresponding pins (one from each macro), pin function and electrical characteristics must be the same.
- The EEQ macroName specified must refer to a previously defined macro. If the EEQ macroName referenced is already electrically equivalent to other model macros, all referenced macros are considered electrically equivalent.

FOREIGN foreignCellName [pt [orient]]
Specifies the foreign (GDSII) structure name to use when placing an instance of the macro. The optional pt coordinate specifies the macro origin (lower left corner when the macro is in north orientation) offset from the foreign origin. The FOREIGN statement has a default offset value of 00 , if $p t$ is not specified.

The optional orient value specifies the orientation of the foreign cell when the macro is in north orientation. The default orient value is N (North).

## Example 1-17 Foreign Statements

The following examples show two variations of the FOREIGN statement. The negative offset specifies that the GDSII structure should be above and to the right of the macro lower left corner.

```
MACRO ABC ...
FOREIGN ABC -2 -3 ;
```

The positive offset specifies that the GDSII structure should be below and to the left of the macro lower left corner.

```
MACRO EFG ...
```


## LEF/DEF 5.7 Language Reference

LEF Syntax

FOREIGN EFG 23 ;

MACRO macroName
OBS statement

ORIGIN pt

PIN statement

Specifies the name of the library macro.
Defines obstructions on the macro. Obstruction geometries are specified using layer geometries syntax. See "Macro Obstruction Statement" on page 190 for syntax information.

Specifies how to find the origin of the macro to align with a DEF COMPONENT placement point. If there is no ORIGIN statement, the DEF placement point for a North-oriented macro is aligned with 0,0 in the macro. If ORIGIN is given in the macro, the macro is shifted by the ORIGIN $x, y$ values first, before aligning with the DEF placement point. For example, if the ORIGIN is $0,-1$, then macro geometry at 0,1 are shifted to 0,0 , and then aligned to the DEF placement point.

Defines pins for the macro. See "Macro Pin Statement" on page 193 for syntax information.

PROPERTY propName propVal
Specifies a numerical or string value for a macro property defined in the PROPERTYDEFINITIONS statement. The propName you specify must match the propName listed in the PROPERTYDEFINITIONS statement.

SITE siteName [sitePattern]
Specifies the site associated with the macro. Normal rowbased standard cells only have a single SITE siteName statement, without a sitePattern. The sitePattern syntax indicates that the cell is a gate-array cell, rather than a row-based standard cell. Gate-array standard cells can have multiple SITE statements, each with a sitePattern.

The sitePattern syntax is defined as follows:
[xOrigin yOrigin siteOrient [stepPattern]]
xOrigin yorigin Specifies the origin of the site inside the macro.
Type: Float, specified in microns
siteOrient Specifies the orientation of the site at that location.
Value: N, S, E, W, FN, FS, FE, or FW

## LEF/DEF 5.7 Language Reference

## LEF Syntax

Note: Legal placement locations for macros with site patterns must match the site pattern inside the macro to the site pattern in the design rows.

If the site is repeated, you can specify a stepPattern that defines the repeating pattern. The stepPattern syntax is defined as follows:
[DO xCount BY yCount STEP xStep yStep]
$x$ Count yCount Specifies the number of sites to add in the $x$ and $y$ directions. You must specify values that are greater than or equal to 0 (zero).
Type: Integer
xStep yStep Specifies the spacing between sites in the $x$ and $y$ directions.
Type: Float, specified in microns

## Example 1-18 Macro Site

The following statement defines a macro that uses the sites created in Example 1-29 on page 209:

```
MACRO myTest
 CLASS CORE ;
 SIZE 10.0 BY 14.0 ; #Uses 2 F and 1 L site, is F + L wide, and double height
 SYMMETRY X ; #Can flip about the X axis
 SITE Fsite 0 O N ; #The lower left Fsite at 0,0
 SITE Fsite 0 7.0 FS ; #The flipped south Fsite above the first Fsite at 0,7
 SITE Lsite 4.0 0 N ; #The Lsite to the right of the first Fsite at 4,0
 PIN ... ;
END myTest
```

Figure 1-75 on page 182 illustrates the placement results of this definition.

## LEF/DEF 5.7 Language Reference

## LEF Syntax

## Figure 1-75



Site orientation inside horizontal rows:
FS, FS, S, FS, FS, S, etc.
$\mathrm{N}, \mathrm{N}, \mathrm{FN}, \mathrm{N}, \mathrm{N}, \mathrm{FN}$, etc.

The following statement includes the gate-array site pattern syntax. It uses two $F$ sites in a row with N (North) orientation.

```
MACRO myTest
 CLASS CORE ;
 SIZE 8.0 BY 7.0 ; #Width = 2 * Fsite width, height = Fsite height
 SITE Fsite 0 O N DO 2 BY 1 STEP 4.0 0 ; #Xstep = 4.0 = Fsite width
END myTest
```

This definition produces a cell with the sites shown in Figure 1-76 on page 182.

Figure 1-76

## FIF

## LEF/DEF 5.7 Language Reference

## LEF Syntax

SIZE width BY height
Specifies a placement bounding rectangle, in microns, for the macro. The bounding rectangle always stretches from $(0,0)$ to the point defined by SIZE. For example, given SIZE 10 BY 40, the bounding rectangle reaches from $(0,0)$ after adjustment due to the ORIGIN statement, to $(100,400)$.

Placers assume the placement bounding rectangle cannot overlap placement bounding rectangles of other macros, unless OBS OVERLAP shapes are used to create a nonrectangular area.

After placement, a DEF COMPONENTS placement $p t$ indicates where the lower-left corner of the placement bounding rectangle is placed after any possible rotations or flips. The bounding rectangle width and height should be a multiple of the placement grid to allow for abutting cells.

For blocks, the placement bounding rectangle typically contains all pin and blockage geometries, but this is not required. For example, typical standard cells have pins that lie outside the bounding rectangle, such as power pins that are shared with cells in the next row above them.

## SYMMETRY $\left\{\begin{array}{l|l|l}\mathrm{X} & \mathrm{Y} & \mathrm{R} 90\}\end{array}\right.$

Specifies which macro orientations should be attempted by the placer before matching to the site of the underlying rows. In general, most standard cell macros should have symmetry $\mathrm{X} Y$. N (North) is always a legal candidate. For each type of symmetry defined, additional orientations become legal candidates. For more information on defining symmetry, see "Defining Symmetry" on page 184.

Possible orientations include:

N and FS orientations should be tried.
N and FN orientations should be tried.
N, FN, FS, and S orientations should all be tried.

## LEF/DEF 5.7 Language Reference

## LEF Syntax

Specify this value only for pad cells. Do not specify this value for standard cells.

Note: If you do not specify a SYMMETRY statement, only N orientation is tried.

For corner I/O pads, if the library includes BOTTOMLEFT, BOTTOMRIGHT, TOPLEFT, and TOPRIGHT I/O corner cells, then they are placed in North orientation (no flipping). However, if the library includes only one type of corner l/O, then SYMMETRY in $x$ and $y$ are required to create the rows for all four of them.

## Defining Cover Macros

If you define a cover macro with its actual size, some place-and-route tools cannot place the rest of the cells in your design because it uses the cell boundary to check for overlaps. You can resolve this in two ways:

- The easiest way to support a cover macro is to define the cover macro with a small size, for example, 1 by 1.
- If you want to define the cover macro with its actual size, create an overlap layer with the nonrouting LAYER TYPE OVERLAP statement. You define this overlap layer (cover macro) with the macro obstruction (OBS) statement.


## Defining Symmetry

Symmetry statements specify legal orientations for sites and macros. Figure 1-77 on page 184 illustrates the normal orientations for single-height, flipped and abutted rows with standard cells and sites.

Figure 1-77 Normal Orientations for Single-Height Rows


## LEF/DEF 5.7 Language Reference

LEF Syntax

The following examples describe typical combinations of orientations for standard cells. Applications typically create only N (or FS for flipped) row orientations for horizontal standard cell rows; therefore, the examples describe these two rows.

## Example 1-19 Single-Height Cells

Single-height cells for flipped and abutted rows should have SITE symmetry Y and MACRO symmetry X Y. These specifications allow N and FN macros in N rows, and FS and S macros in FS rows (see d in Figure 1-78 on page 185). These symmetries work with flipped and abutted rows, as well as rows that are not flipped and abutted. If the rows are not flipped, the cells all have N orientation. The extra MACRO symmetry of X is not required in this case, but causes no problems.

Figure 1-78 Legal Placements for Row Sites with Symmetry Y


## Example 1-20 Double-Height Cells

Double-height cells that are intended to align with flipped and abutted single-height rows should have SITE symmetry X Y and MACRO symmetry X Y. These symmetries allow all four cell orientations (N, FN, FS, and S) to fit inside the double-height row (see Figure 1-79 on page 186). Usually, double-height rows are just $N$ orientation rows that are abutted and aligned with a pair of single-height flipped and abutted rows.

Figure 1-79 Legal Placements for Single-Height Row Sites with Symmetry Y and Double-Height Row Sites with Symmetry X Y


Note: The single-height rows are shifted slightly to the left of the double-height rows in the above figure for illustration purposes. In a real design, they should be aligned.

## Example 1-21 Special Orientations

Some single-height cells have special orientation needs. For example, the design requires flipped and abutted rows, but only N and FS orientations are allowed because of the special layout of well taps on the right side of a group of cells that borrow from the left side of the next cell. That is, you cannot place an N and FN cell against each other in one row because only N cells are allowed in an N row. In this case, the SITE symmetry should not be defined, and the MACRO symmetry should be X. A MACRO symmetry of X Y can also be defined because the Y-flipped macros (FN and S orientations) do not match the N or FS rows. This MACRO symmetry also works if there are no flipped rows, and only N rows.

## Example 1-22 Vertical Rows

Vertical rows use N or FN row and site orientations. The flipped, abutted vertical row orientation is $N$ and $F N$, rather than the horizontal row orientation of $N$ and FS. Otherwise, the meaning of the site symmetries and macro symmetries is the same as those for horizontal rows.

Single-height sites are normally given symmetry x , and single-height cells are normally given symmetry X Y. Example d in Figure 1-80 on page 187 shows the legal placement for a site with symmetry X , and the typical standard cell MACRO symmetry X Y .

## LEF/DEF 5.7 Language Reference

## LEF Syntax

Figure 1-80 Legal Placements for Vertical Row Sites With Symmetry X


## Layer Geometries

```
{ LAYER layerName
 [EXCEPTPGNET]
 [SPACING minSpacing | DESIGNRULEWIDTH value] ;
 [WIDTH width ;]
 { PATH pt ... ;
 | PATH ITERATE pt ... stepPattern ;
 | RECT pt pt ;
 | RECT ITERATE pt pt stepPattern ;
 | POLYGON pt pt pt pt ... ;
 | POLYGON ITERATE pt pt pt pt ... stepPattern ;
 } ...
| VIA pt viaName ;
| VIA ITERATE pt viaName stepPattern ;
} ...
```

Used in the macro obstruction (OBS) and pin port (PIN) statements to define layer geometries in the design.

## LEF/DEF 5.7 Language Reference

## LEF Syntax

|  | Specifies the effective design rule width. If specified, the obstruction or pin is treated as a shape of this width for all spacing checks. If you specify DESIGNRULEWIDTH, you cannot specify the SPACING argument. <br> Type: Float |
| :---: | :---: |
| EXCEPTPGNET | Indicates that the obstruction shapes block signal routing, but do not block power or ground routing. This can be used to block signal routes that might cause noise, but allow connections to power and ground pins. |
| ITERATE | Creates an array of the PATH, RECT, POLYGON, or VIA geometry, as specified by the given step pattern. ITERATE specifications simplify the definitions of cover macros. The syntax for stepPattern is defined as follows: |
|  | DO numX BY numy STEP spaceX spaceY |
|  | Specifies the number of columns of points. |
|  | Specifies the number of rows of points. |
|  | spaceX spaceY Specifies the spacing, in distance units, between the columns and rows of points. |
| LAYER layerName | Specifies the layer on which to place the geometry. |
|  | Note: For macro obstructions, you can specify cut, implant, or overlap layers. |
| PATH pt | Creates a path between the specified points, such as $p t 1$ $p t 2 p t 3$. The path automatically extends the length by half of the current width on both endpoints to form a rectangle. (A previous WIDTH statement is required.) The line between each pair of points must be parallel to the $x$ or $y$ axis (45degree angles are not allowed). |
|  | You can also specify a path with a single coordinate, in which case a square whose side is equal to the current width is placed with its center at pt. |
| POLYGON pt pt p |  |

## LEF/DEF 5.7 Language Reference

LEF Syntax

Specifies a sequence of at least three points to generate a polygon geometry. Every polygon edge must be parallel to the $x$ or $y$ axis, or at a 45-degree angle. Each POLYGON statement defines a polygon generated by connecting each successive point, and then by connecting the first and last points.

RECT pt pt

SPACING minSpacing

VIA pt viaName
WIDTH width

Specifies a rectangle, where the two points specified are opposite corners of the rectangle. There is no functional difference between a geometry specified using PATH and a geometry specified using RECT.

Specifies the minimum spacing allowed between this particular obstruction or pin and any other shape. This value overrides the normal LAYER-based spacing rules, including wide wire spacing rules. Therefore, a SPACING value of 0.1 $\mu \mathrm{m}$ specifies that all other shapes must be spaced at least 0.1 $\mu \mathrm{m}$ away, including large width objects that might normally require even more spacing.

If you specify SPACING, you cannot specify the DESIGNRULEWIDTH argument.
Specifies the via to place, and the placement location.
Specifies the width that the PATH statements use. If you do not specify width, the default width for that layer is used. When you specify a width, that width remains in effect until the next width or LAYER statement. When another LAYER statement is given, the WIDTH is automatically reset to the default width for that layer.

## Example 1-23 Layer Geometries

The following example shows how to define a set of geometries, first by using ITERATE statements, then by using individual PATH, VIA and RECT statements.

The following two sets of statements are equivalent:

```
PATH ITERATE 532.0 534 1999.2 534
 DO 1 BY 2 STEP 0 1446 ;
VIA ITERATE 470.4 475 VIABIGPOWER12
 DO 2 BY 2 STEP 1590.4 1565 ;
RECT ITERATE 24.1 1.5 43.5 16.5
 DO 2 BY 1 STEP 20.0 0 ;
```


## LEF/DEF 5.7 Language Reference

## LEF Syntax

```
PATH 532.0 534 1999.2 534;
PATH 532.0 1980 1999.2 1980 ;
VIA 470.4 475 VIABIGPOWER12 ;
VIA 2060.8 475 VIABIGPOWER12;
VIA 470.4 2040 VIABIGPOWER12;
VIA 2060.8 2040 VIABIGPOWER12;
RECT 24.1 1.5 43.5 16.5 ;
RECT 44.1 1.5 63.5 16.5 ;
```


## Macro Obstruction Statement

```
[OBS
{ LAYER layerName
 [EXCEPTPGNET]
 [SPACING minSpacing | DESIGNRULEWIDTH value] ;
 [WIDTH width ;]
 { PATH pt ... ;
 | PATH ITERATE pt ... stepPattern ;
 | RECT pt pt ;
 | RECT ITERATE pt pt stepPattern ;
 | POLYGON pt pt pt pt ... ;
 | POLYGON ITERATE pt pt pt pt ... stepPattern ;
 } ...
| VIA pt viaName ;
| VIA ITERATE pt viaName stepPattern ;
} ...
```

END]
Defines a set of obstructions (also called blockages) on the macro. You specify obstruction geometries using the layer geometry syntax. See "Layer Geometries" on page 187 for syntax information.

Normally, obstructions block routing, except for when a pin port overlaps an obstruction (a port geometry overrules an obstruction). For example, you can define a large rectangle for a metal1 obstruction and have metal1 port in the middle of the obstruction. The port can still be accessed by a via, if the via is entirely inside the port.

In Figure 1-81 on page 191, the router can only access the metal1 port from the right. If the metal2 obstruction did not exist, the router could connect to the port with a metal12 via, as long as the metal1 part of the via fit entirely inside the metal1 port.

## LEF/DEF 5.7 Language Reference

## LEF Syntax

Figure 1-81


Routing can also connect to such a port on the same layer if the routing does not cross any obstruction by more than a distance of the total of minimum width plus minimum spacing before reaching the pin. This is because the port geometry is known to be "real," and any obstruction less than a distance of minimum width plus minimum spacing away from the port is not a real obstruction. If the pin is more than minimum width plus minimum spacing away from the obstruction edge, the router can only route to the pin from the layer above or below using a via (see Figure 1-82 on page 191).

Figure 1-82


If a port is on the edge of the obstruction, a wire can be routed to the port without violations. Pins that are partially covered with obstructions or in apparent violation with nearby

## LEF/DEF 5.7 Language Reference

LEF Syntax
obstructions can limit routing options. Even though the violations are not real, the router assumes they are. In these cases, extend each obstruction to cover the pin. The router then accesses the pin as described above.

## Benefits of Combining Obstructions

Significant routing time can be saved if obstructions are simplified. Especially in metal1, construct obstructions so that free tracks on the layer are accessible to the router. If most of the routing resource is obstructed, simplify the obstruction modeling by combining small obstructions into a single large obstruction. For example, use the bounding box of all metal1 objects in the cell, rather than many small obstructions, as the bounding box of the obstruction.

You must be sure to model via obstructions over the rest of the cell properly. A single, large cut12 obstruction over the rest of the cell can do this in some cases, as when metal1 resource exists within the cell outside the power buses.

## Rectilinear Blocks

Normally, footprint descriptions in LEF are rectangular. However, it is possible to describe rectilinear footprints using an overlap layer. The overlap layer is defined specifically for this purpose and does not contain any routing.

Describe a rectilinear footprint by setting the SIZE of the macro as a whole to a rectangular bounding box, then defining obstructions within the bounding box on the overlap layer. The obstructions on the overlap layer indicate areas within the bounding box which no other macro should overlap. The obstructions should completely cover the rectilinear shape of the macro, but not the portion of the bounding box that might overlap with other macros during placement.

Note: Specify the overlaps for the macro using the OBS statement. To do this, specify a layer of type OVERLAP and then give the overlap geometries, as shown in Figure 1-83 on page 193.

## LEF/DEF 5.7 Language Reference LEF Syntax

Figure 1-83

1000


OBS
LAYER OVERLAP ; RECT 005001000 ; RECT 50001000500 ;

## Macro Pin Statement

```
[PIN pinName
 [TAPERRULE ruleName ;]
 [DIRECTION {INPUT | OUTPUT [TRISTATE] | INOUT | FEEDTHRU} ;]
 [USE { SIGNAL | ANALOG | POWER | GROUND | CLOCK } ;]
 [NETEXPR "netExprPropName defaultNetName" ;]
 [SUPPLYSENSITIVITY powerPinName ;]
 [GROUNDSENSITIVITY groundPinName ;]
 [SHAPE {ABUTMENT | RING | FEEDTHRU} ;]
 [MUSTJOIN pinName ;]
 {PORT
 [CLASS {NONE | CORE | BUMP} ;]
 {layerGeometries} ...
 END} ...
 [PROPERTY propName propVal ;] ...
 [ANTENNAPARTIALMETALAREA value [LAYER layerName] ;] ...
 [ANTENNAPARTIALMETALSIDEAREA value [LAYER layerName] ;] ...
 [ANTENNAPARTIALCUTAREA value [LAYER layerName] ;] ...
 [ANTENNADIFFAREA value [LAYER layerName] ;] ...
 [ANTENNAMODEL {OXIDE1 | OXIDE2 | OXIDE3 | OXIDE4} ;] ...
 [ANTENNAGATEAREA value [LAYER layerName] ;] ...
 [ANTENNAMAXAREACAR value LAYER layerName ;] ...
 [ANTENNAMAXSIDEAREACAR value LAYER layerName ;] ...
 [ANTENNAMAXCUTCAR value LAYER layerName ;] ...
```

END pinName]

Defines pins for the macro. PIN statements must be included in the LEF specification for each macro. All pins, including VDD and VSS, must be specified. The first pin listed becomes the first pin in the database. List the pins in the following order:

## LEF/DEF 5.7 Language Reference

LEF Syntax

- Netlist pins, including inout pins, output pins, and input pins
- Power and ground pins
- Mustjoin pins

ANTENNADIFFAREA value [LAYER layerName]
Specifies the diffusion (diode) area, in micron-squared units, to which the pin is connected on a layer. If you do not specify a layer name, the value applies to all layers. For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations,"

ANTENNAGATEAREA value [LAYER layerName]
Specifies the gate area, in micron-squared units, to which the pin is connected on a layer. If you do not specify a layer name, the value applies to all layers. For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations,"

## ANTENNAMAXAREACAR value LAYER layerName

For hierarchical process antenna effect calculation, specifies the maximum cumulative area ratio value on the specified layerName, using the metal area at or below the current pin layer, excluding the pin area itself. This is used to calculate the actual cumulative antenna ratio on the pin layer, or the layer above it.
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations,"

ANTENNAMAXCUTCAR value LAYER layerName
For hierarchical process antenna effect calculation, specifies the maximum cumulative antenna ratio value on the specified layerName, using the cut area at or below the current pin layer, excluding the pin area itself. This is used to calculate the actual cumulative antenna ratio for the cuts above the pin layer.
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations,"

## ANTENNAMAXSIDEAREACAR value LAYER layerName

For hierarchical process antenna effect calculation, specifies the maximum cumulative antenna ratio value on the specified layerName, using the metal side wall area at or below the current pin layer, excluding the pin area itself. This is used to calculate the actual cumulative antenna ratio on the pin layer or the layer above it.
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations,"

## LEF/DEF 5.7 Language Reference LEF Syntax

## ANTENNAMODEL \{OXIDE1 | OXIDE2 | OXIDE3 | OXIDE4\}

Specifies the oxide model for the pin. If you specify an ANTENNAMODEL statement, the value affects all ANTENNAGATEAREA and ANTENNA*CAR statements for the pin that follow it until you specify another ANTENNAMODEL statement. The ANTENNAMODEL statement does not affect ANTENNAPARTIAL*AREA and ANTENNADIFFAREA statements because they refer to the total metal, cut, or diffusion area connected to the pin, and do not vary with each oxide model.
Default: OXIDE1, for a new PIN statement
Because LEF is often used incrementally, if an ANTENNA statement occurs twice for the same oxide model, the last value specified is used.
For most standard cells, there is only one value for the ANTENNAPARTIAL*AREA and ANTENNADIFFAREA values per pin; however, for a block with six routing layers, it is possible to have six different ANTENNAPARTIAL*AREA values and six different ANTENNAPINDIFFAREA values per pin. It is also possible to have six different ANTENNAPINGATEAREA and ANTENNAPINMAX*CAR values for each oxide model on each pin.

## Example 1-24 Pin Antenna Model

The following example describes oxide model information for pins IN1 and IN2.

```
MACRO GATE1
 PIN IN1
 ANTENNADIFFAREA 1.0 ; #not affected by ANTENNAMODEL
 ANTENNAMODELOXIDE OXIDE1 ;
 ANTENNAGATEAREA 1.0 ; #OXIDE1 gate area
 ANTENNAMAXAREACAR 50.0 LAYER m1 ; #metal1 CAR value
 ANTENNAMODEL OXIDE2 ; #OXIDE2 starts here
 ANTENNAGATEAREA 3.0 ; #OXIDE2 gate area
PIN IN2
 ANTENNADIFFAREA 2.0 ; #not affected by ANTENNAMODEL
 ANTENNAPARTIALMETALAREA 2.0 LAYER m1 ;
 #no OXIDE1 specified for this pin
 ANTENNAMODEL OXIDE2 ;
 ANTENNAGATEAREA 1.0 ;
```


## LEF/DEF 5.7 Language Reference

LEF Syntax

## ANTENNAPARTIALCUTAREA value [LAYER layerName]

Specifies the partial cut area above the current pin layer and inside the macro cell on the layer. For a hierarchical design, only the cut layer above the I/O pin layer is needed for partial antenna ratio calculation. If you do not specify a layer name, the value applies to all layers.
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations,"

ANTENNAPARTIALMETALAREA value [LAYER layerName]
Specifies the partial metal area connected directly to the I/O pin and the inside of the macro cell on the layer. For a hierarchical design, only the same metal layer as the I/O pin, or the layer above it, is needed for partial antenna ratio calculation. If you do not specify a layer name, the value applies to all layers.
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations,"
Note: Metal area is calculated by adding the pin's geometric metal area and the ANTENNAPARTIALMETALAREA value.

ANTENNAPARTIALMETALSIDEAREA value [LAYER layerName]
Specifies the partial metal side wall area connected directly to the I/O pin and the inside of the macro cell on the layer. For a hierarchical design, only the same metal layer as the I/O pin or the layer above is needed for partial antenna ratio calculation. If you do not specify a layer name, the value applies to all layers.
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations,"
DIRECTION \{INPUT | OUTPUT [TRISTATE] | INOUT | FEEDTHRU\}
Specifies the pin type. Most current tools do not usually use this keyword. Typically, pin directions are defined by timing library data, and not from LEF.
Default: INPUT
Value: Specify one of the following:

| INPUT | Pin that accepts signals coming into the cell. |
| :--- | :--- |
| OUTPUT | Pin that drives signals out of the cell. The |
| [TRISTATE] | optional TRISTATE argument indicates tristate <br> output pins for ECL designs. |
| INOUT | Pin that can accept signals going either in or out <br> of the cell. |
| FEEDTHRU | Pin that goes completely across the cell. |

## LEF/DEF 5.7 Language Reference

LEF Syntax

## GROUNDSENSITIVITY groundPinName

Specifies that if this pin is connected to a tie-low connection (such as 1'bo in Verilog), it should connect to the same net to which groundPinName is connected.
groundPinName must match a pin on this macro that has a USE GROUND attribute. The ground pin definition can follow later in this MACRO statement; it does not have to be defined before this pin definition. For an example, see Example 1-25 on page 198.
Note: GROUNDSENSITIVITY is useful only when there is more than one ground pin in the macro. By default, if there is only one USE GROUND pin, then the tie-low connections are already implicitly defined (that is, tie-low connections are connected to the same net as the one ground pin).

## MUSTJOIN pinName

Specifies the name of another pin in the cell that must be connected with the pin being defined. MUSTJOIN pins provide connectivity that must be made by the router. In the LEF file, each pin referred to must be defined before the referring pin. The remaining MUSTJOIN pins in the set do not need to be defined contiguously.
Note: MUSTJOIn pin names are never written to the DEF file; they are only used by routers to add extra connection points during routing.

MUSTJOIN pins have the following restrictions:

- A set of muStuoin pins cannot have more than one schematic pin.
- Nonschematic mUSTJOIN pins must be defined after all other pins.

Schematic and nonschematic muSTJoin pins are handled in slightly different ways. For schematic MUSTJOIN pins, the pins are added to the pin set for the (unique) net associated with the ring for each component instance of the macro. The net is routed in the usual manner, and routing data for the mUSTJOIN pins are included in routing data for the net.
The mustioin routing is not necessarily performed before the rest of the net. Timing relations should not be given for MUSTJOIN pins, and internal mustjoin routing is modeled as lumped capacitance at the schematic pin.
Nonschematic mUSTJOIN pin sets get routed in the usual manner. However, when the DEF file is outputted, routing data is reported in the NETS section of the file as follows:

```
MUSTJOIN compName pinName + regularWiring ;
```

Here, compName is the component and pinName is an arbitrary pin in the set. You can also use the preceding to input prewiring for the MUSTJOin pin, using FIXED or COVER.

## LEF/DEF 5.7 Language Reference LEF Syntax

NETEXPR "netExprPropName defaultNetName"

Specifies a net expression property name (such as power1 or power2) and a default net name. If net Expr PropName matches a net expression property in the netlist (such as in Verilog, VHDL, or OpenAccess), then the property is evaluated, and the software identifies a net to which to connect this pin. If this property does not exist, defaultNetName is used for the net name.
netExprPropName must be a simple identifier in order to be compatible with other languages, such as Verilog and CDL. Therefore, it can only contain alphanumeric characters, and the first character cannot be a number. For example, power2 is a legal name, but 2power is not. You cannot use characters such as \$ and !. The default Name can be any legal DEF net name.

## Example 1-25 Net Expression and Supply Sensitivity

The following statement defines sensitivity and net expression values for four pins on the macro myMac:

```
MACRO myMac
 PIN in1
 SUPPLYSENSITIVITY vddpin1 ; #If in1 is 1'b1, use net connected to vddpin1.
 #Note that no GROUNDSENSITIVITY is needed
 #because only one ground pin exists.
 #Therefore, 1'b0 implicitly means net from
 #pin gndpin.
 END in1
 PIN vddpin1
 NETEXPR "power1 VDD1" ; #If power1 net expression is defined in the
 #netlist, use it to find the net connection. If
 #not, use net VDD1.
 END vddpin1
 PIN vddpin2
 NETEXPR "power2 VDD2" ; #If power2 net expression is defined in the
 #netlist, use it to find the net connection.If
 #not, use net VDD2.
END vddpin2
PIN gndpin
```


# LEF/DEF 5.7 Language Reference 

## LEF Syntax

```
NETEXPR "gnd1 GND" ; #If gndl net expression is defined in the
 #netlist, use it to find the net connection. If
 #not, use net GND.
END gndpin
END myMac
```

PIN pinName
Specifies the name for the library pin.

## PORT

Starts a pin port statement that defines a collection of geometries that are electrically equivalent points (strongly connected). A pin can have multiple ports. Each PORT of the same PIN is considered weakly connected to the other PORTS, and should already be connected inside the MACRO (often through a resistive path).
Strongly connected shapes (that is, multiple shapes of one PORT) indicate that a signal router is allowed to connect to one shape of the PORT, and continue routing from another shape of the same PORT.
Weakly connected shapes (that is, separate PORTs of the same PIN) are assumed to be connected through resistive paths inside the MACRO that should not be used by routers. The signal router should connect to one or the other PORT, but not both.
Power routers should connect to every PORT statement, if there is more than one for a given PIN. For example, if a block has several PORTS on the boundary for the VSS PIN, each PORT should be connected by the power router.
The syntax for describing pin port statements is defined as follows:

```
{PORT
 [CLASS {NONE | CORE | BUMP} ;]
 {layerGeometries} ...
END} ...
CLASS {NONE | CORE | BUMP}
```


## LEF/DEF 5.7 Language Reference

## LEF Syntax

Specifies the port type.
Default: NONE
A port can be one of the following:
BUMP-Specifies the port is a bump connection point. A bump port should only be connected by routing to a bump (normally a MACRO CLASS COVER BUMP cell).

CORE-Specifies the port is a core ring connection point. A core port is used only on power and ground I/O drivers used around the periphery. The core port indicates which power or ground port to connect to a core ring for the chip (inside the I/O pads).
NONE-Specifies the port is a default port that is connected by normal "default" routing. NONE is the default value if no PORT CLASS statement is specified.
layerGeometries
Defines port geometries for the pin. You specify port geometries using layer geometries syntax. See "Layer Geometries" on page 187 for syntax information.

PROPERTY propName propVal
Specifies a numerical or string value for a pin property defined in the PROPERTYDEFINITIONS statement. The propName you specify must match the propName listed in the PROPERTYDEFINITIONS statement.

## SHAPE

Specifies a pin with special connection requirements because of its shape.
Value: Specify one of the following:
ABUTMENT $\quad$ Pin that goes straight through cells with a regular shape and connects to pins on adjoining cells without routing.

RING Pin on a large block that forms a ring around the block to allow connection to any point on the ring. Cover macro special pins also typically have shape RING.
FEEDTHRU Pin with an irregular shape with a jog or neck within the cell.

## LEF/DEF 5.7 Language Reference

LEF Syntax

Figure 1-84 on page 201 shows an example of an abutment and a feedthrough pin.
Note: When you define feedthrough and abutment pins for use with power routing, you must do the following:

- Feedthrough pin widths must be the same on both edges and consistent with the routing width used with the power route commands.
- Feedthrough pin centers on both edges must align for successful routing.

Power pins in fork shapes must be represented in two ports and be defined as a feedthrough shape. In most other cases, power pin geometries do not represent more than one port.

- An abutment pin must have at least one geometric rectangle with layer and width consistent with the values specified in the power route commands.


## Figure 1-84



## SUPPLYSENSITIVITY powerPinName

Specifies that if this pin is connected to a tie-high connection (such as $1^{\prime}$ b1 in Verilog), it should connect to the same net to which powerPinName is connected.
powerPinName must match a pin on this macro that has a USE POWER attribute. The power pin definition can follow later in this MACRO statement; it does not have to be defined before this pin definition. For an example, see Example 1-25 on page 198.
Note: SUPPLYSENSITIVITY is useful only when there is more than one power pin in the macro. By default, if there is only one USE POWER pin, then the tie-high connections are already implicitly defined (that is, tie-high connections are connected to the same net as the one power pin).

## TAPERRULE ruleName

Specifies the nondefault rule to use when tapering wires to the pin.

## LEF/DEF 5.7 Language Reference

## LEF Syntax

## USE \{ANALOG | CLOCK | GROUND | POWER | SIGNAL\}

Specifies how the pin is used. Pin use is required for timing analysis.
Default: SIGNAL
Value: Specify one of the following:
ANALOG Pin is used for analog connectivity.
CLOCK Pin is used for clock net connectivity.
GROUND Pin is used for connectivity to the chip-level ground distribution network.

POWER

SIGNAL
Pin is used for connectivity to the chip-level power distribution network. Pin is used for regular net connectivity.

## Manufacturing Grid

[MANUFACTURINGGRID value ;]
Defines the manufacturing grid for the design. The manufacturing grid is used for geometry alignment. When specified, shapes and cells are placed in locations that snap to the manufacturing grid.

## value

Specifies the value for the manufacturing grid, in microns. value must be a positive number.
Type: Float

## Maximum Via Stack

[MAXVIASTACK value [RANGE bottomLayer topLayer] ;]
Specifies the maximum number of single-cut stacked vias that are allowed on top of each other (that is, in one continuous stack). A via is considered to be in a stack with another via if the cut of the first via overlaps any part of the cut of the second via. A double-cut or larger via interrupts the stack. For example, a via stack consisting of single via12, single via23, doublecut via34, and single via45 has a single-cut stack of height 2 for via12 and via23, and a single-cut stack of height 1 for via45 because the full stack is broken up by double-cut via34.

The MAXVIASTACK statement should follow the LAYER statements in the LEF file; however, it is not attached to any particular layer. You can specify only one MAXVIASTACK statement in a LEF file.

## LEF/DEF 5.7 Language Reference

## LEF Syntax

RANGE bottomLayer topLayer
Specifies a range of layers for which the maximum stacked via rule applies. If you do not specify a range, the value applies for all layers.
value
Specifies the maximum allowed number of single-cut stacked vias.
Type: Integer

## Example 1-26 Maximum Via Stack Statement

The following MAXVIASTACK statement specifies that only four stacked vias are allowed on top of each other. This rule applies to all layers.

```
LAYER metal9
```

    ...
    END LAYER
MAXVIASTACK 4 ;

If you specify the following statement instead, the stacked via limit applies only to layers metal1 through metal7.

```
MAXVIASTACK 4 RANGE m1 m7 ;
```


## Nondefault Rule

```
[NONDEFAULTRULE ruleName
 [HARDSPACING ;]
 {LAYER layerName
 WIDTH width ;
 [DIAGWIDTH diagWidth ;]
 [SPACING minSpacing ;]
 [WIREEXTENSION value ;]
 END layerName} ...
 [VIA viaStatement] ...
 [USEVIA viaName ;] ...
 [USEVIARULE viaRuleName ;] ...
 [MINCUTS cutLayerName numCuts ;] ...
 [PROPERTY propName propValue ;] ...
END ruleName]
```

Defines the wiring width, design rule spacing, and via size for regular (signal) nets. You do not need to define cut layers for the nondefault rule.

## LEF/DEF 5.7 Language Reference

LEF Syntax

Some tools have limits on the total number of nondefault rules they can store. This limit can be as low as 30; however most tools that support 90 nanometer rules (that is, LEF 5.5 and newer) can handle at least 255.

Note: Use the VIA statement to define vias for nondefault wiring.

DIAGWIDTH diagWidth
Specifies the diagonal width for layerName, when 45-degree routing is used.
Default: The minimum width value (WIDTH minWidth)
Type: Float, specified in microns

## HARDSPACING

Specifies that any spacing values that exceed the LEF LAYER spacing requirements are "hard" rules instead of "soft" rules. By default, routers treat extra spacing requirements as soft rules that are high cost to violate, but not real spacing violations. However, in certain situations, the extra spacing should be treated as a hard, or real, spacing violation, such as when the route will be modified with a post-process that replaces some of the extra space with metal.

## LAYER layerName . . . END layerName

Specifies the layer for the various width and spacing values. This layer must be a routing layer. Every routing layer must have a WIDTH keyword and value specified. All other keywords are optional.

MINCUTS cutLayerName numCuts
Specifies the minimum number of cuts allowed for any via using the specified cut layer. Routers should only use vias (generated or predefined fixed vias) that have at least numCuts cuts in the via.
Type: (numCuts) Positive integer

## NONDEFAULTRULE ruleName

Specifies a name for the new routing rule. The name DEFAULT is reserved for the default routing rule used by most nets. The default routing rule is constructed automatically from the LEF LAYER statement WIDTH, DIAGWIDTH, SPACING, and WIREEXTENSION values, from the LEF VIA statement (any vias with the DEFAULT keyword), and from the LEF VIARULE statement (any via rules with the DEFAULT keyword). If you specify DEFAULT for ruleName, the automatic creation is overridden, and the default routing rule is defined directly from this rule definition.

## PROPERTY propName propValue

Specifies a numerical or string value for a nondefault rule property defined in the PROPERTYDEFINITIONS statement. The propName you specify must match the propName listed in the PROPERTYDEFINITIONS statement.

## LEF/DEF 5.7 Language Reference

LEF Syntax

SPACING minSpacing
Specifies the recommended minimum spacing for layerName of routes using this NONDEFAULTRULE to other geometries. If the spacing is given, it must be at least as large as the foundry minimum spacing rules defined in the LAYER definitions. Routers should attempt to meet this recommended spacing rule; however, the spacing rule can be relaxed to the foundry spacing rules along some parts of the wire if the routing is very congested, or if it is difficult to reach a pin.
Adding extra space to a nondefault rule allows a designer to reduce cross-coupling capacitance and noise, but a clean route with no actual foundry spacing violations will still be allowed, unless the HARDSPACING statement is specified.
Type: Float, specified in microns

## USEVIA viaName

Specifies a previously defined via from the LEF VIA statement, or a previously defined NONDEFAULTRULE via to use with this routing rule.

## USEVIARULE viaRuleName

Specifies a previously defined VIARULE GENERATE rule to use with this routing rule. You cannot specify a rule from a VIARULE without a GENERATE keyword.

VIA viaStatement
Defines a new via. You define nondefault vias using the same syntax as default vias. For syntax information, see "Via" on page 215. All vias, default and nondefault, must have unique via names. If you define more than one via for a rule, the router chooses which via to use.

Note: Defining a new via is no longer recommended, and is likely to become obsolete. Instead, vias should be predefined in a LEF VIA statement, then added to the nondefault rule using the USEVIA keyword.

```
WIDTH width
```

Specifies the required minimum width for layerName.
Type: Float, specified in microns

## WIREEXTENSION value

Specifies the distance by which wires are extended at vias. Enter 0 (zero) to specify no extension. Values other than 0 must be greater than or equal to half of the routing width for the layer, as defined in the nondefault rule.
Default: Wires are extended half of the routing width
Type: Float, specified in microns

## Example 1-27 Nondefault Rule Statement

## LEF/DEF 5.7 Language Reference

## LEF Syntax

Assume two default via rules were defined:

```
VIARULE via12rule GENERATE DEFAULT
 LAYER metal1 ;
END vial2rule
VIARULE via23rule GENERATE DEFAULT
 LAYER metal2 ;
 ...
END via23rule
```

- Assuming the minimum width is $1.0 \mu \mathrm{~m}$, the following nondefault rule creates a $1.5 x$ minimum width wire using default spacing:

```
NONDEFAULTRULE wide1_5x
 LAYER metal1
 WIDTH 1.5 ; #metal1 has a 1.5 um width
 END metal1
 LAYER metal2
 WIDTH 1.5 ;
 END metal2
 LAYER metal3
 WIDTH 1.5 ;
 END metal3
END wide1 5x
```

Note: If there were no default via rules, then a VIA, USEVIA, or USEVIARULE keyword would be required. Because there are none defined, the default via rules are implicitly inherited for this nondefault rule; therefore, via12rule and via23rule would be used for this routing rule.

- The following nondefault rule creates a $3 x$ minimum width wire using default spacing with at least two-cut vias:

```
NONDEFAULTRULE wide3x
 LAYER metal1
 WIDTH 3.0 ; #metall has 3.0 um width
 END metal1
 LAYER metal2
 WIDTH 3.0 ;
 END metal2
 LAYER metal3
 WIDTH 3.0 ;
 END metal3
 #viarule12 and viarule23 are used implicitly
```


## LEF/DEF 5.7 Language Reference

 LEF Syntax```
    MINCUTS cut12 2 ; #at least two-cut vias are required for cut12
    MINCUTS cut23 2 ;
END wide3x
```

- The following nondefault rule creates an "analog" rule with its own special vias, and with hard extra spacing:

```
NONDEFAULTRULE analog_rule
    HARDSPACING ; #do not let any other signal close to this one
    LAYER metal1
        WIDTH 1.5 ; #metal1 has 1.5 um width
        SPACING 3.0 ; #extra spacing of 3.0 um
    END metal1
    LAYER metal2
        WIDTH 1.5
        SPACING 3.0
    END metal2
    LAYER metal3
        WIDTH 1.5
        SPACING 3.0
    END metal3
    #Use predefined "analog vias"
    #The DEFAULT VIARULES will not be inherited.
    USEVIA vial2_fixed_analog_via ;
    USEVIA via_23_fixed_analog_via ;
END analog_rule
```


Property Definitions

```
[PROPERTYDEFINITIONS
    [objectType propName propType [RANGE min max]
        [value | "stringValue"]
    ;] ...
END PROPERTYDEFINITIONS]
```

Lists all properties used in the LEF file. You must define properties in the PROPERTYDEFINITIONS statement before you can refer to them in other sections of the LEF file.

LEF/DEF 5.7 Language Reference

LEF Syntax

objectType
Specifies the object type being defined. You can define properties for the following object types:

```
LAYER
LIBRARY
MACRO
NONDEFAULTRULE
PIN
VIA
VIARULE
```


propName

Specifies a unique property name for the object type.
proptype
Specifies the property type for the object type. You can specify one of the following property types:

INTEGER

REAL
STRING

RANGE min max
Limits real number and integer property values to a specified range. That is, the value must be greater than or equal to min and less than or equal to max.
value | "stringValue"
Assigns a numeric value or a name to a LIBRARY object type.
Note: Assign values to other properties in the section of the LEF file that describes the object to which the property applies.

Example 1-28 Property Definitions Statement

The following example shows library, via, and macro property definitions.

LEF/DEF 5.7 Language Reference

LEF Syntax

LIBRARY versionNum INTEGER 12;
LIBRARY title STRING "Cadence96";
VIA count INTEGER RANGE 1 100;
MACRO weight REAL RANGE 1.0 100.0;
MACRO type STRING;
END PROPERTYDEFINITIONS

Site

```
SITE siteName
    CLASS {PAD | CORE} ;
    [SYMMETRY {X | Y | R90} ... ;]
    [ROWPATTERN {previousSiteName siteOrient} ... ; ]
    SIZE width BY height ;
END siteName
```

Defines a placement site in the design. A placement site gives the placement grid for a family of macros, such as I/O, core, block, analog, digital, short, tall, and so forth. SITE definitions can be used in DEF ROW statements.

CLASS \{PAD | CORE\} Specifies whether the site is an I/O pad site or a core site.
ROWPATTERN \{previousSiteName siteOrient\}
Specifies a set of previously defined sites and their orientations that together form siteName.
previoussiteName
Specifies the name of a previously defined site. The height of each previously defined site must be the same as the height specified for siteName, and the sum of the widths of the previously defined sites must equal the width specified for siteName.

```
siteOrient
```

Specifies the orientation for the previously defined site. This value must be one of N, S, E, W, FN, FS, FE, and FW. For more information on orientations, see "Specifying Orientation" in the DEF COMPONENT section.

Example 1-29 Site Row Pattern Statement

LEF/DEF 5.7 Language Reference

LEF Syntax

The following example defines three sites: Fsite; Lsite; and mySite, which consists of a pattern of Fsite and Lsite sites:

```
SITE Fsite
    CLASS CORE ;
    SIZE 4.0 BY 7.0 ; #4.0 um width, 7.0 um height
END Fsite
SITE Lsite
    CLASS CORE ;
    SIZE 6.0 BY 7.0 ; #6.0 um width, 7.0 um height
END Lsite
SITE mySite
    ROWPATTERN Fsite N Lsite N Lsite FS ; #Pattern of F + L + flipped L
    SIZE 16.0 BY 7.0 ; #Width = width(F + L + L)
END mySite
```

Figure 1-85 on page 210 illustrates some DEF rows made up of mySite sites.
Figure 1-85


```
ROW ROW_0 mySite 1000 1000 N DO 100 BY 1 STEP 1600 0 ;
ROW ROW_1 mySite 1000 1700 FS DO 100 BY 1 STEP 1600 0 ;
```

SITE siteName Specifies the name for the placement site.
SIZE width BY height
Specifies the dimensions of the site in normal (or north) orientation, in microns.

```
SYMMETRY {X | Y R90}
```


LEF/DEF 5.7 Language Reference

LEF Syntax

Indicates which site orientations are equivalent. The sites in a given row all have the same orientation as the row. Generally, site symmetry should be used to control the flipping allowed inside the rows. For more information on defining symmetry, see "Defining Symmetry" on page 184.

Possible orientations include:
$\mathrm{X} \quad$ Site is symmetric about the x axis. This means that N and FS sites are equivalent, and FN and S sites are equivalent. A macro with an orientation of N matches N or FS rows.
$\mathrm{Y} \quad$ Site is symmetric about the y axis. This means that N and FN sites are equivalent, and FS and S sites are equivalent. A macro with an orientation of N matches N or FN rows.
$\mathrm{X} Y \quad$ Site is symmetric about the x and y axis. This means that N, FN, FS, and S sites are equivalent. A macro with orientation N matches $\mathrm{N}, \mathrm{FN}, \mathrm{FS}$, or S rows.

R90 Site is symmetric when rotated 90 degrees. Typically, this value is not used.

Note: Typically, a site for single-height standard cells uses symmetry Y, and a site for double-height standard cells uses symmetry X Y.

Units

```
[UNITS
    [TIME NANOSECONDS convertFactor ;]
    [CAPACITANCE PICOFARADS convertFactor ;]
    [RESISTANCE OHMS convertFactor ;]
    [POWER MILLIWATTS convertFactor ;]
    [CURRENT MILLIAMPS convertFactor ;]
    [VOLTAGE VOLTS convertFactor ;]
    [DATABASE MICRONS LEFConvertFactor ;]
    [FREQUENCY MEGAHERTZ convertFactor ;]
```

END UNITS]

Defines the units of measure in LEF. The values tell you how to interpret the numbers found in the LEF file. Units are fixed with a convertFactor for all unit types, except database units and capacitance. For more information, see "Convert Factors" on page 213. Currently, other values for convertFactor appearing in the UNITS statement are ignored.

LEF/DEF 5.7 Language Reference

LEF Syntax

The UNITS statement is optional and, when used, must precede the LAYER statements.

CAPACITANCE PICOFARADS convertFactor
Interprets one LEF capacitance unit as 1 picofarad.
CURRENT MILLIAMPS convertFactor
Interprets one LEF current unit as 1 milliamp.
DATABASE MICRONS LEFConvertFactor
Interprets one LEF distance unit as multiplied when converted into database units.

If you omit the DATABASE MICRONS statement, a default value of 100 is recorded as the LEFconvertFactor in the database. In this case, one micron would equal 100 database units.

FREQUENCY MEGAHERTZ convertFactor
Interprets one LEF frequency unit as 1 megahertz.
POWER MILLIWATTS convertFactor
Interprets one LEF power unit as 1 milliwatt.
RESISTANCE OHMS convertFactor
Interprets one LEF resistance unit as 1 ohm.
TIME NANOSECONDS convertFactor
Interprets one LEF time unit as 1 nanosecond.
VOLTAGE VOLTS convertFactor
Interprets one LEF voltage unit as 1 volt.

Database Units Information

Database precision is relative to Standard International (SI) units. LEF values are converted to integer values in the library database as follows.

SI unit	Database precision
1 nanosecond	$=1,000 \mathrm{DBUs}$
1 picofarad	$=1,000,000 \mathrm{DBUs}$

LEF/DEF 5.7 Language Reference

LEF Syntax

SI unit	Database precision
1 ohm	$=10,000$ DBUs
1 milliwatt	$=10,000$ DBUs
1 milliamp	$=10,000$ DBUs
1 volt	$=1,000$ DBUs

Convert Factors

LEF supports values of 100, 200, 1000, 2000, 10,000, and 20,000 for $L E F$ convertFactor. The following table illustrates the conversion of LEF distance units into database units.

LEFconvertFactor	LEF	Database Units
100	1 micron	100
200	1 micron	200
1000	1 micron	1000
2000	1 micron	2000
10,000	1 micron	10,000
20,000	1 micron	20,000

The DEF database precision cannot be more precise than the LEF database precision. This means the DEF convert factor must always be less than or equal to the LEF convert factor. The following table shows the valid pairings of the LEF convert factor and the corresponding DEF convert factor.

LEFconvertFactor	Legal DEFconvertFactors
100	100
200	100,200
1000	$100,200,1000$
2000	$100,200,1000,2000$
10,000	$100,200,1000,2000,10,000$
20,000	$100,200,1000,2000,10,000,20,000$

LEF/DEF 5.7 Language Reference

LEF Syntax

An incremental LEF should have the same value as a previous LEF. An error message warns you if an incremental LEF has a different value than what is recorded in the database.

Use Min Spacing

[USEMINSPACING OBS \{ ON | OFF \} ;]
Defines how minimum spacing is calculated for obstruction (blockage) geometries. geometries (MACRO OBS shapes). Default: ON

OFF Spacing is computed to MACRO OBS shapes as if they were actual routing shapes. A wide OBS shape would use wide wire spacing rules, and a thin OBS shapes would use thin wire spacing rules.
Spacing is computed as if the MACRO OBS shapes were min-width wires. Some LEF models abstract many min-width wires as a single large OBS shape; therefore using wide wire spacing would be too conservative.

Note: OFF is the recommended value to specify because it is a better abstract model for the various wide wire spacing rules that are more common at process nodes of 130nm and smaller. Certain older style LEF abstracts use ON, but it can have unexpected side effects (such as hidden DRC errors) if the abstracts are not created very carefully. You cannot mix both types of LEF abstracts at the same time.

Version

VERSION number ;
Specifies which version of the LEF syntax is being used. number is a string of the form major.minor[.subMinor], such as 5.7.

Note: Many applications default to the latest version of LEF/DEF supported by the application (which depends on how old the application is). The latest version as described by this document is 5.7. However, a default value of 5.7 is not formally part of the language

LEF/DEF 5.7 Language Reference
 LEF Syntax

definition; therefore, you cannot be sure that all applications use this default value. Also, because the default value varies with the latest version, you should not depend on this.

```
Via
VIA viaName [DEFAULT]
    { VIARULE viaRuleName ;
            CUTSIZE xSize ySize ;
            LAYERS botMetalLayer cutLayer topMetalLayer ;
            CUTSPACING xCutSpacing yCutSpacing ;
            ENCLOSURE xBotEnc yBotEnc xTopEnc yTopEnc ;
            [ROWCOL numCutRows numCutCols ;]
            [ORIGIN xOffset yOffset ;]
            [OFFSET xBOtOffset yBotOffset xTopOffset yTopOffset ;]
            [PATTERN cutPattern ;]
    }
    | {[RESISTANCE resistValue ;]
        {LAYER layerName ;
            { RECT pt pt ;
            | POLYGON pt pt pt ...;} ...
        } ...
        }
    [PROPERTY propName propVal ;] ...
END viaName
```

Defines two types of vias: fixed vias and generated vias. All vias consist of shapes on three layers: a cut layer and two routing (or masterslice) layers that connect through that cut layer.

A fixed via is defined using rectangles or polygons, and does not use a VIARULE. The fixed via name must mean the same via in all associated LEF and DEF files.

A generated via is defined using VIARULE parameters to indicate that it was derived from a VIARULE GENERATE statement. For a generated via, the via name is only used locally inside this LEF file. The geometry and parameters are maintained, but the name can be freely changed by applications that use this via when writing out LEF and DEF files. For example, large blocks that include generated vias as part of the LEF MACRO PIN statement can define generated vias inside the same LEF file without concern about via name collisions in other LEF files.

Note: Use the VIARULE GENERATE statement to define special wiring.
CUTSIZE xSize ySize
Specifies the required width (xSize) and height (ySize) of the cut layer rectangles. Type: Float, specified in microns

LEF/DEF 5.7 Language Reference

LEF Syntax

CUTSPACING xCutSpacing yCutSpacing
Specifies the required x and y spacing between cuts. The spacing is measured from one cut edge to the next cut edge.
Type: Float, specified in microns
DEFAULT
Identifies the via as the default via between the defined layers. Default vias are used for default routing by the signal routers.
If you define more than one default via for a layer pair, the router chooses which via to use. Some routers limit the number of vias for each layer pair to 30. You must define default vias between metal1 and masterslice layers if there are pins on the masterslice layers.
All vias consist of shapes on three layers: a cut layer and two routing (or masterslice) layers that connect through that cut layer. There should be at least one RECT or POLYGON on each of the three layers.

ENCLOSURE xBotEnc yBotEnc xTopEnc yTopEnc
Specifies the required x and y enclosure values for the bottom and top metal layers. The enclosure measures the distance from the cut array edge to the metal edge that encloses the cut array.
Type: Float, specified in microns
Note: It is legal to specify a negative number, as long as the resulting metal size is positive.

LAYER layerName

Specifies the layer on which to create the rectangles that make up the via. All vias consist of shapes on three layers: a cut layer and two routing (or masterslice) layers that connect through that cut layer. There should be at least one RECT or POLYGON on each of the three layers.

LAYERS botMetalLayer cutLayer topMetallayer
Specifies the required names of the bottom routing layer, cut layer, and top routing layer. These layer names must be previously defined in layer definitions, and must match the layer names defined in the specified LEF viaRuleName.

OFFSET xBotOffset yBotOffset xTopOffset yTopOffset

Specifies the x and y offset for the bottom and top metal layers. By default, the 0,0 origin of the via is the center of the cut array, and the enclosing metal rectangles. These values allow each metal layer to be offset independently. After the non-shifted via is computed, the metal layer rectangles are offset by adding the appropriate values-the x / y BotOffset values to the metal layer below the cut layer, and the x / y Topoffset values to the metal layer above the cut layer. These offsets are in addition to any offset

LEF/DEF 5.7 Language Reference

LEF Syntax

caused by the ORIGIN values.
Default: 0, for all values
Type: Float, specified in microns
ORIGIN xOffset yOffset
Specifies the x and y offset for all of the via shapes. By default, the 0,0 origin of the via is the center of the cut array, and the enclosing metal rectangles. After the non-shifted via is computed, all cut and metal rectangles are offset by adding these values.
Default: 0, for both values
Type: Float, specified in microns

PATTERN cutPattern

Specifies the cut pattern encoded as an ASCII string. This parameter is only required when some of the cuts are missing from the array of cuts, and defaults to "all cuts are present," if not specified.
For information on and examples of via cut patterns, see "Creating Via Cut Patterns" on page 330.
The cutPattern syntax uses "_" as a separator, and is defined as follows:
numRows_rowDefinition
[_numRows_rowDefinition] ...
numRows Specifies a hexadecimal number that indicates how many times to repeat the following row definition. This number can be more than one digit.
rowDefinition Defines one row of cuts, from left to right.

The rowDefinition syntax is defined as follows:
\{[RrepeatNumber]hexDigitCutPattern\} ...
hexDigitCutPattern
Specifies a single hexadecimal digit that encodes a 4-bit binary value, in which 1 indicates a cut is present, and 0 indicates a cut is not present.
repeatNumber Specifies a single hexadecimal digit that indicates how many times to repeat hexDigitCutPattern.

POLYGON pt pt pt
Specifies a sequence of at least three points to generate a polygon geometry. The polygon edges must be parallel to the x axis, to the y axis, or at a 45-degree angle. Each POLYGON keyword defines a polygon generated by connecting each successive point,

LEF/DEF 5.7 Language Reference

LEF Syntax

and then connecting the first and last points. The pt syntax corresponds to an $\mathrm{x} y$ coordinate pair, such as -0.2 1.0.
Type: Float, specified in microns

Example 1-30 Via Polygon

The following via definition creates a polygon geometry used by X-routing applications:

```
VIA myVia23
    LAYER metal2 ;
    POLYGON -2.1 -1.0 -0.2 1.0 2.1 1.0 0.2 -1.0 ;
    LAYER cut23 ;
    RECT -0.4 -0.4 0.4 0.4 ;
    LAYER metal3 ;
    POLYGON -0.2 -1.0 -2.1 1.0 0.2 1.0 2.1 -1.0 ;
END myVia23
```

PROPERTY propName propVal

Specifies a numerical or string value for a via property defined in the PROPERTYDEFINITIONS statement. The propName you specify must match the propName listed in the PROPERTYDEFINITIONS statement.

RECT pt pt Specify the corners of a rectangular shape in the via. The pt syntax corresponds to an x y coordinate pair, such as -0.4-4.0. For vias used only in macros or pins, reference locations and rectangle coordinates must be consistent.
Type: Float, specified in microns
RESISTANCE resistValue
Specifies the lumped resistance for the via. This is not a resistance per via-cut value; it is the total resistance of the via. By default, via resistance is computed from the via LAYER RESISTANCE value; however, you can override that value with this value. resistValue is ignored if a via rule is specified, because only the VIARULE definition or a cut layer RESISTANCE value gives the resistance for generated vias.
Type: Float, specified in ohms
Note: A RESISTANCE value attached to an individual via is no longer recommended.

ROWCOL numCutRows numCutCols

LEF/DEF 5.7 Language Reference
 LEF Syntax

Specifies the number of cut rows and columns that make up the via array.
Default: 1, for both values
Type: Positive integer, for both values
viaName Specifies the name for the via.
VIARULE viaRulename
Specifies the name of the LEF vIARULE that produced this via. This indicates that the via is the result of automatic via generation, and that the via name is only used locally inside this LEF file. The geometry and parameters are maintained, but the name can be freely changed by applications that use this via when writing out LEF and DEF files.
viaRuleName must be specified before you define any of the other parameters, and must refer to a previously defined VIARULE GENERATE rule name. It cannot refer to a VIARULE without a GENERATE keyword.

Specifying the reserved via rule name of DEFAULT indicates that the via should use a previously defined VIARULE GENERATE rule with the DEFAULT keyword that exists for this routing-cut-routing layer combination. This makes it possible for an IP block user to use existing via rules from the normal LEF technology section instead of requiring it to locally create its own via rules for just one LEF file.

Example 1-31 Generated Via Rule

The following via definition defines a generated via that is used only in this LEF file.

```
VIA myBlockVia
    VIARULE DEFAULT ;
        CUTSIZE 0.1 0.1 ;
        LAYERS metal1 via12 metal2 ;
        CUTSPACING 0.1 0.1 ;
        ENCLOSURE 0.05 0.01 0.01 0.05 ; #metal1 enclosure is 0.05 in x, 0.01 in y
    #metal2 enclosure is 0.01 in x, 0.05 in y
    ROWCOL 1 2 ; #1 row, 2 columns = 2 cuts
```

END myBlockVia

LEF/DEF 5.7 Language Reference
 LEF Syntax

Via Rule

```
VIARULE viaRuleName
    LAYER layerName ;
        DIRECTION {HORIZONTAL | VERTICAL} ;
        [WIDTH minWidth TO maxWidth ;]
    LAYER layerName ;
        DIRECTION {HORIZONTAL | VERTICAL} ;
        [WIDTH minWidth TO maxWidth ;]
    {VIA viaName ;} ...
    [PROPERTY propName propVal ;] ...
END viaRuleName
```

Defines which vias to use at the intersection of special wires of the same net.
Note: You should only use VIARULE GENERATE statements to create a via for the intersection of two special wires. In earlier versions of LEF, VIARULE GENERATE was not complete enough to cover all situations. In those cases, a fixed VIARULE (without a GENERATE keyword) was sometimes used. However, fixed VIARULE statements are no longer recommended.

DIRECTION \{HORIZONTAL | VERTICAL\}
Specifies the wire direction. If you specify a WIDTH range, the rule applies to wires of the specified DIRECTION that fall within the range. Otherwise, the rule applies to all wires of the specified DIRECTION on the layer.

LAYER layerName
Specifies the routing layers for the top or bottom of the via.
PROPERTY propName propVal
Specifies a numerical or string value for a via rules property defined in the PROPERTYDEFINITIONS statement. The propName you specify must match the propName listed in the PROPERTYDEFINITIONS statement.

VIA viaName Specifies a previously defined via to test for the current via rule. The first via in the list that can be placed at the location without design rule violations is selected. The vias must all have exactly three layers in them. The three layers must include the same routing layers as listed in the LAYER statements of the VIARULE, and a cut layer that is between the two routing layers.

VIARULE viaRuleName

LEF/DEF 5.7 Language Reference
 LEF Syntax

Specifies the name to identify the via rule.
WIDTH minWidth TO maxWidth
Specifies a wire width range. If the widths of two intersecting special wires fall within the wire width range, the VIARULE is used. To fall within the range, the widths must be greater than or equal to minWidth and less than or equal to maxWidth.

Note: WIDTH is defined by wire direction, not by layer. If you specify a WIDTH range, the rule applies to wires of the specified DIRECTION that fall within the range.

Example 1-32 Via Rule Statement

In the following example, whenever a metal1 wire with a width between 0.5 and 1.0 intersects a metal2 wire with a width between 1.0 and 2.0, the via generation code attempts to put a via12_1 at the intersection first. If the via12_1 causes a DRC violation, a via12_2 is then tried. If both fail, the default behavior from a VIARULE GENERATE statement for metal1 and metal2 is used.

```
VIARULE viaRule1
    LAYER metal1 ;
        DIRECTION HORIZONTAL ;
        WIDTH 0.5 TO 1.0 ;
    LAYER metal2 ;
        DIRECTION VERTICAL ;
        WIDTH 1.0 TO 2.0 ;
    VIA via12_1 ;
    VIA vial2_2 ;
END viaRule1
```


Via Rule Generate

```
VIARULE viaRuleName GENERATE [DEFAULT]
    LAYER routingLayerName ;
        ENCLOSURE overhang1 overhang2 ;
        [WIDTH minWidth TO maxWidth ;]
    LAYER routingLayerName ;
        ENCLOSURE overhang1 overhang2 ;
        [WIDTH minWidth TO maxWidth ;]
    LAYER cutLayerName ;
    RECT pt pt ;
    SPACING xSpacing BY ySpacing ;
    [RESISTANCE resistancePerCut ;]
```


LEF/DEF 5.7 Language Reference

 LEF SyntaxEND viaRuleName
Defines formulas for generating via arrays. You can use the VIARULE GENERATE statement to cover special wiring that is not explicitly defined in the VIARULE statement.

Rather than specifying a list of vias for the situation, you can create a formula to specify how to generate the cut layer geometries.

Note: Any vias created automatically from a VIARULE GENERATE rule that appear in the DEF NETS or SPECIALNETS sections must also appear in the DEF VIA section.

DEFAULT
Specifies that the via rule can be used to generate vias for the default routing rule. There can only be one VIARULE GENERATE DEFAULT for a given routing-cut-routing layer combination.

Example 1-33 Via Rule Generate Default

The following example defines a rule for generating vias for the default routing rule:

```
VIARULE vial2 GENERATE DEFAULT
    LAYER m1 ;
    ENCLOSURE 0.03 0.01 ; #2 sides need >= 0.03, 2 other sides need >= 0.01
    LAYER m2 ;
    ENCLOSURE 0.05 0.01 ; #2 sides need >= 0.05, 2 other sides need >= 0.01
    LAYER cut12 ;
    RECT -0.1 -0.1 0.1 0.1 ; # cut is . 20 by . }2
    SPACING 0.40 BY 0.40 ; #center-to-center spacing
    RESISTANCE 20; #ohms per cut
END vial2
```

ENCLOSURE overhang1 overhang2

LEF/DEF 5.7 Language Reference

Specifies that the via must be covered by metal on two opposite sides by at least overhang1, and on the other two sides by at least overhang2 (see Figure 1-86 on page 223). The via generation code then chooses the direction of overhang that best maximizes the number of cuts that can fit in the via.

Note: If there are also ENCLOSURE rules for the cut layer that apply to a given via, the via generation code can choose which ENCLOSURE rule is best between the VIARULE GENERATION ENCLOSURE values, or any LAYER ENCLOSURE values that apply to the same width via being generated.

For example, VIARULE GENERATE ENCLOSURE 0.20 .0 for WIDTH 0.0 TO 1.0 combined with a LAYER CUT rule of ENCLOSURE 0.1 0.1 WIDTH 0.5 , would mean that any via that is greater than or equal to ($>=$) 0.5 wide, can use the 0.2 0.0 enclosure values, or the 0.10 .1 enclosure values for that size via. See the LAYER CUT ENCLOSURE statement for more information on handling multiple enclosure rule.
Type: Float, specified in microns

Figure 1-86 Overhang

Example 1-34 Via Rule Generate Enclosure

The following example describes a formula for generating via cuts:

LEF/DEF 5.7 Language Reference LEF Syntax

```
VIARULE via12 GENERATE
    LAYER m1 ;
        ENCLOSURE 0.05 0.01 ; #2 sides must be >=0.05, 2 other sides must be >=0.01
        WIDTH 0.2 TO 100.0 ; #for m1, between 0.2 to 100 microns wide
    LAYER m2 ;
        ENCLOSURE 0.05 0.01 ; #2 sides must be >=0.05, 2 other sides must be >=0.01
        WIDTH 0.2 TO 100.0 ; #for m2, between 0.2 to 100 microns wide
    LAYER cut12
    RECT -0.07 -0.07 0.07 0.07 ; #cut is .14 by . 14
    SPACING 0.30 BY 0.30 ; #center-to-center spacing
END via12
```

The cut layer SPACING ADJACENTCUTS statement can override the VIARULE cut layer SPACING statements. For example, assume the following cut layer information is also defined in the LEF file:

```
LAYER cut12
```

SPACING 0.20 ADJACENTCUTS 3 WITHIN 0.22 ;

The $0.20 \mu \mathrm{~m}$ edge-to-edge spacing in the ADJACENTCUTS statement is larger than the VIARULE GENERATE example spacing of 0.16 ($0.30-0.14$). Whenever the VIARULE GENERATE rule creates a via that is larger than $2 x 2$ cuts (that is, $2 \times 3,3 \times 2,3 x 3$ and so on), the 0.20 spacing from the ADJACENTCUTS statement is used instead.

Note: The spacing in VIARULE GENERATE is center-to-center spacing, whereas the spacing in ADJACENTCUTS is edge-to-edge.

GENERATE Defines a formula for generating the appropriate via.
LAYER cutLayerName Specifies the cut layer for the generated via.
LAYER routingLayerName
Specifies the routing layers for the top and bottom of the via.
RECT pt pt
Specifies the location of the lower left contact cut rectangle.
RESISTANCE resistancePerCut
Specifies the resistance of the cut layer, given as the resistance per contact cut.
Default: The resistance value in the LAYER (Cut) statement Type: Float

LEF/DEF 5.7 Language Reference

LEF Syntax

SPACING xSpacing BY ySpacing
Defines center-to-center spacing in the x and y dimensions to create an array of contact cuts. The number of cuts of an array in each direction is the most that can fit within the bounds of the intersection formed by the two special wires. Cuts are only generated where they do not violate stacked or adjacent via design rules.

Note: This value can be overridden by the SPACING ADJACENTCUTS value in the cut layer statement.

VIARULE viaRuleName
Specifies the name for the rule.
The name Default is reserved and should not be used for any via rule name. In the LEF and DEF VIA definitions that use generated via parameters, the reserved DEFAULT name indicates the via rule with the DEFAULT keyword.

WIDTH minWidth TO maxWidth
Specifies a wire width range to use for this viARULE. This VIARULE can be used for wires with a width greater than or equal to (>=) minWidth, and less than or equal to (<=) maxWidth for the given routing layer. If no WIDTH statement is specified, the VIARULE can be used for all wire widths on the given routing layer.

LEF/DEF 5.7 Language Reference

 LEF Syntax
2

ALIAS Statements

This chapter contains information about the following topics.

- ALIAS Statements on page 227
- ALIAS Definition on page 228
- \quad ALIAS Examples on page 228
- ALIAS Expansion on page 229

ALIAS Statements

You can use alias statements in LEF and DEF files to define commands or parameters associated with the library or design. An alias statement can appear anywhere in a LEF or DEF file as follows:
\&ALIAS \&\&aliasName = aliasDefinition \&ENDALIAS
\&ALIAS and \&ENDALIAS are both reserved keywords and are not case sensitive. An alias statement has the following requirements:

- \&ALIAS must be the first token in the line in which it appears.
- aliasName is string name and must appear on the same line as \&ALIAS. It is case sensitive based on the value of NAMESCASENSITIVE in the LEF input, or the value of Input.Lef. Names. Case.Sensitive.
- aliasName cannot contain any of the following special characters: \#, space, tab, or control characters.
- \&ENDALIAS must be the last token in the line in which it appears.
- Multiple commands can appear in the alias definition, separated by semicolons.

However, the last command must not be terminated by a semicolon.

LEF/DEF 5.7 Language Reference
 ALIAS Statements

ALIAS Definition

The alias name (aliasName) is an identifier for the associated alias definition (aliasDefinition). The data reader stores the alias definition in the database. If the associated alias name already exists in the database, a warning is issued and the existing definition is replaced.

Alias definitions are text strings with the following properties:
■ aliasDefinition is any text excluding "\&ENDALIAS".

- All EOL, space, and tab characters are preserved.
- aliasDefinition text can expand to multiple lines.

ALIAS Examples

The following examples include legal and illegal alias statements:

- The following statement is legal.
\&ALIAS \&\&MAC = SROUTE ADDCELL AREA \&\&CORE \&ENDALIAS
- The following statement is illegal because MAC does not start with " $\& \&$ ".

```
&ALIAS MAC = SROUTE AREA &&CORE &ENDALIAS
```

- The following statement is illegal because $\& A L I A S$ is not the first token in this line.
(100200) \&ALIAS \&\&MAC = SROUTE AREA \&\&CORE \&ENDALIAS
- The following statement is legal. It contains multiple commands; the last command is not terminated by a semicolon.

```
$ALIAS $$ = INPUT LEF myfile.txt;
VERIFY LIBRARY
ENDALIAS
```

The following examples show legal and illegal alias names:
■ "Engineer_change" is a legal alias name.
\&\&Engineer_change
■ "\&Version\&History\&\&" is a legal alias name.
\&\&\&Version\&History\&\&
■ "design history" is an illegal alias name. It contains a space character and is considered as two tokens: an aliasName token "\&\&design," and a non-aliasName token "history".
\&\&design history

LEF/DEF 5.7 Language Reference

ALIAS Statements

■ "someName\#IO-pin-Num" is an illegal alias name. It contains a "\#" character and is translated as one aliasName token "\&\&someName". The "\#" is considered a comment character.
\&\&someName\#IO-pin-Num

ALIAS Expansion

Alias expansion is the reverse operation of alias definition. The following is the syntax for alias expansion.
\&\&aliasName
where aliasName is any name previously defined by an alias statement. If an aliasName does not exist in the database, no substitution occurs.

You use aliases as string expansion parameters for LEF or DEF files. An alias can substitute for any token of a LEF or DEF file.

LEF/DEF 5.7 Language Reference

ALIAS Statements

LEF/DEF 5.7 Language Reference

3

Working with LEF

This chapter contains information about the following topics.

- Incremental LEF on page 231
- Error Checking on page 232

Incremental LEF

INPUT LEF can add new data to the current database, providing an incremental LEF capability. Although it is possible to put an entire LEF library in one file, some systems require that you put certain data in separate files.

This feature also is useful, for example, when combined with the INPUT GDSII command, to extract geometric data from a GDSII-format file and add the data to the database.

When using INPUT LEF on a database that has been modified previously, save the previous version before invoking INPUT LEF. This provides a backup in case the library information has problems and the database gets corrupted or lost.

Important

The original LEF file, created with FINPUT LEF (or with INPUT LEF when no database is loaded), must contain all the layers.

Adding Objects to the Library

INPUT LEF can add the following objects to the database:

- New via
- New via rule
- Samenet spacings (if none have been specified previously)
- New macro

LEF/DEF 5.7 Language Reference

Working with LEF

If geometries have not been specified for an existing via, INPUT LEF can add layers and associated rectangle geometries. If not specified previously for a macro, INPUT LEF can add the following:

- FOREIGN statement
- EEQ
- LEQ
- Size
- Overlap geometries
- Obstruction geometries

If not previously specified for an existing macro pin, INPUT LEF can add the following:

- Mustjoins
- Ports and geometries

The database created by INPUT LEF can contain a partial library. Run VERIFY LIBRARY before proceeding.

If new geometries are added to a routed database, run VERIFY GEOMETRY and VERIFY CONNECTIVITY to identify new violations.

Important

When defining a pin with no port geometries with the intent of incrementally adding them, do not include an empty PORT statement as shown below.

```
MACRO abc
    PIN a
        PORT # dummy pin-port, do not
        END # include these two lines
    END a
```


Error Checking

To help develop, test, and debug generic libraries and parametric macros, LEF and DEF have a user-defined error checking facility. This facility consists of seven utilities that you can use

LEF/DEF 5.7 Language Reference

Working with LEF
from within a LEF or DEF file during the scanning phase of LEF/DEF readers. These utilities have the following features:

- A message facility that writes to one or more text files during LEF or DEF input
- An error handling facility that logs user detected warnings, errors, and fatal errors

The error checking utilities have the following syntax:

```
&CREATEFILE &fileAlias =
    { stringExpression
    | stringIF-ELSEexpression } ;
&OPENFILE &fileAlias ;
&CLOSEFILE &fileAlias ;
&MESSAGE
    {&fileAlias | &MSGWINDOW} = message;
&WARNING
    {&fileAlias | &MSGWINDOW} = message ;
&ERROR
    {&fileAlias | &MSGWINDOW} = message ;
&FATALERROR
    {&fileAlias | &MSGWINDOW} = message;
message =
    { &fileAlias | stringExpression
    | stringIF-ELSEexpression
    | stringIFexpression }
```


Message Facility

The message facility outputs user-defined messages during the scanning phase of LEF and DEF input. These messages can be directed to the message window.

\&CREATEFILE

The \&CREATEFILE utility first assigns a token (\&fileAlias) to represent a named file. The file name is derived from a previously defined string, a quoted string, or an IF-ELSE expression that evaluates to a string. The following example illustrates these three cases.

```
&DEFINES &messagefile = "demol.messages" ;
&CREATEFILE &outfile = &messagefile ;
&CREATEFILE &msgs =
    "/usr/asics/cmos/fif4/errors.txt" ;
&CREATEFILE &messages =
    IF &errortrap
        THEN "errs.txt"
        ELSE "/dev/null" ;
```

The derived file name must be a legal file name in the host environment. The default directory is the current working directory. The file names are case sensitive.

LEF/DEF 5.7 Language Reference

Working with LEF
\&CREATEFILE creates an empty file with the given name and opens the file. If the token is already bound to another open file, a warning is issued, the file is closed, and the new file is opened. If the file already exists, the version number is incremented.

\&CLOSEFILE and \&OPENFILE

The \&CLOSEFILE utility closes the file bound to a given token; \&OPENFILE opens the file bound to a given token. \&CLOSEFILE and \&OPENFILE control the number of open files. Each operating system has a limit for the number of open files. Therefore, \&CLOSEFILE might be needed to free up extra file descriptors.

Files are closed in the following ways.

- All user files are closed at the end of the scanning phase of the LEF and DEF readers.

■ All user files are closed if the scanning phase aborts.

- If \&CREATEFILE is invoked with a token that is already bound to an open file, that file is closed before opening the new file.

\&MESSAGE

The \&MESSAGE utility appends text to the file represented by the \&fileAlias token, or to the message window if $\& M S G W I N D O W$ is specified.
\&MSGWINDOW is a special file alias that is not created, opened, or closed. The assigned expression (right side of the statement) can be one of the following:

```
&fileAlias Must correspond to a valid file that has been successfully
    (or message window).
stringExpression
Either a string or a string token.
For example:
        &DEFINES &romword16 =
            "ROM word size = 16 bits" ;
        &MESSAGE &mesgs = "ROM size = 256" ;
        &MESSAGE &mesgs = &romword16 ;
stringIF-ELSEexpression
```

 opened. The contents of the file are appended to the target file
 String IF-ELSE expressions evaluate a Boolean expression and then branch to string values, for example:

LEF/DEF 5.7 Language Reference
 Working with LEF

```
&&MESSAGE &mesgs =
    IF (&&C_flag = 0)
        THE\overline{N} "FLAG C set to 0"
    ELSE IF ( &&C_flag = 1 )
        THEN "FLA\overline{G}}\textrm{C}\mathrm{ set to 1"
    ELSE "FLAG C set to 2" ;
```

As shown in this example, IF-ELSE expressions can be nested.
stringIFexpression
A string IF expression is an IF-ELSE expression without the ELSE phrase. The Boolean expression is evaluated, and if true, the THEN string is sent to the target file; if false, no string is sent, for example,

```
&MESSAGE &mesgs =
    IF ( &&buf = "INV_BIG" )
            THEN "INV_BIG`buffers" ;
```

Neither the file alias token nor \&MSGWINDOW can be part of the assigned expression.

Error-Checking Facility

In addition to the message facility, you have partial control of the error checking facility of the LEF and DEF readers. When scanning LEF or DEF input, the readers record warnings, errors, and fatal errors. At the end of the scan, the total number of each is sent to the message window before proceeding with the reader phase.

If a fatal error is detected, input is aborted after the scanning phase.
With the user interface to the error checking facility, the LEF and DEF files can include custom error checking. User detected warnings, errors, and fatal errors, can be logged, thereby incrementing the DEF/LEF reader's warning, error, and fatal error counts.

A user-detected fatal error terminates input just as with the resident error checking facility. In addition, the user defined error checking facility utilities can send message strings to the message window.

\&WARNING, \&ERROR, and \&FATALERROR

The $\& W A R N I N G, \& E R R O R$, and $\& F A T A L E R R O R$ utilities use the same syntax as the $\& M E S S A G E$ utility. These utilities can send message strings to files and to the message window in the same manner as \&MESSAGE. In addition, when the assigned expression is a string IF expression, or a string IF-ELSE expression, then the associated counter (warnings, errors, or fatal errors) is incremented by 1 if any IF condition evaluates to true.

LEF/DEF 5.7 Language Reference

 Working with LEF
LEF/DEF 5.7 Language Reference

DEF Syntax

This chapter contains information about the following topics:

- About Design Exchange Format Files on page 238
- General Rules on page 239
- Name Escaping Semantics for LEF/DEF Files on page 239
- Order of DEF Statements on page 241
- DEF Statement Definitions on page 242
- Blockages on page 242
- Bus Bit Characters on page 246
- Components on page 246
- Design on page 251
- Die Area on page 251
- Divider Character on page 252
- Extensions on page 252
- Fills on page 252
- GCell Grid on page 254
- Groups on page 256
- History on page 256
- Nets on page 257

O Regular Wiring Statement on page 263

- Nondefault Rules on page 268
- Pins on page 271

LEF/DEF 5.7 Language Reference DEF Syntax

- Pin Properties on page 286
- Property Definitions on page 287
- Regions on page 288
- Rows on page 289
- Scan Chains on page 290
- Slots on page 296
- Special Nets on page 298

O Special Wiring Statement on page 302

- Styles on page 310
- Technology on page 322
- Tracks on page 322
- Units on page 323
- Version on page 324
- Vias on page 325

About Design Exchange Format Files

A Design Exchange Format (DEF) file contains the design-specific information of a circuit and is a representation of the design at any point during the layout process. The DEF file is an ASCII representation using the syntax conventions described in "Typographic and Syntax Conventions" on page 7.

DEF conveys logical design data to, and physical design data from, place-and-route tools. Logical design data can include internal connectivity (represented by a netlist), grouping information, and physical constraints. Physical data includes placement locations and orientations, routing geometry data, and logical design changes for backannotation. Place-and-route tools also can read physical design data, for example, to perform ECO changes.

For standard-cell-based/ASIC flow tools, floorplanning is part of the design flow. You typically use the various floorplanning commands to interactively create a floorplan. This data then becomes part of the physical data output for the design using the ROWS, TRACKS, GCELLGRID, and DIEAREA statements. You also can manually enter this data into DEF to create the floorplan.

LEF/DEF 5.7 Language Reference DEF Syntax

It is legal for a DEF file to contain only floorplanning information, such as ROWS. In many cases, the DEF netlist information is in a separate format, such as Verilog, or in a separate DEF file. It is also common to have a DEF file that only contains a COMPONENTS section to pass placement information.

General Rules

Note the following information about creating DEF files:
■ Indentifiers like net names and cell names are limited to 2,048 characters.
■ DEF statements end with a semicolon (;). You must leave a space before the semicolon.

- Each section can be specified only once. Sections end with END SECTION.
- You must define all objects before you reference them except for the + ORIGINAL argument in the NETS section.
- No regular expressions or wildcard characters are recognized except for (* pinName) in the SPECIALNETS section.

Name Escaping Semantics for LEF/DEF Files

You can use the backslash (\backslash) as an escape character before special characters, such as, / ,,,$-+(),$, etc. When the backslash precedes a character that has a special meaning in LEF or DEF, the special meaning of the character is ignored. The following characters have special meanings that can be escaped:

BUSBITCHARS delimiterPair	The characters you specify to enclose bus bits
DIVIDERCHAR character	The character you specify to express hierarchy
	The backslash character

For example:

```
DIVIDERCHAR "/" ; # default value
```

BUSBITCHARS "[]" ; \# default value

The net, pin, or component (instance) names that contain unescaped special characters cannot use simple "string" equivalence between files and other formats.

LEF/DEF 5.7 Language Reference DEF Syntax

Examples:

- A DEF file specifying BUSBITCHARS " []" and net name A<0> indicates that the net, pin, or instance name is a simple scalar name $A<0>$. A DEF file specifying BUSBITCHARS " <>" and net name $A<0>$ indicates that bus A is the 0th member.

■ In a LEF/DEF file, having DIVIDERCHAR "/" and BUSBITCHARS " []", a name A<0> does not contain any special characters and is therefore treated as a scalar (non-bus bit) name.

Note: You cannot use the escape character with the pound sign (\#).

LEF/DEF to LEF/DEF Equivalence

In DEF syntax, \is only used to escape characters that have a special meaning if they are not escaped.

Consider the following LEF/DEF header specification:

- LEFDEF / [] is equivalent to LEF or DEF with DIVIDERCHAR " /" and BUSBITCHARS "[]"
- LEFDEF | < > is equivalent to LEF or DEF with DIVIDERCHAR " | " and BUSBITCHARS "<>"

In the following examples, <> are not special characters for LEFDEF / [] files and [] are not special characters for LEFDEF | <> files. Observe how the header settings (listed above) affect the semantic meaning of the names:

- A<0> with LEFDEF / [] is not equivalent to $A<0>$ with LEFDEF | < >
- A<0> with LEFDEF / [] is equivalent to $A \backslash<0 \backslash>$ with LEFDEF | < >
- A [0] with LEFDEF / [] is equivalent to $A<0>$ with LEFDEF | < >

Verilog and DEF Equivalence

For Verilog and DEF equivalence, consider the following DEF header specification:

- DEF/[] is equivalent to DEF with DIVIDERCHAR "/" and BUSBITCHARS "[]"
- DEF | <> is equivalent to DEF with DIVIDERCHAR "|" and BUSBITCHARS " <>"

In the following examples (showing net names), <> are not special characters for DEF / [] files and [] are not special characters for DEF | <> files:

LEF/DEF 5.7 Language Reference DEF Syntax

- $A<0>$ in $D E F /[]$ is equivalent to $\backslash A<0>$ in Verilog
$\mathrm{A}<0>$ in $\mathrm{DEF} \mid<>$ is equivalent to $\mathrm{A}[0]$ in Verilog (bit 0 of bus A)
- A [0] in DEF/ [] is equivalent to $\mathrm{A}[0$] in Verilog (bit 0 of bus A)
$\mathrm{A}[0]$ in $\mathrm{DEF} \mid<>$ is equivalent to $\backslash \mathrm{A}[0]$ in Verilog
- $A \backslash<0 \backslash>$ in DEF / [] is equivalent to $\backslash A<0>$ in Verilog
$A \backslash<0 \backslash>$ in $D E F \mid<>$ is equivalent to $\backslash A<0>$ in Verilog
- $A \backslash[0 \backslash]$ in $D E F /[]$ is equivalent to $\backslash A[0]$ in Verilog
$\mathrm{A} \backslash[0 \backslash]$ in $\mathrm{DEF} \mid<>$ is equivalent to $\backslash \mathrm{A}[0]$ in Verilog *
The following example shows instance path names for Verilog and DEF equivalence:
- A/B in DEF / [] represents instance path A. B (instance A in the top module, with instance B inside the module referenced by instance A) in Verilog.
- $A \backslash / B$ in $D E F /[]$ represents instance $\backslash A / B$ in Verilog.
- $A \backslash / B / C$ in $D E F /[]$ represents $\backslash A / B . C$ in Verilog (escaped instance $\backslash A / B$ in the top module, with instance C inside the module referenced by instance $\backslash A / B$).
- The net and instance path $A \backslash / B / C / D[0]$ in $D E F /[]$ will represent $\backslash A / B$.C.D[0] in Verilog (escaped instance $\backslash A / B$ in the top module, with instance C inside the module referenced by instance $\backslash A / B$, and bus D in that module with bit 0 being specified).

Comparison of DEF and Verilog Escaping Semantics

The DEF escape \backslash applies only to the next character and prevents the character from having a special meaning.

The Verilog escape \backslash affects the complete "token" and is terminated by a trailing white space (" ", Tab, Enter, etc.).

Order of DEF Statements

Standard DEF files can contain the following statements and sections. You can define the statements and sections in any order; however, data must be defined before it is used. For example, you must specify the UNITS statement before any statements that use values dependent on UNITS values, and VIAS statements must be defined before statements that use via names. If you specify statements and sections in the following order, all data is defined before being used.

LEF/DEF 5.7 Language Reference

 DEF Syntax```
[VERSION statement]
[DIVIDERCHAR statement]
[BUSBITCHARS statement]
DESIGN statement
[TECHNOLOGY statement]
[UNITS statement]
[HISTORY statement] ...
[PROPERTYDEFINITIONS section]
[DIEAREA statement]
[ROWS statement] ...
[TRACKS statement] ...
[GCELLGRID statement] ...
[VIAS statement]
[STYLES statement]
[NONDEFAULTRULES statement]
[REGIONS statement]
[COMPONENTS section]
[PINS section]
[PINPROPERTIES section]
[BLOCKAGES section]
[SLOTS section]
[FILLS section]
[SPECIALNETS section]
[NETS section]
[SCANCHAINS section]
[GROUPS section]
[BEGINEXT section] ...
END DESIGN statement
```


## DEF Statement Definitions

The following definitions describe the syntax arguments for the statements and sections that make up a DEF file. The statements and sections are listed in alphabetical order, not in the order they must appear in a DEF file. For the correct order, see Order of DEF Statements on page 241.

## Blockages

```
[BLOCKAGES numBlockages ;
 [- LAYER layerName
 [+ COMPONENT compName | + SLOTS | + FILLS | + PUSHDOWN
 | + EXCEPTPGNET]
 [+ SPACING minSpacing | + DESIGNRULEWIDTH effectiveWidth]
 {RECT pt pt | POLYGON pt pt pt ...} ...
 ;] ...
 [- PLACEMENT
 [+ SOFT
```


# LEF/DEF 5.7 Language Reference DEF Syntax 

```
 | + PARTIAL maxDensity
 | + COMPONENT compName
| + PUSHDOWN]
 {RECT pt pt} ...
 ;] . . .
END BLOCKAGES]
```

Defines placement and routing blockages in the design. You can define simple blockages (blockages specified for an area), or blockages that are associated with specific instances (components). You can only associate blockages with placed instances. If you move the instance, its blockage moves with it.

COMPONENT compName Specifies a component with which to associate a blockage. Specify with LAYER layerName to create a routing blockage associated with a component. Specify with PLACEMENT to create a placement blockage associated with a component.

DESIGNRULEWIDTH effectiveWidth
Specifies that the blockage has a width of effectiveWidth for the purposes of spacing calculations. If you specify DESIGNRULEWIDTH, you cannot specify SPACING.
Type: DEF database units
EXCEPTPGNET Indicates that the blockage only blocks signal net routing, and does not block power or ground net routing.

This can be used above noise sensitive blocks, to prevent signal routing on specific layers above the block, but allow power routing connections.

FILLS $\quad$ Creates a blockage on the specified layer where metal fills cannot be placed.

LAYER IayerName
numblockages
Specifies the cut layer or routing layer on which to create a blockage.

Note: Placing vias using the cut layer where a cut layer obstruction (OBS) or blockage exists will cause a violation.

Specifies the number of blockages in the design specified in the BLOCKAGES section.

## LEF/DEF 5.7 Language Reference DEF Syntax

PARTIAL maxDensity

PLACEMENT

PUSHDOWN

RECT pt pt

SOFT

SLOTS

Indicates that the initial placement should not use more than maxDensity percentage of the blockage area for standard cells. Later placement of clock tree buffers, or buffers added during timing optimization ignore this blockage. The maxDensity value is calculated as:
standard cell area in blockage area/blockage area $<=$ maxDensity
This can be used to reduce the density in a locally congested area, and preserve it for buffer insertion.
Type: Float
Value: Between 0.0 and 100.0

Creates a placement blockage. You can create a simple placement blockage, or a placement blockage attached to a specific component.

Specifies a sequence of at least three points to generate a polygon geometry. The polygon edges must be parallel to the $x$ axis, the y axis, or at a 45-degree angle. Each POLYGON statement defines a polygon generated by connecting each successive point, and then the first and last points. The $p t$ syntax corresponds to a coordinate pair, such as $x y$. Specify an asterisk (*) to repeat the same value as the previous $x$ or $y$ value from the last point.

Specifies that the blockage was pushed down into the block from the top level of the design.

Specifies the coordinates of the blockage geometry. The coordinates you specify are absolute. If you associate a blockage with a component, the coordinates are not relative to the component's origin.

Indicates that the initial placement should not use the area, but later phases, such as timing optimization or clock tree synthesis, can use the blockage area. This can be used to preserve certain areas (such as small channels between blocks) for buffer insertion after the initial placement.

Creates a blockage on the specified layer where slots cannot be placed.

## LEF/DEF 5.7 Language Reference DEF Syntax

SPACING minSpacing<br>Specifies the minimum spacing allowed between the blockage and any other routing shape. If you specify SPACING, you cannot specify DESIGNRULEWIDTH.<br>Type: Integer, specified in DEF database units

## Example 4-1 Blockages Statements

- The following BLOCKAGES section defines eight blockages in the following order: two metal2 routing blockages, a pushed down routing blockage, a routing blockage attached to component |i4, a floating placement blockage, a pushed down placement blockage, a placement blockage attached to component |i3, and a fill blockage.
BLOCKAGES 7 ;
- LAYER metall
$\operatorname{RECT}(-300-310)(320330)$
RECT ( $-150-160$ ) ( 170180 ) ;
- LAYER metal1 + PUSHDOWN

RECT ( $-150-160$ ) ( 170180 ) ;

- LAYER metal1 + COMPONENT |i4
$\operatorname{RECT}(-150-160)(170180)$;
- PLACEMENT

RECT ( $-150-160$ ) ( 170180 ) ;

- PLACEMENT + PUSHDOWN

RECT ( $-150-160$ ) ( 170180 ) ;

- PLACEMENT + COMPONENT |i3
$\operatorname{RECT}(-150-160)(170180)$;
- LAYER metal1 + FILLS
$\operatorname{RECT}(-160-170)(180190)$;
END BLOCKAGES
■ The following BLOCKAGES section defines two blockages. One requires minimum spacing of 1000 database units for its rectangle and polygon. The other requires that its rectangle's width be treated as 1000 database units for DRC checking.

```
BLOCKAGES 2 ;
 - LAYER metal1
 + SPACING 1000 #RECT and POLYGON require at least 1000 dbu spacing
 RECT (-300 -310) (320 300)
 POLYGON (0 0) (* 100) (100 *) (200 200) (200 0) ; #Has 45-degree
 #edge
 - LAYER metal1
 + DESIGNRULEWIDTH 1000 #Treat the RECT as 1000 dbu wide for DRC checking
 RECT (-150 -160) (170 180) ;
END BLOCKAGES
```


## LEF/DEF 5.7 Language Reference DEF Syntax

## Bus Bit Characters

```
BUSBITCHARS "delimiterPair" ;
```

Specifies the pair of characters used to specify bus bits when DEF names are mapped to or from other databases. The characters must be enclosed in double quotation marks. For example:

```
BUSBITCHARS "()" ;
```

If one of the bus bit characters appears in a DEF name as a regular character, you must use a backslash $(\backslash)$ before the character to prevent the DEF reader from interpreting the character as a bus bit delimiter.

If you do not specify the BUSBITCHARS statement in your DEF file, the default value is " [ ] ".

## Components

```
COMPONENTS numComps ;
 [- compName modelName
 [+ EEQMASTER macroName]
 [+ SOURCE {NETLIST | DIST | USER | TIMING}]
 [+ {FIXED pt orient | COVER pt orient | PLACED pt orient
 | UNPLACED}]
 [+ HALO [SOFT] left bottom right top]
 [+ ROUTEHALO haloDist minLayer maxLayer]
 [+ WEIGHT weight]
 [+ REGION regionName]
 [+ PROPERTY {propName propVal} ...]...
 ;] ...
```

END COMPONENTS

Defines design components, their location, and associated attributes.
compName modelName Specifies the component name in the design, which is an instance of modelName, the name of a model defined in the library. A model Name must be specified with each compName.

COVER pt orient Specifies that the component has a location and is a part of a cover macro. A COVER component cannot be moved by automatic tools or interactive commands. You must specify the component's location and its orientation.

EEQMASTER macroName Specifies that the component being defined should be electrically equivalent to the previously defined macroName.

## LEF/DEF 5.7 Language Reference

## DEF Syntax

FIXED pt orient
Specifies that the component has a location and cannot be moved by automatic tools, but can be moved using interactive commands. You must specify the component's location and orientation.

HALO [SOFT] left bottom right top
Specifies a placement blockage around the component. The halo extends from the LEF macro's left edge(s) by left, from the bottom edge(s) by bot tom, from the right edge(s) by right, and from the top edge(s) by top. The LEF macro edges are either defined by the rectangle formed by the MACRO SIZE statement, or, if OVERLAP obstructions exist (OBS shapes on a layer with TYPE OVERLAP), the polygon formed by merging the OVERLAP shapes.

If SOFT is specified, the placement halo is honored only during initial placement; later phases, such as timing optimization or clock tree synthesis, can use the halo area. This can be used to preserve certain areas (such as small channels between blocks) for buffer insertion.
Type: Integer, specified in DEF database units

## Example 4-2 Component Halo

The following statement creates a placement blockage for a "U-shaped" LEF macro, as illustrated in Figure 4-1 on page 248:

- i1/i2
+ PLACED ( 0 ) N
+ HALO 100050200 ;


## LEF/DEF 5.7 Language Reference

## DEF Syntax

Figure 4-1 Component Halo

numComps

PLACED pt orient

Specifies the number of components defined in the COMPONENTS section.

Specifies that the component has a location, but can be moved using automatic layout tools. You must specify the component's location and orientation.

PROPERTY propName propVal
Specifies a numerical or string value for a component property defined in the PROPERTYDEFINITIONS statement. The propName you specify must match the propName listed in the PROPERTYDEFINITIONS statement.

REGION regionName
Specifies a region in which the component must lie. regionName specifies a region already defined in the REGIONS section. If the region is smaller than the bounding rectangle of the component itself, the DEF reader issues an error message and ignores the argument. If the region does not contain a legal location for the component, the component remains unplaced after the placement step.

## LEF/DEF 5.7 Language Reference

## DEF Syntax

Specifies that signal routing only should be perpendicular to the block edge in order to reach pins within haloDist of the block boundary. This can be used to minimize cross coupling between routing at the current level of the design, and routing inside the block. It has no effect on power routing.

The routing halo exists for the routing layers between minLayer and maxLayer. The layer you specify for minLayer must be a lower routing layer than maxLayer. Type: Integer, specified in DEF database units (haloDist); string that matches a LEF routing layer name (minLayer and maxLayer)

## Example 4-3 Route Halo Example

For a U-shaped macro, the following component description results in the halo shown in Figure 4-2 on page 249.

```
- il/i2
 + PLACED (0 0) N
 + ROUTEHALO 100 metal1 metal3 ;
```

Figure 4-2 Route Halo


## LEF/DEF 5.7 Language Reference <br> DEF Syntax

SOURCE \{NETLIST | DIST $\mid$ USER | TIMING\}
Specifies the source of the component. Value: Specify one of the following:

DIST Component is a physical component (that is, it only connects to power or ground nets), such as filler cells, well-taps, and decoupling caps.

NETLIST Component is specified in the original netlist. This is the default value, and is normally not written out in the DEF file.

TIMING Component is a logical rather than physical change to the netlist, and is typically used as a buffer for a clock-tree, or to improve timing on long nets.

USER Component is generated by the user for some user-defined reason.

UNPLACED

WEIGHT weight

Specifies that the component does not have a location.
Specifies the weight of the component, which determines whether or not automatic placement attempts to keep the component near the specified location. weight is only meaningful when the component is placed. All non-zero weights have the same effect during automatic placement.
Default: 0

## Specifying Orientation

If a component has a location, you must specify its location and orientation. A component can have any of the following orientations: N, S, W, E, FN, FS, FW, or FE.

Orientation terminology can differ between tools. The following table maps the orientation terminology used in LEF and DEF files to the OpenAccess database format.

| LEF/DEF | OpenAccess | Definition |
| :--- | :--- | :--- |
| N (North) | R0 | $\square$ |
| S (South) | R180 | $\square$ |
| W (West) | R90 |  |

## LEF/DEF 5.7 Language Reference DEF Syntax

| LEF/DEF | OpenAccess | Definition |
| :--- | :--- | :---: |
| E (East) | R270 | $\square$ |
| FN (Flipped North) | MY | $\square$ |
| FS (Flipped South) | MX | $\square$ |
| FW (Flipped West) | MX90 | $\square$ |
| FE (Flipped East) | MY90 | $\square$ |

Components are always placed such that the lower left corner of the cell is the origin $(0,0)$ after any orientation. When a component flips about the $y$ axis, it flips about the component center. When a component rotates, the lower left corner of the bounding box of the component's sites remains at the same placement location.

## Design

DESIGN designName ;
Specifies a name for the design. The DEF reader reports a warning if this name is different from that in the database. In case of a conflict, the just specified name overrides the old name.

## Die Area

```
[DIEAREA pt pt [pt] ... ;]
```

If two points are defined, specifies two corners of the bounding rectangle for the design. If more than two points are defined, specifies the points of a polygon that forms the die area. The edges of the polygon must be parallel to the x or y axis (45-degree shapes are not allowed), and the last point is connected to the first point. All points are integers, specified as DEF database units.

Geometric shapes (such as blockages, pins, and special net routing) can be outside of the die area, to allow proper modeling of pushed down routing from top-level designs into sub blocks. However, routing tracks should still be inside the die area.

## Example 4-4 Die Area Statements

The following statements show various ways to define the die area.

```
DIEAREA (0 0) (100 100) ;
 #Rectangle from 0,0 to 100,100
DIEAREA (0 0) (0 100) (100 100) (100 0) ; #Same rectangle as a polygon
DIEAREA (0 0) (0 100) (50 100) (50 50) (100 50) (100 0) ; #L-shaped polygon
```


## LEF/DEF 5.7 Language Reference

## DEF Syntax

## Divider Character

```
DIVIDERCHAR "character" ;
```

Specifies the character used to express hierarchy when DEF names are mapped to or from other databases. The character must be enclosed in double quotation marks. For example:

DIVIDERCHAR "/" ;
If the divider character appears in a DEF name as a regular character, you must use a backslash ( $\backslash$ ) before the character to prevent the DEF reader from interpreting the character as a hierarchy delimiter.

If you do not specify the DIVIDERCHAR statement in your LEF file, the default value is "/".

## Extensions

```
[BEGINEXT "tag"
 extensionText
```

ENDEXT]

Adds customized syntax to the DEF file that can be ignored by tools that do not use that syntax. You can also use extensions to add new syntax not yet supported by your version of LEF/DEF, if you are using version 5.1 or later. Add extensions as separate sections.

```
extensionText Defines the contents of the extension.
"tag" Identifies the extension block. You must enclose tag in quotes.
```


## Example 4-5 Extension Statement

```
BEGINEXT "1VSI Signature 1.0"
 CREATOR "company name"
 DATE "timestamp"
 REVISION "revision number"
ENDEXT
```


## Fills

```
[FILLS numFills ;
 [- LAYER layerName [+ OPC]
 {RECT pt pt | POLYGON pt pt pt ...} ... ;] ...
 [- VIA viaName [+ OPC] pt ... ;] ...
END FILLS]
```


## LEF/DEF 5.7 Language Reference DEF Syntax

Defines the rectangular shapes that represent metal fills in the design. Each fill is defined as an individual rectangle.

LAYER layerName Specifies the layer on which to create the fill.
numFills

OPC

POLYGON pt pt pt

RECT pt pt

VIA viaName pt
Specifies the number of LAYER statements in the FILLS statement, not the number of rectangles.

Indicates that the FILL shapes require OPC correction during mask generation.

Specifies a sequence of at least three points to generate a polygon geometry. The polygon edges must be parallel to the $x$ axis, the $y$ axis, or at a 45-degree angle. Each POLYGON statement defines a polygon generated by connecting each successive point, and then the first and last points. The $p t$ syntax corresponds to a coordinate pair, such as $x y$. Specify an asterisk (*) to repeat the same value as the previous $x$ or $y$ value from the last point.

Specifies the lower left and upper right corner coordinates of the fill geometry.

Places the via named viaName at the specified ( $\mathrm{x} y$ ) location ( $p t$ ). viaName must be a previously defined via in the DEF VIAS or LEF VIA section.
Type: $(p t)$ Integers, specified in DEF database units

## Example 4-6 Fill Statements

- The following FILLS statement defines fill geometries for layers metal1 and metal2:

```
FILLS 2 ;
 - LAYER metal1
 RECT (1000 2000) (1500 4000)
 RECT (2000 2000) (2500 4000)
 RECT (3000 2000) (3500 4000) ;
 - LAYER metal2
 RECT (1000 2000) (1500 4000)
 RECT (1000 4500) (1500 6500)
 RECT (1000 7000) (1500 9000)
 RECT (1000 9500) (1500 11500) ;
```

END FILLS

## LEF/DEF 5.7 Language Reference

## DEF Syntax

■ The following FILLS statement defines two rectangles and one polygon fill geometries:

```
FILLS 1 ;
 -LAYER metal1
 RECT (100 200) (150 400)
 POLYGON (100 100) (200 200) (300 200) (300 100)
 RECT (300 200) (350 400) ;
END FILLS
```

- The following FILLS statement defines two rectangles and two via fill geometries for layer metal1. The rectangles and one of the via fill shapes require OPC correction.

```
FILLS 3 ;
 -LAYER metal1 + OPC
 RECT (0 0) (100 100)
 RECT (200 200) (300 300) ;
 -VIA via26
 (500 500)
 (800 800) ;
 -VIA via28 + OPC
 (900 900) ;
END FILLS
```


## GCell Grid

```
[GCELLGRID
 {X start DO numColumns+1 STEP space} ...
 {Y start DO numRows+1 STEP space ;} ...]
```

Defines the gcell grid for a standard cell-based design. Each GCELLGRID statement specifies a set of vertical ( $x$ ) and horizontal ( $y$ ) lines, or tracks, that define the gcell grid.

Typically, the GCELLGRID is automatically generated by a particular router, and is not manually created by the designer.

DO numColumns+1 Specifies the number of columns in the grid.

DO numRows+1

STEP space

Xstart, Ystart

Specifies the number of rows in the grid.
Specifies the spacing between tracks.
Specify the location of the first vertical (x) and first horizontal (y) track.

## LEF/DEF 5.7 Language Reference DEF Syntax

## GCell Grid Boundary Information

The boundary of the gcell grid is the rectangle formed by the extreme vertical and horizontal lines. The gcell grid partitions the routing portion of the design into rectangles, called gcells. The lower left corner of a gcell is the origin. The x size of a gcell is the distance between the upper and lower bounding vertical lines, and the $y$ size is the distance between the upper and lower bounding horizontal lines.

For example, the grid formed by the following two GCELLGRID statements creates gcells that are all the same size ( $100 \times 200$ in the following):

```
GCELLGRID X 1000 DO 101 STEP 100 ;
GCELLGRID Y 1000 DO 101 STEP 200 ;
```

A gcell grid in which all gcells are the same size is called a uniform gcell grid. Adding GCELLGRID statements can increase the granularity of the grid, and can also result in a nonuniform grid, in which gcells have different sizes.

For example, adding the following two statements to the above grid generates a nonuniform grid:

```
GCELLGRID X 3050 DO 61 STEP 100 ;
GCELLGRID Y 5100 DO 61 STEP 200 ;
```

When a track segment is contained inside a gcell, the track segment belongs to that gcell. If a track segment is aligned on the boundary of a gcell, that segment belongs to the gcell only if it is aligned on the left or bottom edges of the gcell. Track segments aligned on the top or right edges of a gcell belong to the next gcell.

## GCell Grid Restrictions

Every track segment must belong to a gcell, so gcell grids have the following restrictions:

- The x coordinate of the last vertical track must be less than, and not equal to, the x coordinate of the last vertical gcell line.

■ The y coordinate of the last horizontal track must be less than, and not equal to, the $y$ coordinate of the last horizontal gcell line.

Gcells grids also have the following restrictions:

- Each GCELLGRID statement must define two lines.
- Every gcell need not contain the vertex of a track grid. But, those that do must be at least as large in both directions as the default wire widths on all layers.


## LEF/DEF 5.7 Language Reference

## DEF Syntax

## Groups

```
[GROUPS numGroups ;
 [- groupName compNamePattern ...
 [+ REGION regionNam]
 [+ PROPERTY {propName propVal} ...] ...
 ;] ...
END GROUPS]
```

Defines groups in a design.
compNamePattern
groupName
numGroups

Specifies the components that make up the group. Do not assign any component to more than one group. You can specify any of the following:

- A component name, for example C3205
- A list of component names separated by spaces, for example, I01 I02 C3204 C3205
- A pattern for a set of components, for example, IO* and C320*

Specifies the name for a group of components.
Specifies the number of groups defined in the GROUPS section.

PROPERTY propName propVal
Specifies a numerical or string value for a group property defined in the PROPERTYDEFINITIONS statement. The propName you specify must match the propName listed in the PROPERTYDEFINITIONS statement.

REGION regionName Specifies a rectangular region in which the group must lie. regionName specifies a region previously defined in the REGIONS section. If region restrictions are specified in both COMPONENT and GROUP statements for the same component, the component restriction overrides the group restriction.

## History

[HISTORY anyText ; ] ...

## LEF/DEF 5.7 Language Reference DEF Syntax

Lists a historical record about the design. Each line indicates one record. Any text excluding a semicolon (;) can be included in anyText. The semicolon terminates the HISTORY statement. Linefeed and Return do not terminate the HISTORY statement. Multiple HISTORY lines can appear in a file.

## Nets

```
NETS numNets ;
 [- { netName
 [({compName pinName | PIN pinName} [+ SYNTHESIZED])] ...
 | MUSTJOIN (compName pinName) }
 [+ SHIELDNET shieldNetName] ...
 [+ VPIN vpinName [LAYER layerName] pt pt
 [PLACED pt orient | FIXED pt orient | COVER pt orient]] ...
 [+ SUBNET subnetName
 [({compName pinName | PIN pinName | VPIN vpinName})] ...
 [NONDEFAULTRULE rulename]
 [regularWiring] ...] ...
 [+ XTALK class]
 [+ NONDEFAULTRULE ruleName]
 [regularWiring] ...
 [+ SOURCE {DIST | NETLIST | TEST | TIMING | USER}]
 [+ FIXEDBUMP]
 [+ FREQUENCY frequency]
 [+ ORIGINAL netName]
 [+ USE {ANALOG | CLOCK | GROUND | POWER | RESET | SCAN | SIGNAL
 | TIEOFF}]
 [+ PATTERN {BALANCED | STEINER | TRUNK | WIREDLOGIC}]
 [+ ESTCAP wireCapacitance]
 [+ WEIGHT weight]
 [+ PROPERTY {propName propVal} ...] ...
 ;] ...
```

END NETS
Defines netlist connectivity for nets containing regular pins. The default design rules apply to these pins, and the regular routers route to these pins. The SPECIALNETS statement defines netlist connectivity for nets containing special pins.

Input arguments for a net can appear in the NETS section or the SPECIALNETS section. In case of conflicting values, the DEF reader uses the last value encountered. NETS and SPECIALNETS statements can appear more than once in a DEF file. If a particular net has mixed wiring or pins, specify the special wiring and pins first.
compName pinName
Specifies the name of a regular component pin on a net or a subnet. LEF MUSTJOIN pins, if any, are not included; only the master pin (that is, the one without the MUSTJOIN statement) is

## LEF/DEF 5.7 Language Reference DEF Syntax

included. If a subnet includes regular pins, the regular pins must be included in the parent net.

COVER pt orient Specifies that the pin has a location and is a part of the cover macro. A COVER pin cannot be moved by automatic tools or by interactive commands. You must specify the pin's location and orientation.

ESTCAP wireCapacitance
Specifies the estimated wire capacitance for the net. ESTCAP can be loaded with simulation data to generate net constraints for timing-driven layout.

FIXED pt orient Specifies that the pin has a location and cannot be moved by automatic tools, but can be moved by interactive commands. You must specify the pin's location and orientation.

FIXEDBUMP
Indicates that the bump net cannot be reassigned to a different pin.

It is legal to have a pin without geometry to indicate a logical connection, and to have a net that connects that pin to two other instance pins that have geometry. Area I/Os have a logical pin that is connected to a bump and an input driver cell. The bump and driver cell have pin geometries (and, therefore, should be routed and extracted), but the logical pin is the external pin name without geometry (typically the Verilog pin name for the chip).

Because bump nets are usually routed with special routing, they also can be specified in the SPECIALNETS statement. If a net name appears in both the NETS and SPECIALNETS statements, the FIXEDBUMP keyword also should appear in both statements. However, the value only exists once within a given application's database for the net name.

Because DEF is often used incrementally, the last value read in is used. Therefore, in a typical DEF file, if the same net appears in both statements, the FIXEDBUMP keyword (or lack of it) in the NETS statement is the value that is used, because the NETS statement is defined after the SPECIALNETS statement.

## LEF/DEF 5.7 Language Reference DEF Syntax

For an example specifying the FIXEDBUMP keyword, see "Fixed Bump" on page 299.

FREQUENCY frequency
Specifies the frequency of the net, in hertz. The frequency value is used by the router to choose the correct number of via cuts required for a given net, and by validation tools to verify that the AC current density rules are met. For example, a net described with + FREQUENCY 100 indicates the net has 100 rising and 100 falling transitions in 1 second.
Type: Float
Specifies the layer on which the virtual pin lies.

MUSTJOIN (compName pinName)
Specifies that the net is a mustjoin. If a net is designated MUSTJOIN, its name is generated by the system. Only one net should connect to any set of mustjoin pins. Mustjoin pins for macros are defined in LEF. The only reason to specify a MUSTJOIN net in DEF (identified arbitrarily by one of its pins) is to specify prewiring for the MUSTJOIN connection.

Otherwise, nets are generated automatically where needed for mustjoin connections specified in the library. If the input file specifies that a mustjoin pin is connected to a net, the DEF reader connects the set of mustjoin pins to the same net. If the input file does not specify connections to any of the mustioin pins, the DEF reader creates a local mUSTJOIN net.
netName
Specifies the name for the net. Each statement in the NETS section describes a single net. There are two ways of identifying the net: netName or MUSTJOIN. If the netName is given, a list of pins to connect to the net also can be specified. Each pin is identified by a component name and pin name pair (compName pinName) or as an I/O pin (PIN pinName). Parentheses ensure readability of output. The keyword MUSTJOIN cannot be used as a netName.

## LEF/DEF 5.7 Language Reference DEF Syntax



Specifies a numerical or string value for a net property defined in the PROPERTYDEFINITIONS statement. The propName you specify must match the propName listed in the PROPERTYDEFINITIONS statement.
regularWiring
Specifies the regular physical wiring for the net or subnet. For regular wiring syntax, see "Regular Wiring Statement" on page 263.

SHIELDNET shieldNetName

## LEF/DEF 5.7 Language Reference

## DEF Syntax

Specifies the name of a special net that shields the regular net being defined. A shield net for a regular net is defined earlier in the DEF file in the SPECIALNETS section.


SOURCE \{DIST | NETLIST | TEST | TIMING | USER\}
Specifies the source of the net. The value of this field is preserved when input to the DEF reader.
Value: Specify one of the following:
DIST Net is the result of adding physical components (that is, components that only connect to power or ground nets), such as filler cells, well-taps, tiehigh and tie-low cells, and decoupling caps.

NETLIST $\quad$ Net is defined in the original netlist. This is the default value, and is not normally written out in the DEF file.

TEST Net is part of a scanchain.
TIMING Net represents a logical rather than physical change to netlist, and is used typically as a buffer for a clock-tree, or to improve timing on long nets.

USER $\quad$ Net is user defined.

| SUBNET subnetName | Names and defines a subnet of the regular net netName. A subnet must have at least two pins. The subnet pins can be virtual pins, regular pins, or a combination of virtual and regular pins. A subnet pin cannot be a mustjoin pin. | | | | |
|---|---|---|---|---|---|
| SYNTHESIZED | Used by some tools to indicate that the pin is part of a synthesized scan chain. |
| USE \{ANALOG \| CLOCK | GROUND \| POWER | RESET | SCAN | SIGNAL | TIEOFF \} |
|  | Specifies how the net is used. |
|  | Value: Specify one of the following: |
|  | ANALOG Used as an analog signal net. |
|  | CLOCK Used as a clock net. |
|  | GROUND Used as a ground net. |
|  | POWER Used as a power net. |
|  | RESET Used as a reset net. |
|  | SCAN Used as a scan net. |
|  | SIGNAL Used as a digital signal net. |
|  | TIEOFF Used as a tie-high or tie-low net. |

VPIN vpinName pt pt Specifies the name of a virtual pin, and its physical geometry. Virtual pins can be used only in subnets. A SUBNET statement refers to virtual pins by the vpinName specified here. You must define each virtual pin in a + VPIN statement before you can list it in a SUBNET statement.

## Example 4-7 Virtual Pin

The following example defines a virtual pin:

```
+ VPIN M7K.v2 LAYER MET2 (-10 -10) (10 10) FIXED (10 10)
 + SUBNET M7K.2 (VPIN M7K.v2) (/PREG_CTRL/I$73/A I)
 NONDEFAULTRULE rule1
 ROUTED MET2 (27060 341440) (26880 *) (* 213280)
 M1M2 (95040 *) (* 217600) (95280 *)
 NEW MET1 (1920 124960) (87840 *)
 COVER MET2 (27060 341440) (26880 *)
```


## LEF/DEF 5.7 Language Reference DEF Syntax

WEIGHT weight

XTALK class
Specifies the weight of the net. Automatic layout tools attempt to shorten the lengths of nets with high weights. A value of 0 indicates that the net length for that net can be ignored. The default value of 1 specifies that the net should be treated normally. A larger weight specifies that the tool should try harder to minimize the net length of that net.

For normal use, timing constraints are generally a better method to use for controlling net length than net weights. For the best results, you should typically limit the maximum weight to 10, and not add weights to more than 3 percent of the nets.
Default: 1
Type: Integer
Specifies the crosstalk class number for the net. If you specify the default value (0), XTALK will not be written to the DEF file. Default: 0
Type: Integer
Value: 0 to 200

## Regular Wiring Statement

```
{+ COVER | + FIXED | + ROUTED | + NOSHIELD}
 layerName [TAPER | TAPERRULE ruleName] [STYLE styleNum]
 routingPoints
 [NEW layerName [TAPER | TAPERRULE ruleName] [STYLE styleNum]
 routingPoints
] ...
```

Specifies regular wiring for the net.

COVER

FIXED

Specifies that the wiring cannot be moved by either automatic layout or interactive commands. If no wiring is specified for a particular net, the net is unrouted. If you specify COVER, you must also specify layerName.

Specifies that the wiring cannot be moved by automatic layout, but can be changed by interactive commands. If no wiring is specified for a particular net, the net is unrouted. If you specify FIXED, you must also specify layerName.

## LEF/DEF 5.7 Language Reference DEF Syntax

layerName

NEW layerName

NOSHIELD

ROUTED
routingPoints

Specifies the layer on which the wire lies. You must specify layerName if you specify COVER, FIXED, ROUTED, or NEW. Specified layers must be routable; reference to a cut layer generates an error.

Indicates a new wire segment (that is, there is no wire segment between the last specified coordinate and the next coordinate), and specifies the name of the layer on which the new wire lies. Noncontinuous paths can be defined in this manner.

Specifies that the last wide segment of the net is not shielded. If the last segment is not shielded, and is tapered, specify TAPER under the LAYER argument, instead of NOSHIELD.

Specifies that the wiring can be moved by the automatic layout tools. If no wiring is specified for a particular net, the net is unrouted. If you specify ROUTED, you must also specify layerName.

Defines the center line coordinates of the route on layerName. For information about using routing points, see "Defining Routing Points" on page 266.

The routingPoints syntax is defined as follows:

```
(x y [extValue])
{ (x y [extValue]) | viaName [orient]} ...
```

extValue Specifies the amount by which the wire is extended past the endpoint of the segment. The extension value must be greater than or equal to 0 (zero).
Default: Half the wire width
Type: Integer, specified in database units
Note: Some tools only allow 0 or the WIREEXTENSION value from the LAYER or NONDEFAULTRULE statement.

## LEF/DEF 5.7 Language Reference

 DEF Syntax

For more information, see "Specifying
Coordinates" on page 266.
Type: Integer, specified in database units

STYLE styleNum

TAPER

Specifies a previously defined style from the STYLes section in this DEF file. If a style is specified, the wire's shape is defined by the center line coordinates and the style.

Specifies that the next contiguous wire segment on layerName is created using the default rule.

TAPERRULE ruleName

Specifies that the next contiguous wire segment on layerName is created using the specified nondefault rule.

## LEF/DEF 5.7 Language Reference DEF Syntax

## Defining Routing Points

Routing points define the center line coordinates of the route for a specified layer. Routes that are 90 degrees, have a width defined by the routing rule for this wire, and extend from one coordinate $(x y)$ to the next coordinate.

If either endpoint has an extension value (extValue), the wire is extended by that amount past the endpoint. Some applications require the extension value to be 0 , half of the wire width, or the same as the routing rule wire extension value. If you do not specify an extension value, the default value of half of the wire width is used.

If a coordinate with an extension value is specified after a via, the wire extension is added to the beginning of the next wire segment after the via (zero-length wires are not allowed).

If the wire segment is a 45-degree edge, and no STYLE is specified, the default octagon style is used for the endpoints. The routing rule width must be an even multiple of the manufacturing grid in order to keep all of the coordinates of the resulting outer wire boundary on the manufacturing grid.

If a STYLE is defined for 90 -degree or 45 -degree routes, the routing shape is defined by the center line coordinates and the style. No corrections, such as snapping to manufacturing grid, can be applied, and any extension values are ignored. The DEF file should contain values that are already snapped, if appropriate. The routing rule width indicates the desired user width, and represents the minimum allowed width of the wire that results from the style when the 45-degree edges are properly snapped to the manufacturing grid.

## Specifying Coordinates

To maximize compactness of the design files, the coordinates allow for the asterisk ( *) convention. Here, ( $x$ *) indicates that the y coordinate last specified in the wiring
specification is used; (*y) indicates that the x coordinate last specified is used. Use ( * * extValue) to specify a wire extension at a via.

ROUTED M1 ( 050 ) ( 50 * 20 ) VIA12 (** 15 ) (* 0 )


Each coordinate sequence defines a connected orthogonal path through the points. The first coordinate in a sequence must not have an * element.

Because nonorthogonal segments are not allowed, subsequent points in a connected sequence must create orthogonal paths. For example, the following sequence is a valid path:
( 100200 ) (200200) (200500)
The following sequence is an equivalent path:

```
(100 200) (200 *) (* 500)
```

The following sequence is not valid because it represents a nonorthogonal segment.
( 100200 ) ( 300500 )

## Specifying Orientation

If you specify the pin's placement status, you must specify its location and orientation. A pin can have any of the following orientations: N, S, W, E, FN, FS, FW, or FE.

Orientation terminology can differ between tools. The following table maps the orientation terminology used in LEF and DEF files to the OpenAccess database format.

| LEF/DEF | OpenAccess | Definition |
| :--- | :--- | :--- |
| N (North) | R0 | $\square$ |
| S (South) | R180 | $\square$ |

## LEF/DEF 5.7 Language Reference

## DEF Syntax

| LEF/DEF | OpenAccess | Definition |
| :--- | :--- | :---: |
| W (West) | R90 | $\square$ |
| E (East) | R270 | $\square$ |
| FN (Flipped North) | MY | $\square$ |
| FS (Flipped South) | MX | $\square$ |
| FW (Flipped West) | MX90 | $\square$ |
| FE (Flipped East) | MY90 | $\square$ |

## Example 4-8 Shielded Net

The following example defines a shielded net:

```
NETS 1 ;
 - my_net (I1 CLK) (BUF OUT)
 + SHIELDNET VSS
 + SHIELDNET VDD
 ROUTED
 MET2 (14000 341440) (9600 *) (* 282400)
 M1M2 (2400 *)
 + NOSHIELD MET2 (14100 341440) (14000 *)
 + TAPER MET1 (2400 282400) (240 *)
```

END NETS

## Nondefault Rules

```
NONDEFAULTRULES numRules ;
 {- ruleName
 [+ HARDSPACING]
 {+ LAYER layerName
 WIDTH minWidth
 [DIAGWIDTH diagWidth]
 [SPACING minSpacing]
 [WIREEXT wireExt]
 } ...
 [+ VIA viaName] ...
 [+ VIARULE viaRuleName] ...
 [+ MINCUTS cutLayerName numCuts] ...
 [+ PROPERTY {propName propVal} ...] ...
 ;} ...
```


## LEF/DEF 5.7 Language Reference <br> DEF Syntax

Defines any nondefault rules used in this design that are not specified in the LEF file. This section can also contain the default rule and LEF nondefault rule definitions for reference. These nondefault rule names can be used anywhere in the DEF NETS section that requires a nondefault rule name.

If a nondefault rule name collides with an existing LEF or DEF nondefault rule name that has different parameters, the application should use the DEF definition when reading this DEF file, though it can change the DEF nondefault rule name to make it unique. This is typically done by adding a unique extension, such as _1 or _2 to the rule name.

All vias must be previously defined in the LEF VIA or DEF VIAS sections. Every nondefault rule must specify a width for every layer. If a nondefault rule does not specify a via or via rule for a particular routing-cut-routing layer combination, then there must be a VIARULE GENERATE DEFAULT rule that it inherited for that combination.

DIAGWIDTH diagWidth | Specifies the diagonal width for layerName, when 45-degree |
| :--- |
| routing is used. |
| Default: 0 (no diagonal routing allowed) |
| Type: Integer, specified in DEF database units |

HARDSPACING

| Specifies that any spacing values that exceed the LEF LAYER |
| :--- |
| ROUTING spacing requirements are "hard" rules instead of "soft" |
| rules. By default, routers treat extra spacing requirements as soft |
| rules that are high cost to violate, but not real spacing violations. |
| However, in certain situations, the extra spacing should be |
| treated as a hard, or real, spacing violation, such as when the |
| route will be modified with a post-process that replaces some of |
| the extra space with metal. |

LAYER IayerName

| Specifies the layer for the various width and spacing values. |
| :--- |
| layerName must be a routing layer. Each routing layer must |
| have at least a minimum width specified. |

MINCUTS cutLayerName numCuts
Specifies the minimum number of cuts allowed for any via using the specified cut layer. All vias (generated or fixed vias) used for this nondefault rule must have at least numcuts cuts in the via. Type: (numCuts) Positive integer
numRules $\quad$ Specifies the number of nondefault rules defined in the NONDEFAULTRULES section.

PROPERTY propName propValue

## LEF/DEF 5.7 Language Reference DEF Syntax

Specifies a property for this nondefault rule. The propName must be defined as a NONDEFAULTRULE property in the PROPERTYDEFINITIONS section, and the propValue must match the type for propName (that is, integer, real, or string).

| rulename | Specifies the name for this nondefault rule. This name can be <br> used in the NETS section wherever a nondefault rule name is <br> allowed. The reserved name DEFAULT can be used to indicate <br> the default routing rule used in the NETS section. | | |
|---|---|---|---|
| SPACING minSpacing |  | | Specifies the minimum spacing for layerName. The LEF |
| :--- |
| LAYER SPACING or SPACINGTABLE definitions always apply; |
| therefore it is only necessary to add a SPACING value if the |
| desired spacing is larger than the LAYER rules already require. |
| Type: Integer, specified in DEF database units. |

## Example 4-9 Nondefault Rules

The following NONDEFAULTRULES statement is based on the assumption that there are VIARULE GENERATE DEFAULT rules for each routing-cut-routing combination, and that the default width is $0.3 \mu \mathrm{~m}$.

```
NONDEFAULTRULES 5 ;
 - doubleSpaceRule #Needs extra space, inherits default via rules
 + LAYER metal1 WIDTH 200 SPACING 1000
 + LAYER metal2 WIDTH 200 SPACING 1000
 + LAYER metal3 WIDTH 200 SPACING 1000 ;
```


# LEF/DEF 5.7 Language Reference DEF Syntax 

- lowerResistance \#Wider wires and double cut vias for lower resistance \#and higher current capacity. No special spacing rules, \#therefore the normal LEF LAYER specified spacing rules \#apply. Inherits the default via rules.
+ LAYER metall WIDTH 600 \#Metall is thinner, therefore a little wider
+ LAYER metal2 WIDTH 500
+ LAYER metal3 WIDTH 500
+ MINCUTS cut12 2 \#Requires at least two cuts + MINCUTS cut23 2 ;
- myRule \#Use default width and spacing, change via rules. The
\#default via rules are not inherited.
+ LAYER metall WIDTH 200
+ LAYER metal2 WIDTH 200
+ LAYER metal3 WIDTH 200
+ VIARULE myvia12rule + VIARULE myvia23rule ;
- myCustomRule \#Use new widths, spacing and fixed vias. The default \#via rules are not inherited because vias are defined.
+ LAYER metal1 WIDTH 500 SPACING 1000
+ LAYER metal2 WIDTH 500 SPACING 1000
+ LAYER metal3 WIDTH 500 SPACING 1000
+ VIA myvia12_custom1
+ VIA myvia12_custom2
+ VIA myvia23_custom1
+ VIA myvia23_custom2 ;
END NONDEFAULTRULES


## Pins

```
[PINS numPins ;
 [[- pinName + NET netName]
 [+ SPECIAL]
 [+ DIRECTION {INPUT | OUTPUT | INOUT | FEEDTHRU}]
 [+ NETEXPR "netExprPropName defaultNetName"]
 [+ SUPPLYSENSITIVITY powerPinName]
 [+ GROUNDSENSITIVITY groundPinName]
 [+ USE {SIGNAL | POWER | GROUND | CLOCK | TIEOFF | ANALOG
 | SCAN | RESET}]
 [+ ANTENNAPINPARTIALMETALAREA value [LAYER layerName]] ...
 [+ ANTENNAPINPARTIALMETALSIDEAREA value [LAYER layerName]] ...
 [+ ANTENNAPINPARTIALCUTAREA value [LAYER layerName]] ...
 [+ ANTENNAPINDIFFAREA value [LAYER layerName]] ...
 [+ ANTENNAMODEL {OXIDE1 | OXIDE2 | OXIDE3 | OXIDE4}] ...
 [+ ANTENNAPINGATEAREA value [LAYER layerName]] ...
 [+ ANTENNAPINMAXAREACAR value LAYER layerName] ...
 [+ ANTENNAPINMAXSIDEAREACAR value LAYER layerName] ...
```


## LEF/DEF 5.7 Language Reference DEF Syntax

```
 [+ ANTENNAPINMAXCUTCAR value LAYER layerName] ...
 [[+ PORT]
 [+ LAYER layerName
 [SPACING minSpacing | DESIGNRULEWIDTH effectiveWidth]
 pt pt
 | + POLYGON layerName
 [SPACING minSpacing | DESIGNRULEWIDTH effectiveWidth]
 pt pt pt ...
 | + VIA viaName pt] ...
 [+ COVER pt orient | FIXED pt orient | PLACED pt orient]
] . . .
 ;] ...
END PINS]
```

Defines external pins. Each pin definition assigns a pin name for the external pin and associates the pin name with a corresponding internal net name. The pin name and the net name can be the same.

When the design is a chip rather than a block, the PINS statement describes logical pins, without placement or physical information.

ANTENNAMODEL \{OXIDE1 | OXIDE2 | OXIDE3 | OXIDE4\}
Specifies the oxide model for the pin. If you specify an ANTENNAMODEL statement, that value affects all ANTENNAGATEAREA and ANTENNA*CAR statements for the pin that follow it until you specify another ANTENNAMODEL statement. The ANTENNAMODEL statement does not affect ANTENNAPARTIAL*AREA and ANTENNADIFFAREA statements because they refer to the total metal, cut, or diffusion area connected to the pin, and do not vary with each oxide model. Default: OXIDE1, for a new PIN statement

Because DEF is often used incrementally, if an ANTENNA statement occurs twice for the same oxide model, the last value specified is used.

Usually, you only need to specify a few ANTENNA values; however, for a block with six routing layers, it is possible to have six different ANTENNAPARTIAL*AREA values and six different ANTENNAPINDIFFAREA values per pin. It is also possible to have six different ANTENNAPINGATEAREA and ANTENNAPINMAX * CAR values for each oxide model on each pin.

## Example 4-10 Antenna Model Statement

## LEF/DEF 5.7 Language Reference DEF Syntax

The following example describes the OXIDE1 and OXIDE2 models for pin clock1. Note that the ANTENNAPINPARTIALMETALAREA and ANTENNAPINDIFFAREA values are not affected by the oxide values.

```
PINS 100 ;
 - clock1 + NET clock1
 + ANTENNAPINPARTIALMETALAREA 1000 LAYER m1
 + ANTENNAPINDIFFAREA 500 LAYER m1
 + ANTENNAMODEL OXIDE1 #not required, but good practice
 + ANTENNAPINGATEAREA 1000
 + ANTENNAMAXAREACAR 300 LAYER m1
 + ANTENNAMODEL OXIDE2 #start of OXIDE2 values
 + ANTENNAPINGATEAREA 2000
 + ANTENNAMAXAREACAR 100 LAYER m1
```

        . . .
    ANTENNAPINDIFFAREA value [LAYER layerName]

Specifies the diffusion (diode) area to which the pin is connected on a layer. If you do not specify layerName, the value applies to all layers. This is not necessary for output pins.
Type: Integer
Value: Area specified in (DEF database units) ${ }^{2}$
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."

ANTENNAPINGATEAREA value [LAYER layerName]
Specifies the gate area to which the pin is connected on a layer. If you do not specify layerName, the value applies to all layers. This is not necessary for input pins.
Type: Integer Value: Area specified in (DEF database units) ${ }^{2}$

For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."

## LEF/DEF 5.7 Language Reference DEF Syntax

ANTENNAPINMAXAREACAR value LAYER layerName
For hierarchical process antenna effect calculation, specifies the maximum cumulative antenna ratio value, using the metal area at or below the current pin layer, excluding the pin area itself. Use this to calculate the actual cumulative antenna ratio on the pin layer, or the layer above it.
Type: Integer
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."

ANTENNAPINMAXCUTCAR value LAYER I ayerName
For hierarchical process antenna effect calculation, specifies the maximum cumulative antenna ratio value, using the cut area at or below the current pin layer, excluding the pin area itself. Use this to calculate the actual cumulative antenna ratio for the cuts above the pin layer.
Type: Integer
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."

ANTENNAPINMAXSIDEAREACAR value LAYER layerName
For hierarchical process antenna effect calculation, specifies the maximum cumulative antenna ratio value, using the metal side wall area at or below the current pin layer, excluding the pin area itself. Use this to calculate the actual cumulative antenna ratio on the pin layer, or the layer above it.
Type: Integer
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."

ANTENNAPINPARTIALCUTAREA value [LAYER cutLayerName]

Specifies the partial cut area above the current pin layer and inside the macro cell on a layer. If you do not specify

## LEF/DEF 5.7 Language Reference DEF Syntax

layerName, the value applies to all layers. For hierarchical designs, only the cut layer above the I/O pin layer is needed for partial antenna ratio calculation.
Type: Integer
Value: Area specified in (DEF database units) ${ }^{2}$
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."

ANTENNAPINPARTIALMETALAREA value [LAYER layerName]

Specifies the partial metal area connected directly to the I/O pin and the inside of the macro cell on a layer. If you do not specify layerName, the value applies to all layers. For hierarchical designs, only the same metal layer as the I/O pin, or the layer above it, is needed for partial antenna ratio calculation.
Type: Integer
Value: Area specified in (DEF database units) ${ }^{2}$
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."

ANTENNAPINPARTIALMETALSIDEAREA value [LAYER layerName]
Specifies the partial metal side wall area connected directly to the I/O pin and the inside of the macro cell on a layer. If you do not specify layerName, the value applies to all layers. For hierarchical designs, only the same metal layer as the I/O pin, or the layer above it, is needed for partial antenna ratio calculation.
Type: Integer
Value: Area specified in (DEF database units) ${ }^{2}$
For more information on process antenna calculation, see Appendix C, "Calculating and Fixing Process Antenna Violations."

COVER pt orient

Specifies the pin's location, orientation, and that it is a part of the cover macro. A COVER pin cannot be moved by automatic tools or by interactive commands. If you specify a placement status for a pin, you must also include a LAYER statement.

## LEF/DEF 5.7 Language Reference DEF Syntax

```
DIRECTION {INPUT | OUTPUT | INOUT | FEEDTHRU}
Specifies the pin type. Most current tools do not usually use this keyword. Typically, pin directions are defined by timing library data, and not from DEF. Value: Specify one of the following:
INPUT Pin that accepts signals coming into the cell.
OUTPUT Pin that drives signals out of the cell.
INOUT \(\quad\) Pin that can accept signals going either in or out of the cell.
FEEDTHRU Pin that goes completely across the cell.
FIXED pt orient Specifies the pin's location, orientation, and that it's location cannot be moved by automatic tools, but can be moved by interactive commands. If you specify a placement status for a pin, you must also include a LAYER statement.
```


## GROUNDSENSITIVITY groundPinName

```
Specifies that if this pin is connected to a tie-low connection (such as 1'b0 in Verilog), it should connect to the same net to which groundPinName is connected.
groundPinName must match another pin in this PINS section that has a + USE GROUND attribute. The ground pin definition can follow later in this PINS section; it does not have to be defined before this pin definition. It is a semantic error to put this attribute on an existing ground pin. For an example, see Example 4-11 on page 277.
Note: GROUNDSENSITIVITY is useful only when there is more than one ground net connected to pins in the PINS section. By default, if there is only one net connected to all + USE GROUND pins, the tie-low connections are already implicitly defined (that is, tie-low connections are connected to the same net as any ground pin).
NETEXPR "netExprPropName defaultNetName"
```


## LEF/DEF 5.7 Language Reference DEF Syntax

Specifies a net expression property name (such as power1 or power2) and a default net name. If netExprPropName matches a net expression property higher up in the netlist (for example, in Verilog, VHDL, or OpenAccess), then the property is evaluated, and the software identifies a net to which to connect this pin. If the property does not exist, defaul tNetName is used for the net name.
netExprPropName must be a simple identifier in order to be compatible with other languages, such as Verilog and CDL. Therefore, it can only contain alphanumeric characters, and the first character cannot be a number. For example, power2 is a legal name, but 2power is not. You cannot use characters such as $\$$ and !. The default Name can be any legal DEF net name.

If more than one pin connects to the same net, only one pin should have a NETEXPR added to it. It is redundant and unnecessary to add NETEXPR to every ground pin connected to one ground net, and it is illegal to have different NETEXPR values for pins connected to the same net.

## Example 4-11 Net Expression and Supply Sensitivity

The following PINS statement defines sensitivity and net expression values for five pins in the design myDesign:

```
DESIGN myDesign
```

PINS 4 ;

- in1 + NET myNet
+ SUPPLYSENSITIVITY vddpin1 ; \#If in1 is connected to 1'b1, use \#net that is connected to vddpin1. \#No GROUNDSENSITIVITY is needed because \#only one ground net is used by PINS. \#Therefore, 1 'b0 implicitly means net \#from any +USE GROUND pin.
- vddpin1 + NET VDD1 + USE POWER
+ NETEXPR "power1 VDD1" ; \#If an expression named power1 is defined in \#the netlist, use it to fine the net. \#Otherwise, use net VDD1.
- vddpin2 + NET VDD2 + USE POWER


# LEF/DEF 5.7 Language Reference DEF Syntax 

```
 + NETEXPR "power2 VDD2" ; #If an expression named power2 is defined in
 #the netlist, use it to find the net.
 # Otherise, use net VDD2.
- gndpin1 + NET GND + USE GROUND
+ NETEXPR "gnd1 GND" ; #If an expression named gnd1 is defined in
 #the netlist, use it to find net
 #connection. Otherwise, use net GND.
```

END PINS
numPins Specifies the number of pins defined in the PINS section. pinName + NET netName

Specifies the name for the external pin, and the corresponding internal net (defined in NETS or SPECIALNETS statements).

PLACED pt orient Specifies the pin's location, orientation, and that it's location is fixed, but can be moved during automatic layout. If you specify a placement status for a pin, you must also include a LAYER statement.

PORT
Indicates that the following LAYER, POLYGON, and VIA statements are all part of one PORT connection, until another PORT statement occurs. If this statement is missing, all of the LAYER, POLYGON, and VIA statements are part of a single implicit PORT for the PIN.

This commonly occurs for power and ground pins. All of the shapes of one port (rectangles, polygons, and vias) should already be connected with just the port shapes; therefore, the router only needs to connect to one of the shapes for the port. Separate ports should each be connected by routing inside the block (and each DEF PORT should map to a single LEF PORT in the equivalent LEF abstract for this block).

The syntax for describing PORT statements is defined as follows:

```
[[+ PORT]
 [+ LAYER layerName
 [SPACING minSpacing
 | DESIGNRULEWIDTH effectiveWidth]
 pt pt
```


## LEF/DEF 5.7 Language Reference

 DEF Syntax```
    | + POLYGON layerName
            [ SPACING minSpacing
            | DESIGNRULEWIDTH effectiveWidth]
            pt pt pt
| + VIA viaName pt
] ...
]
```

LAYER layerName pt pt
Specifies the routing layer used for the pin, and the pin geometry on that layer. If you specify a placement status for a pin, you must include a LAYER statement.

```
POLYGON layerName pt pt pt
```

Specifies the layer and a sequence of at least three points to generate a polygon for this pin. The polygon edges must be parallel to the x axis, the y axis, or at a 45-degree angle.

Each POLYGON statement defines a polygon generated by connecting each successive point, and then the first and last points. The pt syntax corresponds to a coordinate pair, such as $x y$. Specify an asterisk (*) to repeat the same value as the previous x or y value from the last point. (See Example 4-13 on page 281.)

SPACING minSpacing
Specifies the minimum spacing allowed between this pin and any other routing shape.
This distance must be greater than or equal to minSpacing. If you specify SPACING, you cannot specify DESIGNRULEWIDTH. (See
Example 4-14 on page 281.
Type: Integer, specified in DEF database units
DESIGNRULEWIDTH effectiveWidth

LEF/DEF 5.7 Language Reference DEF Syntax

Specifies that this pin has a width of effectiveWidth for the purpose of spacing calculations. If you specify DESIGNRULEWIDTH, you cannot specify SPACING. (See Example 414 on page 281.
Type: Integer, specified in DEF database units
VIA viaName pt
Places the via named viaName at the specified ($\mathrm{x} y$) location ($p t$). vianame must be a previously defined via in the DEF VIAS or LEF VIA section.
Type: (pt) Integers, specified in DEF database units

Example 4-12 Port Example

Assume a block that is 5000×5000 database units with a 0,0 origin in the middle of the block. If you have the following pins defined, Figure 4-3 on page 281 illustrates how pin BUSA [0] is created for two different placement locations and orientations:

```
PINS 2 ;
    - BUSA[0] + NEY BUSA[0] + DIRECTION IN{UT + USE SIGNAL
        + LAYER M1 ( -25 0 ) ( 25 50 ) #m1, m2, and via12
        + LAYER M2 ( -10 0 ) ( 10 75 )
        + VIA vial2 ( 0 25 )
        + PLACED ( 0 -2500 ) N ; #middle of bottom side
    - VDD + NET VDD + DIRECTION INOUT + USE POWER + SPECIAL
        + PORT
            + LAYER M2 ( -25 0 ) ( 25 50 )
            + PLACED ( 0 2500 ) S #middle of top side
        + PORT
            + LAYER M1 (-25 0 ) ( 25 50 )
            + PLACED ( -2500 0 ) E #middle of left side
        + PORT
            + LAYER M1 ( -25 0 ) ( 25 50 )
            + PLACED ( 2500 0 ) W ; #middle of right side
```

END PINS

LEF/DEF 5.7 Language Reference

DEF Syntax

Figure 4-3 Port Illustration

Example 4-13 Port Statement With Polygon

The following PINS statement creates a polygon with a 45-degree angle:

```
PINS 2 ;
    - myPin3 + NET myNet1 + DIRECTION INPUT
        + PORT
        + POLYGON metal1 ( 0 0 ) ( 100 100 ) ( 200 100 ) ( 200 0 ) #45-degree angle
        + FIXED ( 10000 5000 ) N ;
END PINS
```


Example 4-14 Design Rule Width and Spacing Rules

The following statements create spacing rules using the DESIGNRULEWIDTH and SPACING statements:

```
PINS 3 ;
    - myPin1 + NET myNet1 + DIRECTION INPUT
```


LEF/DEF 5.7 Language Reference DEF Syntax

```
    + LAYER metal1
        DESIGNRULEWIDTH 1000 #Pin is effectively 1000 dbu wide
            ( -100 0 ) ( 100 200 ) #Pin is 200 x 200 dbu
    + FIXED ( 10000 5000 ) S ;
    - myPin2 + NET myNet2 + DIRECTION INPUT
    + LAYER metal1
        SPACING 500 #Requires >= 500 dbu spacing
        ( -100 0 ) ( 100 200 ) #Pin is 200 x 200 dbu
    + COVER ( 10000 5000 ) S ;
    - myPin3 + NET myNet1 #Pin with two shapes
    + DIRECTION INPUT
    + LAYER metal2 ( 200 200 ) ( 300 300 ) #100 x 100 dbu shape
    + POLYGON metal1 ( 0 0 ) ( 100 100 ) ( 200 100 ) ( 200 0 ) #Has 45-degree edge
    + FIXED ( 10000 5000 ) N ;
END PINS
```

SPECIAL Identifies the pin as a special pin. Regular routers do not route to special pins. The special router routes special wiring to special pins.

SUPPLYSENSITIVITY powerPinName
Specifies that if this pin is connected to a tie-high connection (such as 1'b1 in Verilog), it should connect to the same net to which powerPinName is connected.
powerPinName must match another pin in this PINS section that has a + USE POWER attribute. The power pin definition can follow later in this PINS section; it does not have to be defined before this pin definition. It is a semantic error to put this attribute on an existing power pin. For an example, see Example 4-11 on page 277.

Note: POWERSENSITIVITY is useful only when there is more than one power net connected to pins in the PINS section. By default, if there is only one net connected to all + USE POWER pins, the tie-high connections are already implicitly defined (that is, tie-high connections are connected to the same net as the single power pin).

USE \{ANALOG | CLOCK \| GROUND \| POWER \| RESET \| SCAN | SIGNAL | TIEOFF\}

LEF/DEF 5.7 Language Reference

DEF Syntax

Specifies how the pin is used.
Default: SIGNAL
Value: Specify one of the following:

ANALOG
CLOCK
GROUND

POWER

RESET
SCAN
SIGNAL
TIEOFF

Pin is used for analog connectivity.
Pin is used for clock net connectivity.
Pin is used for connectivity to the chiplevel ground distribution network.

Pin is used for connectivity to the chiplevel power distribution network.

Pin is used as reset pin.
Pin is used as scan pin.
Pin is used for regular net connectivity.
Pin is used as tie-high or tie-low pin.

Extra Physical PIN(S) for One Logical PIN

In the design of place and route blocks, you sometimes want to add extra physical connection points to existing signal ports (usually to enable the signal to be accessed from two sides of the block). One pin has the same name as the net it is connected to. Any other pins added to the net must use the following naming conventions.

For extra non-bus bit pin names, use the following syntax:
pinname.extraN $\quad N$ is a positive integer, incremented as the physical pins are added

For example:

```
PINS n ;
    - a + NET a .... ;
    - a.extra1 + NET a ... ;
```

For extra bus bit pin names, use the following syntax:
basename.extraN[index]
basename is simple part of bus bit pin/net name . N is a positive integer, incremented as the physical pins are added. [index] identifies the specific bit of the bus, if it is a bus bit.

LEF/DEF 5.7 Language Reference

DEF Syntax

For example:

```
PINS n ;
    - a[0] + net a[0] ... ;
    - a.extral[0] + net a[0] ... ;
```

Note: The brackets [] are the BUSBITCHARS as defined in the DEF BUSBITCHARS statement.

Specifying Orientation

If you specify the pin's placement status, you must specify its location and orientation. A pin can have any of the following orientations: $\mathrm{N}, \mathrm{S}, \mathrm{W}, \mathrm{E}, \mathrm{FN}, \mathrm{FS}, \mathrm{FW}$, or FE.

Orientation terminology can differ between tools. The following table maps the orientation terminology used in LEF and DEF files to the OpenAccess database format.

LEF/DEF	OpenAccess	Definition
N (North)	R0	
S (South)	R180	\square
W (West)	R90	
E (East)	R270	\square
FN (Flipped North)	MY	\square
FS (Flipped South)	MX	\square
FW (Flipped West)	MX90	\square
FE (Flipped East)	MY90	\square

Example 4-15 Pin Statements

The following example describes a physical I/O pin.

```
# M1 width = 50, track spacing = 120
# M2 width = 60, track spacing = 140
DIEAREA ( -5000 -5000 ) ( 5000 5000 ) ;
TRACKS Y -4900 DO 72 STEP 140 LAYER M2 M1 ;
TRACKS X -4900 DO 84 STEP 120 LAYER M1 M2 ;
PINS 4 ;
    # Pin on the left side of the block
```


LEF/DEF 5.7 Language Reference

DEF Syntax

- BUSA[0] + NET BUSA[0] + DIRECTION INPUT
+ LAYER M1 (-250) (25165) \# . 5 M1 W + 1 M2 TRACK
+ PLACED (-50002500) E ;
\# Pin on the right side of the block
- BUSA[1] + NET BUSA[1] + DIRECTION INPUT
+ LAYER M1 (-250) (25165) \# . 5 M1 W + 1 M2 TRACK
+ PLACED (5000 -2500) W ;
\# Pin on the bottom side of the block
- BUSB[0] + NET BUSB[0] + DIRECTION INPUT
+ LAYER M2 (-30 0) (30150) \# . 5 M2 W + 1 M1 TRACK
+ PLACED ($-2100-5000$) N ;
\# Pin on the top side of the block
- BUSB[1] + NET BUSB[1] + DIRECTION INPUT

END PINS

The following example shows how a logical I/O pin would appear in the DEF file. The pin is first defined in Verilog for a chip-level design.

```
module chip (OUT, BUSA, BUSB) ;
    input [0:1] BUSA, BUSB;
    output OUT;
endmodule
```

The following description for this pin is in the PINS section in the DEF file:
PINS 5 ;

- BUSA[0] + NET BUSA[0] + DIRECTION INPUT ;

LEF/DEF 5.7 Language Reference

DEF Syntax

- BUSA[1] + NET BUSA[1] + DIRECTION INPUT ;
- BUSB[0] + NET BUSB[0] + DIRECTION INPUT ;
- BUSB[1] + NET BUSB[1] + DIRECTION INPUT ;
- OUT + NET OUT + DIRECTION OUTPUT ;

END PINS

Pin Properties

```
[PINPROPERTIES num;
    [- {compName pinName | PIN pinName}
        [+ PROPERTY {propName propVal} ...] ...
    ; ] ...
END PINPROPERTIES]
```

Defines pin properties in the design.

compName pinName	Specifies a component pin. Component pins are identified by the component name and pin name.
num	Specifies the number of pins defined in the PINPROPERTIES section.
PIN pinName	Specifies an I/O pin.
PROPERTY propName propVal	

Specifies a numerical or string value for a pin property defined in the PROPERTYDEFINITIONS statement. The propName you specify must match the propName listed in the PROPERTYDEFINITIONS statement.

Example 4-16 Pin Properties Statement

```
PINPROPERTIES 3 ;
    - CORE/g76 CKA + PROPERTY CLOCK "FALLING" ;
    - comp1 A + PROPERTY CLOCK "EXCLUDED" ;
    - rp/regB clk + PROPERTY CLOCK "INSERTION" ;
```

END PINPROPERTIES

LEF/DEF 5.7 Language Reference

DEF Syntax

Property Definitions

```
[PROPERTYDEFINITIONS
    [objectType propName propType [RANGE min max]
        [value | stringValue]
    ;] ...
END PROPERTYDEFINITIONS]
```

Lists all properties used in the design. You must define properties in the PROPERTYDEFINITIONS statement before you can refer to them in other sections of the DEF file.

```
objectType
```

propName propType

```
Specifies the object type being defined. You can define properties for the following object types:
```

```
COMPONENT
```

COMPONENT
COMPONENTPIN
COMPONENTPIN
DESIGN
DESIGN
GROUP
GROUP
NET
NET
NONDEFAULTRULE
NONDEFAULTRULE
REGION
REGION
ROW
ROW
SPECIALNET
SPECIALNET
Specifies a unique property name for the object type.
Specifies the property type for the object type. You can specify one of the following property types:
INTEGER
REAL
STRING
RANGE min max Limits real number and integer property values to a specified range.
value | stringValue

```

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}

Assigns a numeric value or a name to a DESIGN object.
Note: Assign values to properties for component pins in the PINPROPERTIES section. Assign values to other properties in the section of the LEF file that describes the object to which the property applies.

\section*{Regions}
```

[REGIONS numRegions ;
[- regionName {pt pt} ...
[+ TYPE {FENCE | GUIDE}]
[+ PROPERTY {propName propVal} ...] ...
;] ...

```
END REGIONS]

Defines regions in the design. A region is a physical area to which you can assign a component or group.
numRegions Specifies the number of regions defined in the design.

PROPERTY propName propVal
Specifies a numerical or string value for a region property defined in the PROPERTYDEFINITIONS statement. The propName you specify must match the propName listed in the PROPERTYDEFINITIONS statement.
regionName pt pt Names and defines a region. You define a region as one or more rectangular areas specified by pairs of coordinate points.

TYPE \{FENCE | GUIDE\}
Specifies the type of region.
Default: All instances assigned to the region are placed inside the region boundaries, and other cells are also placed inside the region.
Value: Specify one of the following:
FENCE All instances assigned to this type of region must be exclusively placed inside the region boundaries. No other instances are allowed inside this region.

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}

GUIDE All instances assigned to this type of region should be placed inside this region; however, it is a preference, not a hard constraint. Other constraints, such as wire length and timing, can override this preference.

\section*{Example 4-17 Regions Statement}
```

REGIONS 1 ;
- REGION1 (0 0) (1200 1200)
+ PROPERTY REGIONORDER 1 ;

```

\section*{Rows}
[ROW rowName siteName origX origY siteOrient
[DO numX BY numy [STEP stepX stepY]]
[+ PROPERTY \{propName propVal\} ...] ... ; ] ...
Defines rows in the design.

DO numX BY numy Specifies a repeating set of sites that create the row. You must specify one of the values as 1 . If you specify 1 for num \(Y\), then the row is horizontal. If you specify 1 for numX, the row is vertical. Default: Both numx and numy equal 1, creating a single site at this location (that is, a horizontal row with one site).
origX origy Specifies the location of the first site in the row. Type: Integer, specified in DEF database units

PROPERTY propName propVal
Specifies a numerical or string value for a row property defined in the PROPERTYDEFINITIONS statement. The propName you specify must match the propName listed in the PROPERTYDEFINITIONS statement.
rowName
siteName
Specifies the row name for this row.
Specifies the LEF SITE to use for the row. A site is a placement location that can be used by LEF macros that match the same site. siteName can also refer to a site with a row pattern in its definition, in which case, the row pattern indicates a repeating

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}
set of sites that are abutted. For more information, see "Site" and "Macro" in "LEF Syntax."
siteOrient
Specifies the orientation of all sites in the row. siteOrient must be one of N, S, E, W, FN, FS, FE, or FW. For more information on orientations, see "Specifying Orientation" on page 250.

STEP stepX stepY
Specifies the spacing between sites in horizontal and vertical rows.

\section*{Example 4-18 Row Statements}

Assume siteA is 200 by 900 database units.
```

ROW row O siteA 1000 1000 N ; \#Horizontal row is one-site wide at 1000, 1000
ROW row_1 siteA 1000 1000 N DO 1 BY 1 ; \#Same as row_0
ROW row_2 siteA 1000 1000 N DO 1 BY 1 STEP 200 0 ; \#Same as row_0
ROW row_3 siteA 1000 1000 N DO 10 BY 1 ; \#Horizontal row is 10 sites wide,
\#so row width is 200*10=2000 dbu
ROW row_4 siteA 1000 1000 N DO 10 BY 1 STEP 200 0 ; \#Same as row_3
ROW row_5 siteA 1000 1000 N DO 1 BY 10 ; \#Vertical row is 10 sites high, so

```
        \#total row height is \(900 * 10=9000 \mathrm{dbu}\)
ROW row_6 siteA 10001000 N DO 1 BY 10 STEP 0900 ; \#Same as row_5

\section*{Scan Chains}
```

[SCANCHAINS numScanChains ;
[- chainName
[+ PARTITION partitionName [MAXBITS maxbits]]
[+ COMMONSCANPINS [(IN pin)] [(OUT pin)]]
+ START {fixedInComp | PIN} [outPin]
[+ FLOATING
{floatingComp [(IN pin)] [(OUT pin)] [(BITS numBits)]} ...]
[+ ORDERED
{fixedComp [(IN pin)] [(OUT pin)] [(BITS numBits)]} ...
] ...
+ STOP {fixedOutComp | PIN} [inPin]]
;] ...

```
END SCANCHAINS]

Defines scan chains in the design. Scan chains are a collection of cells that contain both scan-in and scan-out pins. These pins must be defined in the PINS section of the DEF file with + USE SCAN.

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}
chainName Specifies the name of the scan chain. Each statement in the SCANCHAINS section describes a single scan chain.

COMMONSCANPINS [( IN pin )] [( OUT pin )]
Specifies the scan-in and scan-out pins for each component that does not have a scan-in and scan-out pin specified. You must specify either common scan-in and scan-out pins, or individual scan-in and scan-out pins for each component.

FLOATING \{floatingComp [( IN pin )] [( OUT pin )] [(BITS numBits )]\}
Specifies the floating list. You can have one or zero floating lists. If you specify a floating list, it must contain at least one component.
fixedComp Specifies the component name.
( IN pin ) Specifies the scan-in pin. If you do not specify a scan-in pin, the router uses the pin you specified for the common scan pins.
( OUT pin ) Specifies the scan-out pin. If you do not specify a scan-out pin, the router uses the pin you specified for the common scan pins.

BITS numbits Specifies the sequential bit length of any chain element. This allows application tools that do not have library access to determine the sequential bit length contribution of any chain element to ensure the MAXBITS constraints are not violated for chains in a given partition. You can specify 0 to indicate when elements are nonsequential.
Default: 1
Type: Integer

Note: Scan chain reordering commands can use floating components in any order to synthesize a scan chain. Floating components cannot be shared with other scan chains unless

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}
they are in the same PARTITION. Each component should only be used once in synthesizing a scan chain.

MAXBITS maxBits
numScanChains

When specified with chains that include the PARTITION keyword, sets the maximum bit length (flip-flop bit count) that the chain can grow to in the partition.
Default: 0 (tool-specific defaults apply, which is probably the highest bit length of any chain in the partition Type: Integer
Value: Specify a value that is at least as large as the size of the current chain.

Specifies the number of scan chains to synthesize.
```

ORDERED {fixedComp [(IN pin)] [(OUT pin)] [(BITS numBits)]}

```

Specifies an ordered list. You can specify none or several ordered lists. If you specify an ordered list, you must specify at least two fixed components for each ordered list.
fixedComp Specifies the component name.
( IN pin) Specifies the scan-in pin. If you do not specify a scan-in pin, the router uses the pin you specified for the common scan pins.
(OUTpin )

BITS numbits

Specifies the scan-out pin. If you do not specify a scan-out pin, the router uses the pin you specified for the common scan pins.

Specifies the sequential bit length of any chain element. This allows application tools that do not have library access to determine the sequential bit length contribution of any chain element to ensure the MAXBITS constraints are not violated for chains in a given partition. You can specify 0 to indicate when elements are nonsequential.
Default: 1
Type: Integer

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}

Note: Scan chain reordering commands should synthesize these components in the same order that you specify them in the list. Ordered components cannot be shared with other scan chains unless they are in the same PARTITION. Each component should only be used once in synthesizing a scan chain.

PARTITION partitionName
Specifies a partition name. This statement allows reordering tools to determine inter-chain compatibility for element swapping (both FLOATING elements and ORDERED elements). It associates each chain with a partition group, which determines their compatibility for repartitioning by swapping elements between them.

Chains with matching PARTITION names constitute a swapcompatible group. You can change the length of chains included in the same partition (up to the MAXBITS constraint on the chain), but you cannot eliminate chains or add new ones; the number of chains in the partition is always preserved.

If you do not specify the PARTITION keyword, chains are assumed to be in their own single partition, and reordering can be performed only within that chain.

\section*{Example 4-19 Partition Scanchain}

In the following definition, chain chain1_clock1 is specified without a MAXBITS keyword. The maximum allowed bit length of the chain is assumed to be the sequential length of the longest chain in any clock1 partition.
```

SCANCHAINS 77 ;
- chain1_clock1
+ PARTITION clock1
+ START blockl/bsr_reg_0 Q
+ FLOATING
block1/pgm_cgm_en_reg_reg (IN SD) (OUT QZ)
blockl/start_reset_dd_reg (IN SD) (OUT QZ)
+ STOP blockl/start_reset_d_reg SD ;

```

In the following definition, chain chain2_clock2 is specified with a PARTITION statement that associates it with clock2, and a maximum bit length of 1000 . The third element

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}
statement in the FLOATING list is a scannable register bank that has a sequential bit length of 4. The ORDERED list element statements have total bit lengths of 1 each because the muxes are specified with a maximum bit length of 0 .
```

- chain2_clock2
 + PARTITION clock2
MAXBITS 1000
 + START blockl/current_state_reg_0_QZ
 + FLOATING
block1/port2_phy_addr_reg_0_ (IN SD) (OUT QZ)
block1/port2_phy_addr_reg_4_ (IN SD) (OUT QZ)
block1/port3_intfc (IN SD) (OUT MSB) (BITS 4)

```
    + ORDERED
        blocki/mux1 ( IN A ) ( OUT X ) ( BITS 0 )
        blockl/ffi ( IN SD ) ( OUT Q )
    + ORDERED
        block1/mux2 ( IN A ) ( OUT X ) ( BITS 0 )
        blocki/ff2 ( IN SD ) ( OUT Q ) ;

In the following definition, chain chain3_clock2 is also specified with a PARTITION statement that associates it with clock2. This means it is swap-compatible with chain2_clock2. The specified maximum bit length for this chain is 1200.
```

- chain3_clock2
 + PARTITION clock2
MAXBITS 1200
 + START blockl/LV_testpoint_0_Q_reg Q
 + FLOATING
block1/LV_testpoint_0_Q_reg (IN SE) (OUT Q)
block1/tm_state_reg_1_(IN SD) (OUT QZ)

```

In the following definition, chain chain4_clock3 is specified with a PARTITION statement that associates it with clock3. The second element statement in the FLOATING list is a scannable register bank that has a sequential bit length of 8 , and default pins. The ORDERED list element statements have total bit lengths of 2 each because the mux is specified with a maximum bit length of 0 .
```

- chain4_clock3
 + PARTITION clock3
 + START block1/prescaler_IO/lfsr_reg1
 + FLOATING
block1/dp1_timers

```

\section*{LEF/DEF 5.7 Language Reference} DEF Syntax
```

 block1/bus8 (BITS 8)
 + ORDERED
 block1/dsl/ff1 (IN SD) (OUT Q)
 block1/ds1/mux1 (IN B) (OUT Y) (BITS 0)
 block1/ds1/ff2 (IN SD) (OUT Q)
 START {fixedInComp | PIN} [outPin]

```

Specifies the start point of the scan chain. You must specify this point. The starting point can be either a component, fixedInComp, or an I/O pin, PIN. If you do not specify outPin, the router uses the pin specified for common scan pins.

STOP\{fixedOutComp | PIN\} [inPin]
Specifies the endpoint of the scan chain. You must specify this point. The stop point can be either a component, fixedOutComp, or an I/O pin, PIN. If you do not specify inPin, the router uses the pin specified for common scan pins.

\section*{Scan Chain Rules}

Note the following when defining scan chains.
■ Each scan-in/scan-out pin pair of adjacent components in the ordered list cannot have different owning nets.
- No net can connect a scan-out pin of one component to the scan-in pin of a component in a different scan chain.
- For incremental DEF, if you have a COMPONENTS section and a SCANCHAINS section in the same DEF file, the COMPONENTS section must appear before the SCANCHAINS section. If the COMPONENTS section and SCANCHAINS section are in different DEF files, you must read the COMPONENTS section or load the database before reading the SCANCHAINS section.

\section*{Example 4-20 Scan Chain Statements}

Nets 100; \#Number of nets resulting after scan chain synthesis

\section*{LEF/DEF 5.7 Language Reference} DEF Syntax
```

- SCAN-1 (C1 SO + SYNTHESIZED)
(C4 SI + SYNTHESIZED) + SOURCE TEST ;
- ...
- N1 (C3 SO + SYNTHESIZED)
(C11 SI + SYNTHESIZED) (AND1 A) ;
- . . .

```
END NETS
SCANCHAINS 2; \#Specified before scan chain ordering
    - S1
        + COMMONSCANPINS ( IN SI ) ( OUT SO )
        + START SIPAD OUT
        + FLOATING C1 C2 ( IN D ) ( OUT Q ) C3 C4 C5...CN
        + ORDERED A1 ( OUT Q ) A2 ( IN D ) ( OUT Q ) ...
            AM ( N D )
        + ORDERED B1 B2 ... BL
        + STOP SOPAD IN ;
    - S2 ... ;
END SCANCHAINS
SCANCHAINS 2 ; \#Specified after scan chain ordering
    - S1
        + START SIPAD OUT
        + FLOATING C1 ( IN SI ) ( OUT SO )
            C2 ( IN D ) ( OUT Q )
            C3 ( IN SI ( OUT SO ) ... CN ( IN SI ) ( OUT SO )
        + ORDERED A1 ( IN SI ) ( OUT Q )
            A2 ( IN D ) ( OUT Q ) ... AM ( IN D ) ( OUT SO )
        + ORDERED B1 ( IN SI ) ( OUT SO )
            B2 ( IN SI ) ( OUT SO ) ...
        + STOP SOPAD IN ;
    - S2 ... ;
END SCANCHAINS

\section*{Slots}
```

[SLOTS numSlots ;
[- LAYER layerName
{RECT pt pt | POLYGON pt pt pt ... } ...
;] ...
END SLOTS]

```

Defines the rectangular shapes that form the slotting of the wires in the design. Each slot is defined as an individual rectangle.

\section*{LEF/DEF 5.7 Language Reference}

\section*{DEF Syntax}

LAYER layerName
numslots

POLYGON pt pt pt

RECT pt pt

Specifies the layer on which to create slots.
Specifies the number of LAYER statements in the SLOTS statement, not the number of rectangles.

Specifies a sequence of at least three points to generate a polygon geometry. The polygon edges must be parallel to the \(x\) axis, the y axis, or at a 45-degree angle. Each POLYGON statement defines a polygon generated by connecting each successive point, and then the first and last points. The \(p t\) syntax corresponds to a coordinate pair, such as \(x y\). Specify an asterisk (*) to repeat the same value as the previous \(x\) or \(y\) value from the last point. Type: DEF database units

Specifies the lower left and upper right corner coordinates of the slot geometry.

\section*{Example 4-21 Slots Statements}

The following statement defines slots for layers MET1 and MET2.
```

SLOTS 2 ;
- LAYER MET1
RECT (1000 2000) (1500 4000)
RECT (2000 2000) (2500 4000)
RECT (3000 2000) (3500 4000) ;
- LAYER MET2
RECT (1000 2000) (1500 4000)
RECT (1000 4500) (1500 6500)
RECT (1000 7000) (1500 9000)
RECT (1000 9500) (1500 11500) ;
END SLOTS

```

The following SLOTS statement defines two rectangles and one polygon slot geometries:
```

SLOTS 1 ;
- LAYER metal1
RECT (100 200) (150 400)
POLYGON (100 100) (200 200) (300 200) (300 100)
RECT (300 200) (350 400) ;
END SLOTS

```

\section*{LEF/DEF 5.7 Language Reference \\ DEF Syntax}

\section*{Special Nets}
```

[SPECIALNETS numNets ;
[- netName
[({compName pinName | PIN pinName} [+ SYNTHESIZED])] ...
[+ VOLTAGE volts]
[specialWiring] ...
[+ SOURCE {DIST | NETLIST | TIMING | USER}]
[+ FIXEDBUMP]
[+ ORIGINAL netName]
[+ USE {ANALOG | CLOCK | GROUND | POWER | RESET | SCAN | SIGNAL | TIEOFF}]
[+ PATTERN {BALANCED | STEINER | TRUNK | WIREDLOGIC}]
[+ ESTCAP wireCapacitance]
[+ WEIGHT weight]
[+ PROPERTY {propName propVal} ...] ...
;] ...
END SPECIALNETS]

```

Defines netlist connectivity for nets containing special pins. Each specification in the SPECIALNETS statement describes a single net, identified by netName and the special pins on the net. These pins are identified by their pin names and corresponding components.

Input parameters for a net can appear in the NETS section or the SPECIALNETS section. In case of conflicting values for an argument, the DEF reader uses the last value encountered for the argument. NETS and SPECIALNETS statements can appear more than once in a DEF file. If a particular net has mixed wiring or pins, specify the special wiring and pins first.

You can also specify the netlist in the COMPONENTS statement. If the netlist is specified in both NETS and COMPONENTS statements, and if the specifications are not consistent, an error message appears. On output, the writer outputs the netlist in either format, depending on the command arguments of the output command.
compNamePattern pinName
Specifies the name of a special pin on the net and its corresponding component. You can use a compNamePat tern to specify a set of component names. During evaluation of the pattern match, components that match the pattern but do not have a pin named pinName are ignored. The pattern match character is * (asterisk). For example, a component name of \(a b c / d e f\) would be matched by \(a^{*}, a b c / d^{*}\), or \(a b c / d e f\).

ESTCAP wireCapacitance

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}

Specifies the estimated wire capacitance for the net. ESTCAP can be loaded with simulation data to generate net constraints for timing-driven layout.

FIXEDBUMP
Indicates that the bump net cannot be reassigned to a different pin.

It is legal to have a pin without geometry to indicate a logical connection and to have a net that connects that pin to two other instance pins that have geometry. Area I/Os have a logical pin that is connected to a bump and an input driver cell. The bump and driver cell have pin geometries (and, therefore, should be routed and extracted), but the logical pin is the external pin name without geometry (typically the Verilog pin name for the chip).

Bump nets also can be specified in the NETS statement. If a net name appears in both the NETS and SPECIALNETS statements, the FIXEDBUMP keyword also should appear in both statements. However, the value only exists once within a given application's database for the net name.

Because DEF is often used incrementally, the last value read in is used. Therefore, in a typical DEF file, if the same net appears in both statements, the FIXEDBUMP keyword (or lack of it) in the NETS statement is the value that is used because the NETS statement is defined after the SPECIALNETS statement.

\section*{Example 4-22 Fixed Bump}

The following example describes a logical pin that is connected to a bump and an input driver cell. The I/O driver cell and bump cells are specified in the COMPONENTS statement. Bump cells are usually placed with + COVER placement status so they cannot be moved manually by mistake.
```

COMPONENTS 200
- driver1 drivercell + PLACED (100 100) N ;
- bumpa1 bumpcell + COVER (100 100) N ;
- bumpa2 bumpcell + COVER (200 100) N ;

```

The pin is assigned in the PIN statement.
```

PINS 100
- n1 + NET n1 + SPECIAL + DIRECTION INPUT ;
- n2 + NET n2 + SPECIAL + DIRECTION INPUT ;

```

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}

In the SPECIALNETS statement, the net n1 is assigned to bumpa1 and cannot be reassigned. Note that another net n2 is assigned to bumpa2; however, I/O optimization commands are allowed to reassign bumpa2 to a different net.
```

SPECIALNETS 100
- n1 (driver1 in) (bumpa1 bumpin) + FIXEDBUMP ;
- n2 (driver2 in) (bumpa2 bumpin) ;

```
netName

ORIGINAL netName

PATTERN \{BALANCED | STEINER | TRUNK | WIREDLOGIC\}
Specifies the routing pattern used for the net.
Default: STEINER
Value: Specify one of the following:
BALANCED Used to minimize skews in timing delays for clock nets.

STEINER
TRUNK
WIREDLOGIC

Used to minimize net length.
Used to minimize delay for global nets.
Used in ECL designs to connect output and mustjoin pins before routing to the remaining pins.

PIN pinName Specifies the name of an I/O pin on a net or a subnet.

PROPERTY propName propVal
Specifies a numerical or string value for a net property defined in the PROPERTYDEFINITIONS statement. The propName you specify must match the propName listed in the PROPERTYDEFINITIONS statement.
specialWiring Specifies the special wiring for the net. For syntax information, see "Special Wiring Statement" on page 302.

SOURCE \{DIST | NETLIST | TIMING | USER\}

\section*{LEF/DEF 5.7 Language Reference}

\section*{DEF Syntax}

Specifies how the net is created. The value of this field is preserved when input to the DEF reader.

DIST \(\quad\) Net is the result of adding physical components (that is, components that only connect to power or ground nets), such as filler cells, well-taps, tiehigh and tie-low cells, and decoupling caps.

NETLIST \(\quad\) Net is defined in the original netlist. This is the default value, and is not normally written out in the DEF file.

TEST Net is part of a scanchain.
TIMING Net represents a logical rather than physical change to netlist, and is used typically as a buffer for a clock-tree, or to improve timing on long nets.

USER \(\quad\) Net is user defined.

SYNTHESIZED Used by some tools to indicate that the pin is part of a synthesized scan chain.

USE \{ANALOG | CLOCK | GROUND \| POWER \| RESET \| SCAN \| SIGNAL | TIEOFF\}
Specifies how the net is used.
Value: Specify one of the following:
ANALOG Used as an analog signal net.
CLOCK Used as a clock net.
GROUND Used as a ground net.
POWER Used as a power net.
RESET Used as a reset net.
SCAN Used as a scan net.
SIGNAL Used as a digital signal net.
TIEOFF Used as a tie-high or tie-low net.

VOLTAGE volts
Specifies the voltage for the net, as an integer in units of . 001 volts. For example, VOLTAGE 1500 in DEF is equal to 1.5 V .

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}

WEIGHT weight
Specifies the weight of the net. Automatic layout tools attempt to shorten the lengths of nets with high weights. Do not specify a net weight larger than 10, or assign weights to more than 3 percent of the nets in a design.

Note: The net constraints method of controlling net length is preferred over using net weights.

\section*{Special Wiring Statement}
```

[+ POLYGON layerName pt pt pt ...
| + RECT layerName pt pt
| {+ COVER | + FIXED | + ROUTED | + SHIELD shieldNetName}
layerName routeWidth
[+ SHAPE
{RING | PADRING | BLOCKRING | STRIPE | FOLLOWPIN
| IOWIRE | COREWIRE | BLOCKWIRE | BLOCKAGEWIRE | FILLWIRE
| FILLWIREOPC | DRCFILL}]
[+ STYLE styleNum]
routingPoints
[NEW layerName routeWidth
[+ SHAPE
{RING | PADRING | BLOCKRING | STRIPE | FOLLOWPIN
| IOWIRE | COREWIRE | BLOCKWIRE | BLOCKAGEWIRE | FILLWIRE
| FILLWIREOPC | DRCFILL}]
[+ STYLE styleNum]
routingPoints
] ...
] ...

```

Defines the wiring for both routed and shielded nets.

COVER

FIXED

Specifies that the wiring cannot be moved by either automatic layout or interactive commands. If no wiring is specified for a particular net, the net is unrouted. If you specify COVER, you must also specify layerName width.

Specifies that the wiring cannot be moved by automatic layout, but can be changed by interactive commands. If no wiring is specified for a particular net, the net is unrouted. If you specify FIXED, you must also specify layerName width.
layerName routeWidth

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}

Specifies the width for wires on layerName. Specified layers must be routable; reference to a cut layer generates an error. For more information, see "Defining Routing Points" on page 307.

Vias do not change the route width. When a via is used in special wiring, the previously established routewidth is used for the next wire in the new layer. To change the routewidth, a new path must be specified using NEW layerName routeWidth.

Many applications require routewidth to be an even multiple of the manufacturing grid in order to be fabricated, and to keep the center line on the manufacturing grid.
Type: Integer, specified in database units
NEW layerName routewidth
Indicates a new wire segment (that is, that there is no wire segment between the last specified coordinate and the next coordinate) on layerName, and specifies the width for the wire. Noncontinuous paths can be defined in this manner. For more information, see "Defining Routing Points" on page 307. Type: Integer, specified in database units

POLYGON layerName pt pt pt
Specifies a sequence of at least three points to generate a polygon geometry on layerName. The polygon edges must be parallel to the \(x\) axis, the \(y\) axis, or at a 45-degree angle. Each polygon statement defines a polygon generated by connecting each successive point, then connecting the first and last points. The \(p t\) syntax corresponds to a coordinate pair, such as \(x y\). Specify an asterisk (*) to repeat the same value as the previous \(x\) or \(y\) value from the last point.
Type: \(\left(\begin{array}{ll}x & y\end{array}\right)\) Integer, specified in database units
RECT layerName pt pt
Specifies a rectangle on layer layerName. The two points define opposite corners of the rectangle. The pt syntax corresponds to a coordinate pair, such as \(x y\). You cannot define the same \(x\) and \(y\) values for both points (that is, a zero-area rectangle is not legal).
Type: \(\left(\begin{array}{ll}x & y\end{array}\right)\) Integer, specified in database units

\section*{LEF/DEF 5.7 Language Reference}

\section*{DEF Syntax}

ROUTED
routingPoints

Specifies that the wiring can be moved by automatic layout tools. If no wiring is specified for a particular net, the net is unrouted. If you specify ROUTED, you must also specify layerName width.

Defines the center line coordinates of the route on layerName. For information on using routing points, see "Defining Routing Points" on page 307. For an example of special wiring with routing points, see Example 4-24 on page 306.

The routingPoints syntax is defined as follows:
```

(x y [extValue])
{(x y [extValue])
| viaName [orient]
[DO numX BY numY STEP stepX stepY]
} ...
DO numx BY numY STEP stepX stepY
Creates an array of power vias of the via specified with viaName.
numX and numY specify the number of vias to create, in the x and y directions. Do not specify 0 as a value.
Type: Integer
stepX and step Y specify the step distance between vias, in the x and y directions, in DEF distance database units.
Type: Integer
For an example of a via array, see Example 4-23 on page 305.
extValue Specifies the amount by which the wire is extended past the endpoint of the segment. Type: Integer, specified in database units Default: 0

```

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}
\begin{tabular}{|c|c|}
\hline orient & Specifies the orientation of the viaName that precedes it, using the standard DEF orientation values of \(\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W}, \mathrm{FN}, \mathrm{FS}, \mathrm{FE}\), and FW (See "Specifying Orientation" on page 250). \\
\hline & If you do not specify orient, \(N\) (North) is the default non-rotated value used. All other orientation values refer to the flipping or rotation around the via origin (the 0,0 point in the via shapes). The via origin is still placed at the ( \(x y\) ) value given in the routing statement just before the viaName. \\
\hline & Note: Some tools do not support orientation of vias inside their internal data structures; therefore, they are likely to translate vias with an orientation into a different but equivalent via that does not require an orientation. \\
\hline viaName & Specifies a via to place at the last point. If you specify a via, layerName for the next routing coordinates (if any) is implicitly changed to the other routing layer for the via. For example, if the current layer is metal1, a via12 changes the layer to metal2 for the next routing coordinates. \\
\hline ( \(x y\) ) & Specifies the route coordinates. You cannot specify a route with zero length. \\
\hline & \begin{tabular}{l}
For more information, see "Specifying Coordinates" on page 308. \\
Type: Integer, specified in database units
\end{tabular} \\
\hline
\end{tabular}

\section*{Example 4-23 Via Arrays}

The following example specifies arrays of via VIAGEN21_2 on metal1 and metal2.
```

SPECIALNETS 2 ;
-vdd (* vdd)
+ ROUTED metal1 150 (100 100) (200 *)
NEW metal1 0 (200 100) VIAGEN21_2 DO 10 BY 20 STEP 10000 20000
NEW metal2 0 (-900 -30) VIAGEN21_2 DO 1000 BY 1 STEP 5000 0

```

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}

As with any other VIA statement, the DO statement does not change the previous coordinate. Therefore, the following statement creates a metal1 wire of width 50 from ( 200100 ) to ( 200 200 ) along with the via array that starts at ( 200100 ).
```

NEW metal1 50 (200 100) VIAGEN21_2 DO 10 BY 20 STEP 1000 2000 (200 200)

```

\section*{Example 4-24 Special Wiring With Routing Points}
```

SPECIALNETS 1 ;
- vdd (*vdd)
+ USE POWER
+ POLYGON metal1 (0 0) (0 100) (100 100) (200 200) (200 0)
+ POLYGON metal2 (100 100) (* 200) (200 *) (300 300) (300 100)
+ RECT metal1 (0 0) (100 200)
+ ROUTED metal1 100 (0 0 50) (100 0 50) vial2 (100 100 50)
+ ROUTED metal2 100 + SHAPE RING + STYLE 1 (0 0) (100 100) (200 100)
;

```
END SPECIALNETS

SHAPE

Specifies a wire with special connection requirements because of its shape. This applies to vias as well as wires. Value: Specify one of the following:
\begin{tabular}{ll} 
RING & Used as ring, target for connection \\
PADRING & Connects padrings \\
BLOCKRING & Connects rings around the blocks \\
STRIPE & Used as stripe \\
FOLLOWPIN & Connects standard cells to power structures. \\
IOWIRE & \begin{tabular}{l} 
Connects I/O to target
\end{tabular} \\
COREWIRE & Connects endpoints of followpin to target \\
BLOCKWIRE & Connects block pin to target \\
BLOCKAGEWIRE & \begin{tabular}{l} 
Connects blockages
\end{tabular} \\
FILLWIRE & \begin{tabular}{l} 
Represents a fill shape that does not require \\
OPC. It is normally connected to a power or \\
ground net. Floating fill shapes should be in \\
the FILL section.
\end{tabular}
\end{tabular}

\section*{LEF/DEF 5.7 Language Reference}

\section*{DEF Syntax}

FILLWIREOPC Represents a fill shape that requires OPC. It is normally connected to a power or ground net. Floating fill shapes should be in the FILL section.

DRCFILL
Used as a fill shape to correct DRC errors, such as SPACING, MINENCLOSEDAREA, or MINSTEP violations on wires and pins of the same net (see Figure 4-4 on page 307.)

Figure 4-4 Fill Shapes

(a)

(b)

(c)

Examples of fill inside (a) a MINENCLOSEDAREA violation, (b) a SPACING violation, and (c) a MINSTEP violation.

SHIELD shieldNetName
Specifies the name of a regular net to be shielded by the special net being defined.

After describing shielded routing for a net, use + ROUTED to return to the routing of the special net being defined.

STYLE styleNum
Specifies a previously defined style from the STYLES section in this DEF file. The style is used with the endpoints of each routing segment to define the routing shape, and applies to all routing segments defined in one routingPoints statement.

\section*{Defining Routing Points}

Routing points define the center line coordinates of a route. If a route has a 90-degree edge, it has a width of routeWidth, and extends from one coordinate \((x y)\) to the next coordinate.

\author{
LEF/DEF 5.7 Language Reference \\ DEF Syntax
}

If either endpoint has an optional extension value (extValue), the wire is extended by that amount past the endpoint. If a coordinate with an extension value is specified after a via, the wire extension is added to the beginning of the next wire segment after the via (zero-length wires are not allowed). Some applications convert the extension value to an equivalent route that has the \(x\) and \(y\) points already extended, with no extension value. If no extension value is defined, the wire extension is 0 , and the wire is truncated at the endpoint.

The routewidth must be an even value to ensure that the corners of the route fall on a legal database coordinate without round off. Because most vendors specify a manufacturing grid, routeWidth must be an even multiple of the manufacturing grid in order to be fabricated.

If the wire segment is a 45-degree edge, and no STYLE is specified, the default octagon style is used for the endpoints. The routeWidth must be an even multiple of the manufacturing grid in order to keep all of the coordinates of the resulting outer wire boundary on the manufacturing grid.

If a STYLE is defined for 90 -degree or 45 -degree routes, the routing shape is defined by the center line coordinates and the style. No corrections, such as snapping to manufacturing grid, should be applied, and any extension values are ignored. The DEF file should contain values that are already snapped, if appropriate. The routeWidth indicates the desired user width, and represents the minimum allowed width of the wire that results from the style when the 45degree edges are snapped to the manufacturing grid. See Figure 4-6 on page 313 through Figure 4-15 on page 322 for examples.

\section*{Specifying Coordinates}

To maximize compactness of the design files, the coordinates allow for the asterisk ( *) convention. For example, ( \(x *\) ) indicates that the \(y\) coordinate last specified in the wiring specification is used; \((* y)\) indicates that the \(x\) coordinate last specified is used.

Each coordinate sequence defines a connected orthogonal or 45-degree path through the points. The first coordinate in a sequence must not have an * element.

All subsequent points in a connected sequence must create orthogonal or 45-degree paths. For example, the following sequence is a valid path:
```

(100 200) (200 200) (200 500)

```

The following sequence is an equivalent path:
( 100200 ) (200*) (*500)
The following sequence is not valid because it is not an orthogonal or 45-degree segment.
( 100200 ) ( 300500 )

\title{
LEF/DEF 5.7 Language Reference DEF Syntax
}

\section*{Special Pins and Wiring}

Pins that appear in the SPECIALNETS statement are special pins. Regular routers do not route to these pins. The special router routes special wiring to special pins. If you use a component-based format to input the connectivity for the design, special pins to be routed by the special router also must be specified in the SPECIALNETS statement, because pins included in the COMPONENTS statement are considered regular.

The following example inputs connectivity in a component-based format, specifies VDD and VSS pins as special pins, and marks VDD and VSS nets for special routing:
```

COMPONENTS 3 ;
C1 AND N1 N2 N3 ;
C2 AND N4 N5 N6 ;
END COMPONENTS
SPECIALNETS 2 ;
VDD (* VDD) + WIDTH M1 5 ;
VSS (* VSS) ;
END SPECIALNETS

```

\section*{Shielded Routing}

If, in a non-routed design, a net has + SHIELDNET attributes, the router adds shielded routing to this net. + NOSHIELD indicates the last wide segment of the net is not shielded. If the last segment is not shielded and is tapered, use the + TAPER keyword instead of + NOSHIELD. For example:
```

+ SHIELDNET VSS \# both sides will be shielded with VSS
+ SHIELDNET VDD \# one side will be shielded with VDD and
+ SHIELDNET VSS \# one side will be shielded with VSS

```

After you add shielded routing to a special net, it has the following syntax:
+ SHIELD regularNetName
MET2 regularWidth ( \(x y\) )
A shield net specified for a regular net should be defined earlier in the DEF file in the SPECIALNETS section. After describing shielded routing for a net, use + ROUTED to return to the routing of the current special net.

For example:
SPECIALNETS 2 ;
- VSS
+ ROUTED MET2 200

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}
```

+ SHIELD my_net MET2 100 (14100 342440) (13920 *)
M2_TURN (* 263200) M1M2 (2400 *) ;
- VDD
 + ROUTED MET2 200
+ SHIELD my_net MET2 100 (14100 340440) (8160 *)
M2_TURN (* 301600) M1M2 (2400 *);
END SPECIALNETS

```

\section*{Styles}
```

[STYLES numStyles ;
{- STYLE styleNum pt pt ... ; } ...

```
END STYLES]

Defines a convex polygon that is used at each of the endpoints of a wire to precisely define the wire's outer boundary. A style polygon consists of two to eight points. Informally, half of the style polygon defines the first endpoint wire boundary, and the other half of the style polygon defines the second endpoint wire boundary. Octagons and squares are the most common styles.
numStyles \(\quad\) Specifies the number of styles specified in the STYLES section.
STYLE styleNum pt pt
Defines a new style. styleNum is an integer that is greater than or equal to 0 (zero), and is used to reference the style later in the DEF file. When defining multiple styles, the first styl eNum must be 0 (zero), and any following styl eNum should be numbered consecutively so that a table lookup can be used to find them easily.

Style numbers are keys used locally in the DEF file to reference a particular style, but not actual numbers preserved in the application. Each style number must be unique. Style numbers can only be used inside the same DEF file, and are not preserved for use in other DEF files. Because applications are not required to preserve the style number itself, an application that writes out an equivalent DEF file might use different style numbers.
Type: Integer

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}

The pt syntax specifies a sequence of at least two points to generate a polygon geometry. The syntax corresponds to a coordinate pair, such as \(x y\). Specify an asterisk (*) to repeat the same value as the previous \(x\) (or \(y\) ) value from the last point. The polygon must be convex. The polygon edges must be parallel to the \(x\) axis, the \(y\) axis, or at a 45-degree angle, and must enclose the point ( 00 ).
Type: Integer, specified in DEF database units

\section*{Example 4-25 Styles Statement}

The following STYLES statement defines the basic octagon shown in Figure 4-5 on page 311.
```

STYLES 1 ;
- STYLE 1 (30 10) (10 30) (-10 30) (-30 10) (-30 -10)
(-10-30) (10-30) (30-10) ;

```
END STYLES

Figure 4-5


\section*{Defining Styles}

A style is defined as a polygon with points P 1 through Pn . The center line is given as ( \(\mathrm{X} 0, \mathrm{Y} 0\) ) to (X1, Y1). Two sets of points are built ( \(\mathrm{P} 0,1\) through \(\mathrm{P} 0, n\) and \(\mathrm{P} 1,1\) through \(\mathrm{P} 1, n\) ) as follows:
```

PO,i = Pi + (X0, YO) for 1 <= i <= n
P1,i = Pi + (X1, Y1) for 1 <= i <= n

```

The resulting wire segment shape is a counterclockwise, eight-sided polygon (S1 through S8) that can be computed in the following way:

\section*{LEF/DEF 5.7 Language Reference}

\section*{DEF Syntax}

S1 = lowest point in (left-most points in (P0,1 through P0,n P1,1 through P1,n))
\(S 2=\) left-most point in (lowest points in (P0,1 through P0,n \(\mathrm{P} 1,1\) through \(\mathrm{P} 1, n)\) )
\(S 3=\) right-most point in (lowest points in (P0,1 through P0,n \(\mathrm{P} 1,1\) through \(\mathrm{P} 1, n)\) )
\(\mathrm{S} 4=\) lowest point in (right-most points in (P0,1 through P0,n \(\mathrm{P} 1,1\) through \(\mathrm{P} 1, n\) ) )
\(S 5=\) highest point in (right-most points in ( \(\mathrm{P} 0,1\) through \(\mathrm{P} 0, n \mathrm{P} 1,1\) through \(\mathrm{P} 1, n\) ) )
S6 = right-most point in (highest points in (P0,1 through P0,n P1,1 through P1,n))
\(S 7\) = left-most point in (highest points in (P0,1 through P0,n P1,1 through P1,n))
\(S 8=\) highest point in (left-most points in (P0,1 through P0,n P1,1 through P1,n))
When consecutive points are collinear, only one of them is relevant, and the resulting shape has less than eight sides, as shown in Figure 4-6 on page 313. A more advanced algorithm can order the points and only have to check a subset of the points, depending on which endpoint was used, and whether the wire was horizontal, vertical, a 45-degree route, or a 135-degree route.

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}

Figure 4-6


\section*{Examples of \(X\) Routing with Styles}

The following examples illustrate the use of styles for \(X\) routing. In two cases, there are examples of SPECIALNETS syntax and NETS syntax that result in the same geometry.

\section*{Example 1}

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}

The following statements define an \(X\) wire with octagonal ends, as shown in Figure 4-7 on page 314.
STYLES 1 ;
- STYLE 0 ( 3010 ) ( 1030 ) ( -1030 ) ( -3010 ) ( \(-30-10\) ) ( \(-10-30\) ) ( \(10-30\) ) ( \(30-10\) ) ; \#n octagon.
END STYLES
```

SPECIALNETS 1 ;

```
- VSS ...
+ ROUTED metal3 50 + STYLE \(0(00)(150150)(3000)(4000)\); \#The style applies to all the segments until a NEW statement or ";" \#at the end of the net.
END SPECIALNETS

NETS 1 ;
- mySignal ...
+ ROUTED metal3 STYLE 0 ( 00 ) ( 150150 ) ( 3000 ) ( 4000 ) ; \#The style applies to all the segments in the ROUTED statement

END NETS

Figure 4-7


\section*{Example 2}

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}

The following statements define the same \(X\) wire with mixed octagonal and manhattan styles, as shown in Figure 4-8 on page 315.
STYLES 2 ;
- STYLE \(0(3010)(1030)(-1030)(-3010)(-30-10)(-10-30)\)
( \(10-30\) ) ( \(30-10\) ) ; \#An octagon
- STYLE 1 ( 2525 ) ( -2525 ) ( \(-25-25\) ) ( \(25-25\) ) ; \#A square

END STYLES

SPECIALNETS 1 ;
- POWER (* power)
+ ROUTED metal3 50 + STYLE 0 ( 0 ) ( 150150 )
NEW metal3 50 + STYLE 1 ( 150150 ) ( 3000 ) ( 4000 ) ;
END SPECIALNETS

NETS 1 ;
- mySignal ...
+ ROUTED metal3 STYLE 0 ( 0 0 ) ( 150150 )
NEW metal3 STYLE 1 ( 150150 ) ( 3000 ) ( 4000 ) ;
END NETS

Figure 4-8


Note: The square ends might be necessary for connecting to manhattan wires or pins, or in cases where vias have a manhattan shape even on X routing layers. In practice, the middle

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}
wire probably would not use a simple square, such as style2; it would use a combination of an octagon and a square for the middle segment style, in order to smooth out the resulting outline at the \((150,150)\) point.

\section*{Example 3}

The following statements define a manhattan wire with a width of 70 , as shown in Figure 4-9 on page 316.

This example emphasizes that the style overrides the width of 100 units. In this case, the style polygon is a square \(70 \times 70\) units wide, and the vias (via12) are \(100 \times 100\) units wide. The application that creates the styles is responsible for meeting any particular width requirements. Normally, the resulting style-computed width is equal to or larger than the wire width given in the routing statement.
```

STYLES 1 ;
- STYLE O (35 35) (-35 35) (- 35 -35) (35 -35) ;
END STYLES
SPECIALNETS 1 ;
- POWER ...
+ ROUTED metal1 100 + STYLE 0 (0 0) vial2 (600 *) vial2 ;
END SPECIALNETS

```

Figure 4-9


\section*{Example 4}

The following statements define a similar wire that is offset from the center, as shown in Figure 4-10 on page 317. Similar to Example 3, the center line in both runs through the middle of the X in the vias.
```

STYLES 1 ;
- STYLE 0 (35 20) (-35 20) (-35 -50) (35 -50) ; \#70 x 70 offset square
END STYLES
SPECIALNETS 1 ;
- POWER ...
+ ROUTED metal1 100 + STYLE 0 (0 0) vial2 (600 *) vial2 ;
END SPECIALNETS

```

\section*{LEF/DEF 5.7 Language Reference}

\section*{DEF Syntax}

\section*{Figure 4-10}


\section*{Example 5}

The following statements define a wire that uses a "2-point line" style, as shown in Figure 411 on page 317.

Note: This example shows the simplest style possible, which is a 2-point line. Generally, it would be easier to use a normal route without a style.
```

STYLES 1 ;
- STYLE 0 (0 -10) (0 10) ; \#a vertical line
END STYLES
SPECIALNETS 1 ;
- POWER ...
+ ROUTED metal1 20 + STYLE 0 (0 0) (100 0) ;
END SPECIALNETS

```

Figure 4-11


\section*{45-Degree Routing Without Styles}

Because many applications only store the wire endpoints and the width of the wire, DEF includes a specific style default definition. If a style is not explicitly defined, the default style is implicitly included with any 45-degree routing segment. It is computed directly from the wire width and endpoints, at the expense of some loss in flexibility.

The default style is an octagon (shown in Figure 4-12 on page 318) whose coordinates are computed from the wire width and the manufacturing grid.

\section*{LEF/DEF 5.7 Language Reference} DEF Syntax

Figure 4-12


The octagon is always symmetric about the \(x\) and \(y\) axis. The coordinates are computed to be exactly the same wire width as equivalent horizontal or vertical wire widths, and as close as possible for the diagonal widths (they are always slightly bigger because of rounding of irrational values), while forcing the coordinates to remain on the manufacturing grid. The wire width must be an even multiple of the manufacturing grid in order to keep \(A\) and \(B\) on the manufacturing grid.

Assume the following rules:
■ \(\mathrm{W}=\) wire width
- \(\mathrm{M}=\) manufacturing grid (mgrid). This is derived from the LEF MANUFACTURINGGRID statement.
- \(\mathrm{D}=\) diagonal width
- ceiling = round up the result to the nearest integer

The octagon coordinates are computed as:
\(\mathrm{A}=W / 2\)
\(\mathrm{B}=[\operatorname{ceiling}(W /(\operatorname{sqrt}(2) * M)) * M]-A\)
The derivation of \(B\) can be understood as:
\(\mathrm{D}=\operatorname{sqrt}\left((A+B)^{2}+(A+B)^{2}\right)\) or \(\mathrm{D}=\operatorname{sqrt}(2) *(A+B)\)

\section*{LEF/DEF 5.7 Language Reference}

\section*{DEF Syntax}

The diagonal width (D) must be greater than or equal to the wire width (W), and B must be on the manufacturing grid, so D must be equal to W , which results in:
\(D /\) sqrt \((2)=A+B\)
\(B=D / \operatorname{sqrt}(2)-A\) or \(W / \operatorname{sqrt}(2)-A\)
To force B to be on the manufacturing grid, and keep the diagonal width greater than or equal to the wire width:

B on \(\mathrm{mgrid}=\operatorname{ceiling}(B / M) * M\)
Which results in the computation:
\[
\mathrm{B}=[\operatorname{ceiling}(W /(\operatorname{sqrt}(2) * M)) * M]-A
\]

The following table lists examples coordinate computations:

\section*{Table 4-1}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
W = \\
Width \\
\((\mu \mathrm{m})\)
\end{tabular} & \begin{tabular}{l}
\(\mathbf{M}=\) mgrid \\
\((\mu \mathrm{m})\)
\end{tabular} & \(\mathbf{D}=\) W/(sqrt(2)*M) & ceiling (D) & \(\mathbf{A}(\mu \mathrm{m})\) & \(\mathbf{B}(\mu \mathrm{m})\) & \begin{tabular}{l} 
Diagonal \\
width \\
\((\mu \mathrm{m})\)
\end{tabular} \\
\hline 1.0 & 0.005 & 141.42 & 142 & 0.5 & 0.21 & 1.0041 \\
\hline 0.5 & 0.005 & 70.71 & 71 & 0.25 & 0.105 & 0.5020 \\
\hline 0.15 & 0.005 & 21.21 & 22 & 0.075 & 0.035 & 0.1556 \\
\hline \(0.155^{\star}\) & 0.005 & 21.92 & 22 & \(0.0775^{\star}\) & \(0.0325^{\star}\) & 0.1556 \\
\hline
\end{tabular}
* A width of 0.155 is an odd multiple of the manufacturing grid and is not allowed because it would create coordinates for \(A\) and \(B\) that are off the manufacturing grid. It is shown for completeness to illustrate how the result is off grid.

The default style only applies to 45-degree route segments; it does not apply to 90-degree route segments.

\section*{Example 1}

The following two routes produce identical routing shapes, as shown in Figure 4-13 on page 320.
```

SPECIALNETS 1 ;
- POWER (* power)

```

\title{
LEF/DEF 5.7 Language Reference DEF Syntax
}
```

+ ROUTED metal3 80 (0 0) (100 0) (200 100) (300 100) ;

```

END SPECIALNETS

NETS 1 ;
- mySignal ... \#mySignal uses the default routing rule width of 80
+ ROUTED metal3 ( 000 ) ( 10000 ) ( 2001000 ) ( 3001000 ) ;
\#The wire extension was set to 0 for every point. The wire extension
\#is ignored for 45-degree route segments; the default octagon \#overrides it.

END NETS
Figure 4-13


\section*{Example 2}

The following regular route definition, using the traditional default wire extension of \(1 / 2 *\) width for the first and last 90-degree endpoints, produces the route shown in Figure 4-14 on page 321.
```

SPECIALNETS 1;
- POWER (* power) \#The half-width extensions are given for the first and last
+ ROUTED metal3 80 (0 0 40) (100 0) (200 100) (300 100 40) ;
\#The default extension is 0 for SPECIALNETS, so it is not given for
\#two middle points.

```
END SPECIALNETS

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}

NETS 1 ;
- mySignal ... \#mySignal uses the default routing rule with width of 80 + ROUTED metal3 ( 00 ) ( 10000 ) ( 2001000 ) ( 300100 ) ; \#The default extension is half the width for NETS, so it is not \#included for the first and last end-points.
END NETS
Figure 4-14


\section*{Example 3}

The following definition, using the traditional default wire extension of \(1 / 2 *\) width for all of the points, produces the route in Figure 4-15 on page 322.
```

SPECIALNETS 1 ;

```
    - POWER (* power) \#The half-width extensions are given explicitly
        + ROUTED metal3 80 ( 0040 ) ( 10040 ) ( 20010040 ) ( 30010040 ) ;
END SPECIALNETS

NETS 1 ;
- mySignal ... \#mySignal uses the default routing rule width of 80
+ ROUTED metal3 ( 00 ) ( 1000 ) ( 200100 ) ( 300100 ) ; \#All points use the implicit default \(1 / 2\) * width wire extensions.

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}

END NETS

Figure 4-15


\section*{Technology}
[TECHNOLOGY technologyName ; ]
Specifies a technology name for the design in the database. In case of a conflict, the previous name remains in effect.

\section*{Tracks}
[TRACKS
[\{X | Y\} start DO numtracks STEP space
[LAYER layerName ...]
;] ...]
Defines the routing grid for a standard cell-based design. Typically, the routing grid is generated when the floorplan is initialized. The first track is located at an offset from the placement grid set by the OFFSET value for the layer in the LEF file. The track spacing is the PITCH value for the layer defined in LEF.

\section*{LEF/DEF 5.7 Language Reference}

\section*{DEF Syntax}

DO numTracks

LAYER layerName

STEP space
\{X | Y\} start

Specifies the number of tracks to create for the grid. You cannot specify 0 numtracks.

Specifies the routing layer used for the tracks. You can specify more than one layer.

Specifies the spacing between the tracks.
Specifies the location and direction of the first track defined. X indicates vertical lines; \(Y\) indicates horizontal lines. start is the \(X\) or \(Y\) coordinate of the first line. For example, X 3000 creates a set of vertical lines, with the first line going through (3000 0).

\section*{Units}
```

[UNITS DISTANCE MICRONS dbuPerMicron ;]

```

Specifies the database units per micron (dbuPerMicron) to convert DEF distance units into microns.

LEF supports values of 100, 200, 1000, 2000, 10,000, and 20,000 for the LEF dbuPerMicron.
The following table shows the valid pairings of the LEF dbuPerMicron and the corresponding legal DEF dbuPerMicron values. The LEF dbuPerMicron must be greater than or equal to the DEF dbuPerMicron, otherwise you can get round-off errors.
\begin{tabular}{ll}
\hline LEF dbuPerMicron & Legal DEF dbuPerMicron \\
\hline 100 & 100 \\
200 & 100,200 \\
1000 & \(100,200,1000\) \\
2000 & \(100,200,1000,2000\) \\
10,000 & \(100,200,1000,2000,10,000\) \\
20,000 & \(100,200,1000,2000,10,000,20,000\) \\
\hline
\end{tabular}

\section*{LEF/DEF 5.7 Language Reference}

\section*{DEF Syntax}

\section*{Using DEF Units}

The following table shows examples of how DEF units are used:
\begin{tabular}{llll}
\hline Units & DEF Units & DEF Value Example & Real Value \\
\hline Time & .001 nanosecond & 1500 & 1.5 nanoseconds \\
Capacitance & .000001 picofarad & \(1,500,000\) & 1.5 picofarads \\
Resistance & .0001 ohm & 15,000 & 1.5 ohms \\
Power & .0001 milliwatt & 15,000 & 1.5 milliwatts \\
Current & .0001 milliamp & 15,000 & 1.5 milliamps \\
Voltage & .001 volt & 1500 & 1.5 volts \\
\hline
\end{tabular}

The DEF reader assumes divisor factors such that DEF data is given in the database units shown below.
\begin{tabular}{ll}
\hline Unit & Database Precision \\
\hline 1 nanosecond & \(=1000\) DBUs \\
1 picofarad & \(=1,000,000\) DBUs \\
1 ohm & \(=10,000\) DBUs \\
1 milliwatt & \(=10,000\) DBUs \\
1 milliampere & \(=10,000\) DBUs \\
1 volt & \(=1000\) DBUs \\
\hline
\end{tabular}

\section*{Version}
[VERSION versionNumber ; ]
Specifies which version of the DEF syntax is being used.
Note: The VERSION statement is not required in a DEF file; however, you should specify it, because it prevents syntax errors caused by the inadvertent use of new versions of DEF with older tools that do not support the new version syntax.

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}
```

Vias
[VIAS numVias ;
[- viaName
[+ VIARULE viaRuleName
+ CUTSIZE xSize ySize
+ LAYERS botmetalLayer cutLayer topMetalLayer
+ CUTSPACING xCutSpacing yCutSpacing
+ ENCLOSURE xBotEnc yBotEnc xTopEnc yTopEnc
[+ ROWCOL numCutRows NumCutCols]
[+ ORIGIN xOffset yOffset]
[+ OFFSET xBOtOffset yBotOffset xTopOffset yTopOffset]
[+ PATTERN cutPattern]]
| [+ RECT layerName pt pt | + POLYGON layerName pt pt pt] ...]
;] ...

```
END VIAS]

Lists the names and geometry definitions of all vias in the design. Two types of vias can be listed: fixed vias and generated vias. All vias consist of shapes on three layers: a cut layer and two routing (or masterslice) layers that connect through that cut layer.

A fixed via is defined using rectangles or polygons, and does not use a VIARULE. The fixed via name must mean the same via in all associated LEF and DEF files.

A generated via is defined using VIARULE parameters to indicate that it was derived from a VIARULE GENERATE statement. For a generated via, the via name is only used locally inside this DEF file. The geometry and parameters are maintained, but the name can be freely changed by applications that use this via when writing out LEF and DEF files to avoid possible via name collisions with other DEF files.

CUTSIZE xSize ySize Specifies the required width (xSize) and height (ySize) of the cut layer rectangles.
Type: Integer, specified in DEF database units
CUTSPACING xCutSpacing yCutSpacing
Specifies the required x and y spacing between cuts. The spacing is measured from one cut edge to the next cut edge. Type: Integer, specified in DEF database units

ENCLOSURE xBotEnc yBotEnc xTopEnc yTopEnc
Specifies the required \(x\) and \(y\) enclosure values for the bottom and top metal layers. The enclosure measures the distance from the cut array edge to the metal edge that encloses the cut array

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}
(see Figure 4-16 on page 329).
Type: Integer, specified in DEF database units
LAYERS botMetalLayer cutLayer TopMetalLayer
Specifies the required names of the bottom routing layer, cut layer, and top routing layer. These layer names must be previously defined in layer definitions, and must match the layer names defined in the specified LEF viaRuleName.
numVias
Specifies the number of vias listed in the VIA statement.
OFFSET xBotOffset yBotOffset xTopOffset yTopOffset
Specifies the x and y offset for the bottom and top metal layers. These values allow each metal layer to be offset independently.

By default, the 0,0 origin of the via is the center of the cut array, and the enclosing metal rectangles. After the non-shifted via is computed, the metal layer rectangles are shifted by adding the appropriate values-the \(x / y\) Bot \(O f f\) set values to the metal layer below the cut layer, and the \(x / y\) Topoffset values to the metal layer above the cut layer.

These offset values are in addition to any offset caused by the ORIGIN values. For an example and illustration of this syntax, see Example 4-26 on page 329.
Default: 0, for all values
Type: Integer, in DEF database units
ORIGIN xOffset yOffset
Specifies the \(x\) and \(y\) offset for all of the via shapes. By default, the 0,0 origin of the via is the center of the cut array, and the enclosing metal rectangles. After the non-shifted via is computed, all cut and metal rectangles are shifted by adding these values. For an example and illustration of this syntax, see Example 4-26 on page 329.
Default: 0, for both values
Type: Integer, in DEF database units
PATTERN cutPattern Specifies the cut pattern encoded as an ASCII string. This parameter is only required when some of the cuts are missing

\section*{LEF/DEF 5.7 Language Reference}

\section*{DEF Syntax}
from the array of cuts, and defaults to "all cuts are present," if not specified.

For information on and examples of via cut patterns, see "Creating Via Cut Patterns" on page 330.

The cutPattern syntax is defined as follows:
```

numRows_rowDefinition
[_numRows_rowDefinition] ...
numRows Specifies a hexadecimal number that indicates how many times to repeat the following row definition. This number can be more than one digit.
rowDefinition Defines one row of cuts, from left to right.

```

The rowDefinition syntax is defined as follows:
```

{[RrepeatNumber]hexDigitCutPattern} ...
hexDigitCutPattern

```

Specifies a single hexadecimal digit that encodes a 4-bit binary value in which 1 indicates a cut is present, and 0 indicates a cut is not present.
repeatNumber Specifies a single hexadecimal digit that indicates how many times to repeat hexDigitCutPattern.

POLYGON layerName pt pt pt
Defines the via geometry for the specified layer. You must specify at least three points to generate the polygon, and the edges must be parallel to the \(x\) axis, the \(y\) axis, or at a 45-degree angle. Type: \(\left(\begin{array}{ll}x & y\end{array}\right)\) Integer, specified in database units

Each POLYGON statement defines a polygon generated by connecting each successive point, and then the first and last points. The pt syntax corresponds to a coordinate pair, such as

\section*{LEF/DEF 5.7 Language Reference DEF Syntax}
( \(x y\) ). Specify an asterisk (*) to repeat the same value as the previous \(x\) or \(y\) value from the last point.

For example, + POLYGON ( 00 ) ( 1010 ) ( 100 ) creates a triangle shape.

All vias consist of shapes on three layers: a cut layer and two routing (or masterslice) layers that connect through that cut layer. There should be at least one RECT or POLYGON on each of the three layers.

\section*{RECT layerName pt pt}

Defines the via geometry for the specified layer. The points are specified with respect to the via origin. In most cases, the via origin is the center of the via bounding box. All geometries for the via, including the cut layers, are output by the DEF writer. Type: \(\left(\begin{array}{ll}x & y\end{array}\right)\) Integer, specified in database units

All vias consist of shapes on three layers: a cut layer and two routing (or masterslice) layers that connect through that cut layer. There should be at least one RECT or POLYGON on each of the three layers.

ROWCOL numCutRows numCutcols
Specifies the number of cut rows and columns that make up the cut array.
Default: 1, for both values
Type: Positive integer, for both values
viaName
Specifies the via name. Via names are generated by appending a number after the rule name. Vias are numbered in the order in which they are created.

VIARULE viaRuleName Specifies the name of the LEF VIARULE that produced this via. This name must be specified before you define any of the other parameters, and must refer to a VIARULE GENERATE via rule. It cannot refer to a VIARULE without a GENERATE keyword.

Specifying the reserved via rule name of DEFAULT indicates that the via should use the previously defined VIARULE GENERATE rule with the DEFAULT keyword that exists for this routing-cut-

\section*{LEF/DEF 5.7 Language Reference} DEF Syntax
routing layer combination. This makes it possible for a tool that does not use the LEF VIARULE technology section to still generate DEF generated-via parameters by using the default rule.

\section*{Example 4-26 Via Rules}

The following via rule describes a non-shifted via (that is, a via with no OFFSET or ORIGIN parameters). There are two rows and three columns of via cuts. Figure 4-16 on page 329 illustrates this via rule.
```

- myUnshiftedVia
 + VIARULE myViaRule
 + CUTSIZE 20 20 \#xCutSize yCutSize
 + LAYERS metal1 cut12 metal2
 + CUTSPACING 30 30 \#xCutSpacing yCutSpacing
 + ENCLOSURE 20 50 50 20 \#xBotEnc yBotEnc xTopEnc yTopEnc
 + ROWCOL 2 3 ;

```

Figure 4-16 Via Rule


The same via rule with the following ORIGIN parameter shifts all of the metal and cut rectangles by 10 in the \(x\) direction, and by -10 in the \(y\) direction (see Figure 4-17 on page 330):
```

+ ORIGIN 10 -10

```

\section*{LEF/DEF 5.7 Language Reference}

\section*{DEF Syntax}

Figure 4-17 Via Rule With Origin


If the same via rule contains the following ORIGIN and OFFSET parameters, all of the rectangles shift by \(10,-10\). In addition, the top layer metal rectangle shifts by \(20,-20\), which means that the top metal shifts by a total of \(30,-30\).
```

+ ORIGIN 10 -10
+ OFFSET 0 0 20-20

```

Figure 4-18 Via Rule With Origin and Offset


\section*{Creating Via Cut Patterns}

Via cuts are defined as a series of rows, starting at the bottom, left corner. Each row definition defines one row of cuts, from left to right, and rows are numbered from bottom to top.

\section*{LEF/DEF 5.7 Language Reference}

\section*{DEF Syntax}

The PATTERN syntax that defines rows uses the ROWCOL parameters to specify the cut array. If the row has more bits than the numCutCols value in the ROWCOL parameter for this via, the last bits are ignored. The number of rows defined must equal the numCut Rows value in the ROWCOL parameter.

Figure 4-19 on page 331 illustrates the following via cut pattern syntax:
```

- myVia
 + VIARULE myViaRule
 + ROWCOL 5 5
 + PATTERN 2_F0_2_F8_1_78 ;]

```

The last three bits of F0, F8, and 78 are ignored because only five bits are allowed in a row. Therefore, the following PATTERN syntax gives the identical pattern:
+ PATTERN 2_F7_2_FF_1_7F

\section*{Figure 4-19}


Figure 4-20 on page 332 illustrates the following via cut pattern syntax:
- myVia
+ VIARULE myViaRule
+ ROWCOL 514
+ PATTERN 2_FFE0_3_R4F ;
The R4F value indicates a repeat of four Fs. The last two bits of each row definition are ignored because only 14 bits allowed in each row.

\section*{LEF/DEF 5.7 Language Reference} DEF Syntax

Figure 4-20


\section*{LEF/DEF 5.7 Language Reference}

Examples

\section*{This appendix contains information about the following topics.}
- LEF on page 333
- DEF on page 344
- Scan Chain Synthesis Example on page 349

\section*{LEF}
```


DEMO4 CHIP - 1280 ARRAY

NAMESCASESENSITIVE ON
\&alias \&\&area = (73600,74400) (238240,236400) \&endalias
\&alias \&\&core = (85080,85500) (226760,224700) \&endalias
\&alias \&\&m2stripes = sroute stripe net vss net vdd layer m2
width
3 2 0 count 2 pattern 87900 4200 218100
area \&\&area core \&\&core \&endalias
\&alias \&\&m3stripes = sroute stripe net vss net vdd layer m3
width
600 count 2 pattern 89840 6720 217520
area \&\&area core \&\&core \&endalias
\&alias \&\&powerfollowpins = sroute follow net vss net vdd layer
m1 width 560
area \&\&area core \&\&core \&endalias
\&alias \&\&powerrepair = sroute repair net vss net vdd area
\&\&area core \&\&core \&endalias
\# PLACEMENT SITE SECTION
SITE CORE1 SIZE 67.2 BY 6 ; \# GCD of all Y sizes of Macros END
CORE1
SITE IOX SIZE 37.8 BY 444 ; \# 151.2 / 4 = 37.8 , 4 sites per pad END IOX
SITE IOY SIZE 436.8 BY 30 ; \# 150 / 5 = 30 , 5 sites per pad END IOY
SITE SQUAREBLOCK SIZE 268.8 BY 252 ; END SQUAREBLOCK
SITE I2BLOCK SIZE 672 BY 504 ; END I2BLOCK
SITE LBLOCK SIZE 201.6 BY 168 ; END LBLOCK
SITE CORNER SIZE 436.8 BY 444 ; END CORNER
LAYER POLYS TYPE MASTERSLICE ; END POLYS
LAYER PW TYPE MASTERSLICE ; END PW

```

\section*{LEF/DEF 5.7 Language Reference \\ Examples}
```

LAYER NW TYPE MASTERSLICE ; END NW
LAYER PD TYPE MASTERSLICE ; END PD
LAYER ND TYPE MASTERSLICE ; END ND
LAYER CUTO1 TYPE CUT ; END CUTO1
LAYER M1 TYPE ROUTING ; DIRECTION VERTICAL ; PITCH 5.6 ; WIDTH2.6 ;
SPACING 1.5 ;
END M1
LAYER CUT12 TYPE CUT ; END CUT12
LAYER M2 TYPE ROUTING ; DIRECTION HORIZONTAL ; PITCH 6.0 ;
WIDTH 3.2 ;SPACING 1.6 ;
END M2
LAYER CUT23 TYPE CUT ; END CUT23
LAYER M3 TYPE ROUTING ; DIRECTION VERTICAL ; PITCH 5.6 ; WIDTH 3.6;
SPACING 1.6 ;
END M3
LAYER OVERLAP TYPE OVERLAP ; END OVERLAP
VIA C2PW DEFAULT LAYER PW ; RECT -2.0 -2.0 2.0 2.0 ;
LAYER CUTO1 ; RECT -0.6 -0.6 0.6 0.6 ;
LAYER M1 ; RECT -2.0 -2.0 2.0 2.0 ;
END C2PW
VIA C2NW DEFAULT LAYER NW ; RECT -2.0 -2.0 2.0 2.0 ;
LAYER CUTO1 ; RECT -0.6 -0.6 0.6 0.6 ;
LAYER M1 ; RECT -2.0 -2.0 2.0 2.0 ;
END C2NW
VIA C2PD DEFAULT LAYER PD ; RECT -2.0 -2.0 2.0 2.0 ;
LAYER CUT01 ; RECT -0.6 -0.6 0.6 0.6 ;
LAYER M1 ; RECT -2.0 -2.0 2.0 2.0 ;
END C2PD
VIA C2ND DEFAULT LAYER ND ; RECT -2.0 -2.0 2.0 2.0 ;
LAYER CUT01 ; RECT -0.6 -0.6 0.6 0.6 ;
LAYER M1 ; RECT -2.0 -2.0 2.0 2.0 ;
END C2ND
VIA C2POLY DEFAULT LAYER POLYS ; RECT -2.0 -2.0 2.0 2.0 ;
LAYER CUT01 ; RECT -0.6 -0.6 0.6 0.6 ;
LAYER M1 ; RECT -2.0 -2.0 2.0 2.0 ;
END C2POLY
VIA VIA12 DEFAULT LAYER M1 ; RECT -2.0 -2.0 2.0 2.0 ;
LAYER CUT12 ; RECT -0.7 -0.7 0.7 0.7 ;
LAYER M2 ; RECT -2.0 -2.0 2.0 2.0 ;
END VIA12
VIA VIA23 DEFAULT LAYER M3 ; RECT -2.0 -2.0 2.0 2.0 ;
LAYER CUT23 ; RECT -0.8 -0.8 0.8 0.8 ;
LAYER M2 ; RECT -2.0 -2.0 2.0 2.0 ;
END VIA23
SPACING SAMENET CUT01 CUT12 4.0 ;
SAMENET CUT12 CUT23 4.0 ;
END SPACING
VIA VIACENTER12 LAYER M1 ; RECT -4.6 -2.2 4.6 2.2 ;
LAYER CUT12 ; RECT -3.1 -0.8 -1.9 0.8 ; RECT 1.9 -0.8 3.1 0.8;
LAYER M2 ; RECT -4.4 -2.0 4.4 2.0 ;
END VIACENTER12

```
```

VIA VIATOP12 LAYER M1 ; RECT -2.2 -2.2 2.2 8.2 ;
LAYER CUT12 ; RECT -0.8 5.2 0.8 6.8 ;
LAYER M2 ; RECT -2.2 -2.2 2.2 8.2 ;
END VIATOP12
VIA VIABOTTOM12 LAYER M1 ; RECT -2.2 -8.2 2.2 2.2 ;
LAYER CUT12 ; RECT -0.8 -6.8 0.8 -5.2 ;
LAYER M2 ; RECT -2.2 -8.2 2.2 2.2 ;
END VIABOTTOM12
VIA VIALEFT12 LAYER M1 ; RECT -7.8 -2.2 2.2 2.2 ;
LAYER CUT12 ; RECT -6.4 -0.8 -4.8 0.8 ;
LAYER M2 ; RECT -7.8 -2.2 2.2 2.2 ;
END VIALEFT12
VIA VIARIGHT12 LAYER M1 ; RECT -2.2 -2.2 7.8 2.2 ;
LAYER CUT12 ; RECT 4.8 -0.8 6.4 0.8 ;
LAYER M2 ; RECT -2.2 -2.2 7.8 2.2 ;
END VIARIGHT12
VIA VIABIGPOWER12 LAYER M1 ; RECT -21.0 -21.0 21.0 21.0 ;
LAYER CUT12 ; RECT -2.4 -0.8 2.4 0.8 ;
RECT -19.0 -19.0 -14.2 -17.4 ; RECT -19.0 17.4 -14.2
19.0;
RECT 14.2 -19.0 19.0 -17.4 ; RECT 14.2 17.4 19.0 19.0 ;
RECT -19.0 -0.8 -14.2 0.8 ; RECT -2.4 -19.0 2.4 -17.4 ;
RECT 14.2 -0.8 19 0.8 ; RECT -2.4 17.4 2.4 19.0 ;
LAYER M2 ; RECT -21.0 -21.0 21.0 21.0 ;
END VIABIGPOWER12
VIARULE VIALIST12 LAYER M1 ; DIRECTION VERTICAL ; WIDTH 9.0 TO
9.6;
LAYER M2 ; DIRECTION HORIZONTAL ; WIDTH 3.0 TO 3.0 ;
VIA VIACENTER12 ; VIA VIATOP12 ; VIA VIABOTTOM12 ;
VIA VIALEFT12 ; VIA VIARIGHT12 ;
END VIALIST12
VIARULE VIAGEN12 GENERATE
LAYER M1 ;
ENCLOSURE 0.01 0.05 ;
LAYER M2 ;
ENCLOSURE 0.01 0.05 ;
LAYER CUT12 ;
RECT -0.06 -0.06 0.06 0.06 ;
SPACING 0.14 BY 0.14 ;
END VIAGEN12
VIA VIACENTER23 LAYER M3 ; RECT -2.2 -2.2 2.2 2.2 ;
LAYER CUT23 ; RECT -0.8 -0.8 0.8 0.8 ;
LAYER M2 ; RECT -2.0 -2.0 2.0 2.0 ;
END VIACENTER23
VIA VIATOP23 LAYER M3 ; RECT -2.2 -2.2 2.2 8.2 ;
LAYER CUT23 ; RECT -0.8 5.2 0.8 6.8 ;
LAYER M2 ; RECT -2.2 -2.2 2.2 8.2 ;
END VIATOP23
VIA VIABOTTOM23 LAYER M3 ; RECT -2.2 -8.2 2.2 2.2 ;
LAYER CUT23 ; RECT -0.8 -6.8 0.8 -5.2 ;
LAYER M2 ; RECT -2.2 -8.2 2.2 2.2 ;

```

\section*{LEF/DEF 5.7 Language Reference}

Examples
```

END VIABOTTOM23
VIA VIALEFT23 LAYER M3 ; RECT -7.8 -2.2 2.2 2.2 ;
LAYER CUT23 ; RECT -6.4 -0.8 -4.8 0.8 ;
LAYER M2 ; RECT -7.8 -2.2 2.2 2.2 ;
END VIALEFT23
VIA VIARIGHT23 LAYER M3 ; RECT -2.2 -2.2 7.8 2.2 ;
LAYER CUT23 ; RECT 4.8 -0.8 6.4 0.8 ;
LAYER M2 ; RECT -2.2 -2.2 7.8 2.2 ;
END VIARIGHT23
VIARULE VIALIST23 LAYER M3 ; DIRECTION VERTICAL ; WIDTH 3.6 TO
3.6 ;
LAYER M2 ; DIRECTION HORIZONTAL ; WIDTH 3.0 TO 3.0 ;
VIA VIACENTER23 ; VIA VIATOP23 ; VIA VIABOTTOM23 ;
VIA VIALEFT23 ; VIA VIARIGHT23 ;
END VIALIST23
VIARULE VIAGEN23 GENERATE
LAYER M2 ;
ENCLOSURE 0.01 0.05 ;
LAYER M3 ;
ENCLOSURE 0.01 0.05 ;
LAYER CUT23 ;
RECT -0.06 -0.06 0.06 0.06;
SPACING 0.14 BY 0.14 ;
END VIAGEN23
MACRO CORNER CLASS ENDCAP BOTTOMLEFT ; SIZE 436.8 BY 444 ; SYMMETRY X Y ; SITE
CORNER ;
PIN VDD SHAPE RING ; DIRECTION INOUT ;
PORT LAYER M2 ; WIDTH 20 ; PATH 426.8 200 200 200 200 434 ;END
END VDD
PIN VSS SHAPE RING ; DIRECTION INOUT ;
PORT LAYER M2 ; WIDTH 20 ; PATH 100 434 100 100 ; LAYER M1;
WIDTH 20 ; PATH 100 100 426.8 100 ;END
END VSS
END CORNER

```
```

MACRO IN1X class pad ; FOREIGN IN1X ; SIZE 151.2 BY 444 ;

```
MACRO IN1X class pad ; FOREIGN IN1X ; SIZE 151.2 BY 444 ;
    SYMMETRY X ; SITE IOX ;
    PIN Z DIRECTION OUTPUT ;
        PORT LAYER M1 ; PATH 61.6 444 72.8 444 ; END
    END Z
    PIN PO DIRECTION OUTPUT ;
        PORT LAYER M1 ; PATH 78.4 444 84.0 444 ; END
    END PO
    PIN A DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 95.2 444 100.8 444 ; END
    END A
    PIN PI DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 106.4 444 112 444 ; END
    END PI
    PIN VDD DIRECTION INOUT ; SHAPE ABUTMENT ;
        PORT LAYER M2 ; WIDTH 20; PATH 10 200 141.2 200 ; END
```


LEF/DEF 5.7 Language Reference

Examples

```
    END VDD
    PIN VSS DIRECTION INOUT ; SHAPE ABUTMENT ;
        PORT LAYER M1 ; WIDTH 20; PATH 10 100 141.2 100 ; END
        END VSS
    END IN1X
MACRO IN1Y EEQ IN1X ; FOREIGN IN1Y ; class pad ;SIZE 436.8 BY 150 ;
    SYMMETRY Y ; SITE IOY ;
    PIN Z DIRECTION OUTPUT ;
        PORT LAYER M2 ; PATH 0 69 0 75 ; END
    END Z
    PIN PO DIRECTION OUTPUT ;
        PORT LAYER M2 ; PATH 0 81 0 87 ; END
    END PO
    PIN A DIRECTION INPUT ;
        PORT LAYER M2 ; PATH 0 51 0 57 ; END
    END A
    PIN PI DIRECTION INPUT ;
        PORT LAYER M2 ; PATH 0 39 0 45 ; END
    END PI
    PIN VDD DIRECTION INOUT ; SHAPE ABUTMENT ;
        PORT LAYER M2 ; WIDTH 20 ; PATH 236.8 10 236.8 140 ; END
    END VDD
    PIN VSS DIRECTION INOUT ; SHAPE ABUTMENT ;
        PORT LAYER M2 ; WIDTH 20; PATH 336.8 10 336.8 140 ; END
    END VSS
    END IN1Y
MACRO FILLER FOREIGN FILLER ; SIZE 67.2 BY 6 ; SYMMETRY X Y R90;
    SITE CORE1 ;
    PIN VDD DIRECTION INOUT ; SHAPE ABUTMENT ;
            PORT LAYER M1 ; RECT 45.8 0 55 6 ; END
    END VDD
    PIN VSS DIRECTION INOUT ; SHAPE ABUTMENT ;
        PORT LAYER M1 ; RECT 12.2 0 21.4 6 ; END
    END VSS
    OBS LAYER M1 ; RECT 24.1 1.5 43.5 4.5 ; END
    END FILLER
MACRO INV FOREIGN INVS ; SIZE 67.2 BY 24 ; SYMMETRY X Y ; SITE CORE1 ;
    PIN Z DIRECTION OUTPUT ;
        PORT LAYER M2 ; PATH 30.8 9 42 9 ; END
    END Z
    PIN A DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 25.2 15 ; END
    END A
    PIN VDD DIRECTION INOUT ; SHAPE ABUTMENT ;
        PORT LAYER M1 ; WIDTH 5.6 ; PATH 50.4 4.6 50.4 13.4 ; END
    END VDD
    PIN VSS DIRECTION INOUT ; SHAPE ABUTMENT ;
        PORT LAYER M1 ; WIDTH 5.6 ; PATH 16.8 4.6 16.8 13.4 ; END
```

```
    END VSS
    OBS LAYER M1 ; RECT 24.1 1.5 43.5 16.5 ; END
    END INV
MACRO BUF FOREIGN BUFS ; SIZE 67.2 BY 126 ; SYMMETRY X Y ; SITE
    CORE1 ;
    PIN Z DIRECTION OUTPUT ;
        PORT LAYER M2 ; PATH 25.2 39 42 39 ; END
    END Z
    PIN A DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 30.8 33 ; END
    END A
    PIN VDD DIRECTION INOUT ; SHAPE FEEDTHRU ;
        PORT LAYER M1 ; WIDTH 5.6 ;
        PATH 50.4 4.6 50.4 10.0 56.0 10.0 56.0 115.8 50.4 115.8
                50.4 121.4 ; END
    END VDD
    PIN VSS DIRECTION INOUT ; SHAPE FEEDTHRU ;
        PORT LAYER M1 ; WIDTH 5.6 ;
        PATH 16.8 4.6 16.8 10.0 11.2 10.0 11.2 115.8 16.8 115.8
                16.8 121.4 ; END
    END VSS
    OBS LAYER M1 ; RECT 24.1 1.5 43.5 124.5 ; END
END BUF
MACRO BIDIRIX FOREIGN BIDIR1X ; class pad ; SIZE 151.2 BY 444 ;
    SYMMETRY X ; SITE IOX ;
    PIN IO DIRECTION INOUT ;
        PORT LAYER M1 ; PATH 61.6 444 67.2 444 ; END
    END IO
    PIN ZI DIRECTION OUTPUT ;
        PORT LAYER M1 ; PATH 78.4 444 84.0 444 ; END
    END ZI
    PIN PO DIRECTION OUTPUT ;
        PORT LAYER M1 ; PATH 95.2 444 100.8 444 ; END
    END PO
    PIN A DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 106.4 444 112.0 444 ; END
    END A
    PIN EN DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 134.4 444 140.0 444 ; END
    END EN
    PIN TN DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 28.0 444 33.6 444 ; END
    END TN
    PIN PI DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 44.8 444 50.4 444 ; END
    END PI
    PIN VDD DIRECTION INOUT ; SHAPE ABUTMENT ;
        PORT LAYER M2 ; WIDTH 20 ; PATH 10 200 141.2 200 ; END
    END VDD
    PIN VSS DIRECTION INOUT ; SHAPE ABUTMENT ;
```


LEF/DEF 5.7 Language Reference

Examples

```
            PORT LAYER M1 ; WIDTH 20; PATH 10 100 141.2 100 ; END
        END VSS
END BIDIR1X
MACRO BIDIR1Y EEQ BIDIR1X ; class pad ; FOREIGN BIDIR1Y ; SIZE 436.8
    BY 150 ; SYMMETRY Y ; SITE IOY ;
    PIN IO DIRECTION INOUT ;
        PORT LAYER M2 ; PATH 0 69 0 75 ; END END IO
    PIN ZI DIRECTION OUTPUT ;
        PORT LAYER M2 ; PATH 0 93 0 99 ; END END ZI
    PIN PO DIRECTION OUTPUT ;
        PORT LAYER M2 ; PATH 0 81 0 87 ; END END PO
    PIN A DIRECTION INPUT ;
        PORT LAYER M2 ; PATH 0 15 0 21 ; END END A
    PIN EN DIRECTION INPUT ;
        PORT LAYER M2 ; PATH 0 27 0 33 ; END END EN
    PIN TN DIRECTION INPUT ;
        PORT LAYER M2 ; PATH 0 39 0 45 ; END END TN
    PIN PI DIRECTION INPUT ;
        PORT LAYER M2 ; PATH 0 51 0 57 ; END END PI
    PIN VDD DIRECTION INOUT ; SHAPE ABUTMENT ;
        PORT LAYER M2 ; WIDTH 20 ; PATH 236.8 10 236.8 140 ; END
    END VDD
    PIN VSS DIRECTION INOUT ; SHAPE ABUTMENT ;
        PORT LAYER M2 ; WIDTH 20; PATH 336.8 10 336.8 140 ; END
        END VSS
    END BIDIR1Y
MACRO OR2 FOREIGN OR2S ; SIZE 67.2 BY 42 ; SYMMETRY X Y ; SITE
    CORE1 ;
    PIN Z DIRECTION OUTPUT ;
        PORT LAYER M2 ; PATH 25.2 39 42 39 ; END
    END Z
    PIN A DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 25.2 15 ; END
    END A
    PIN B DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 25.2 3 ; END
    END B
    PIN VDD DIRECTION INOUT ; SHAPE FEEDTHRU ;
        PORT LAYER M1 ; WIDTH 5.6 ;
        PATH 50.4 4.6 50.4 10.0 ; PATH 50.4 27.4 50.4 37.4 ;
        VIA 50.4 3 C2PW ; VIA 50.4 21 C2PW ; VIA 50.4 33 C2PW ;
        VIA 50.4 39 C2PW ; END
    END VDD
    PIN VSS DIRECTION INOUT ; SHAPE FEEDTHRU ;
        PORT LAYER M1 ; WIDTH 5.6 ; PATH 16.8 4.6 16.8 10.0 ;
        PATH 16.8 27.4 16.8 37.4 ;
        VIA 16.8 3 C2NW ; VIA 16.8 15 C2NW ; VIA 16.8 21 C2NW ;
        VIA 16.8 33 C2NW ; VIA 16.8 39 C2NW ; END
```


LEF/DEF 5.7 Language Reference

Examples

```
    END VSS
    OBS LAYER M1 ; RECT 24.1 1.5 43.5 40.5 ; END
    END OR2
MACRO AND2 FOREIGN AND2S ; SIZE 67.2 BY 84 ; SYMMETRY X Y ; SITE
    CORE1 ;
    PIN Z DIRECTION OUTPUT ;
                PORT LAYER M2 ; PATH 25.2 39 42 39 ; END
    END Z
    PIN A DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 42 15 ; END
    END A
    PIN B DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 42 3 ; END
    END B
    PIN VDD DIRECTION INOUT ; SHAPE ABUTMENT ;
        PORT LAYER M1 ; WIDTH 5.6 ; PATH 50.4 4.6 50.4 79.4 ; END
    END VDD
    PIN VSS DIRECTION INOUT ; SHAPE ABUTMENT ;
        PORT LAYER M1 ; WIDTH 5.6 ; PATH 16.8 4.6 16.8 79.4 ; END
    END VSS
    OBS LAYER M1 ; RECT 24.1 1.5 43.5 82.5 ; END
    END AND2
MACRO DFF3 FOREIGN DFF3S ; SIZE 67.2 BY 210 ; SYMMETRY X Y ; SITE
    CORE1 ;
    PIN Q DIRECTION OUTPUT ;
        PORT LAYER M2 ; PATH 19.6 99 47.6 99 ; END
    END Q
    PIN QN DIRECTION OUTPUT ;
        PORT LAYER M2 ; PATH 25.2 123 42 123 ; END
    END QN
    PIN D DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 30.8 51 ; END
    END D
    PIN G DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 25.2 3 ; END
    END G
    PIN CD DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 36.4 75 ; END
    END CD
    PIN VDD DIRECTION INOUT ; SHAPE FEEDTHRU ;
        PORT LAYER M1 ; WIDTH 5.6 ; PATH 50.4 4.6 50.4 205.4 ;
    END
    END VDD
    PIN VSS DIRECTION INOUT ; SHAPE FEEDTHRU ;
        PORT LAYER M1 ; WIDTH 5.6 ; PATH 16.8 4.6 16.8 205.4 ;
    END
    END VSS
    OBS LAYER M1 ; RECT 24.1 1.5 43.5 208.5 ; PATH 8.4 3 8.4 123;
        PATH 58.8 3 58.8 123 ; PATH 64.4 3 64.4 123; END
    END DFF3
```


LEF/DEF 5.7 Language Reference

Examples

```
MACRO NOR2 FOREIGN NOR2S ; SIZE 67.2 BY 42 ; SYMMETRY X Y ; SITE
    CORE1 ;
    PIN Z DIRECTION OUTPUT ;
        PORT LAYER M1 ; PATH 42 33 ; END
    END Z
    PIN A DIRECTION INPUT ;
            PORT LAYER M1 ; PATH 25.2 15 ; END
        END A
        PIN B DIRECTION INPUT ;
            PORT LAYER M1 ; PATH 36.4 9 ; END
        END B
        PIN VDD DIRECTION INOUT ; SHAPE FEEDTHRU ;
            PORT LAYER M1 ; WIDTH 5.6 ; PATH 50.4 4.6 50.4 37.4 ; END
        END VDD
        PIN VSS DIRECTION INOUT ; SHAPE FEEDTHRU ;
            PORT LAYER M1 ; WIDTH 5.6 ; PATH 16.8 4.6 16.8 37.4 ; END
    END VSS
    OBS LAYER M1 ; RECT 24.1 1.5 43.5 40.5 ; END
    END NOR2
MACRO AND2J EEQ AND2 ; FOREIGN AND2SJ ; SIZE 67.2 BY 48 ;
    SYMMETRY X Y ; ORIGIN 0 6 ; SITE CORE1 ;
    PIN Z DIRECTION OUTPUT ;
            PORT LAYER M2 ; PATH 25.2 33 42 33 ; END
    END Z
    PIN A DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 42 15 ; END
    END A
    PIN B DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 42 3 ; END
    END B
    PIN VDD DIRECTION INOUT ; SHAPE FEEDTHRU ;
            PORT LAYER M1 ; WIDTH 5.6 ; PATH 50.4 -1.4 50.4 37.4 ;
    END
    END VDD
    PIN VSS DIRECTION INOUT ; SHAPE FEEDTHRU ;
            PORT LAYER M1 ; WIDTH 5.6 ; PATH 16.8 -1.4 16.8 37.4 ;
    END
    END VSS
    OBS LAYER M1 ; RECT 24.1 1.5 43.5 34.5 ; END
    END AND2J
MACRO SQUAREBLOCK FOREIGN SQUAREBLOCKS ; CLASS RING ;SIZE 268.8
    BY 252 ; SITE SQUAREBLOCK ;
    PIN Z DIRECTION OUTPUT ;
        PORT LAYER M2 ; PATH 22.8 21 246.0 21 ; END
    END Z
    PIN A DIRECTION OUTPUT ;
        PORT LAYER M2 ; PATH 64.4 33 137.2 33 ;
        PATH 137.2 33 137.2 69; PATH 137.2 69 204.4 69 ; END
    END A
    PIN B DIRECTION INPUT ;
```


LEF/DEF 5.7 Language Reference

Examples

```
    PORT LAYER M2 ; PATH 22.8 129 246.0 129 ; END
END B
PIN C DIRECTION INPUT ;
    PORT LAYER M2 ; PATH 70 165 70 153 ; PATH 70 153 126 153 ;
    END
END C
PIN D DIRECTION INPUT ;
    PORT LAYER M2 ; PATH 22.8 75 64.4 75 ; END
END D
PIN E DIRECTION INPUT ;
    PORT LAYER M2 ; PATH 22.8 87 64.4 87 ; END
END E
PIN F DIRECTION INPUT ;
    PORT LAYER M2 ; PATH 22.8 99 64.4 99 ; END
END F
PIN G DIRECTION INPUT ;
        PORT LAYER M2 ; PATH 22.8 111 64.4 111 ; END
END G
PIN VDD DIRECTION INOUT ; SHAPE RING ;
    PORT LAYER M1 ; WIDTH 3.6 ; PATH 4.0 3.5 4.0 248;
    PATH 264.8 100 264.8 248; PATH 150 3.5 150 100;
    LAYER M2 ; WIDTH 3.6 ; PATH 4.0 3.5 150 3.5 ;
    PATH 150 100 264.8 100; PATH 4.0 248 264.8 248 ; END
END VDD
PIN VSS DIRECTION INOUT ; SHAPE RING ;
    PORT LAYER M1 ; WIDTH 3.6 ; PATH 10 10 10 150 ;
    PATH 100 150 100 200; PATH 50 200 50 242;
    PATH 258.8 10 258.8 242 ; LAYER M2 ; WIDTH 3.6 ;
    PATH 10 150 100 150; PATH 100 200 50 200;
    PATH 10 10 258.8 10; PATH 50 242 258.8 242 ; END
END VSS
OBS LAYER M1 ; RECT 13.8 14.0 255.0 237.2 ; END
END SQUAREBLOCK
MACRO I2BLOCK FOREIGN I2BLOCKS ; CLASS RING ; SIZE 672 BY 504 ;
    SITE I2BLOCK ;
    PIN Z DIRECTION OUTPUT ;
        PORT LAYER M2 ; PATH 22.8 21 649.2 21 ; END
    END Z
    PIN A DIRECTION OUTPUT ;
        PORT LAYER M2 ; PATH 22.8 63 154.0 63 ; PATH 154.0 63 154.0
        129;
        PATH 154.0 129 447.6 129 ; END
    END A
    PIN B DIRECTION INPUT ;
        PORT LAYER M2 ; PATH 137.2 423 447.6 423 ; END
    END B
    PIN C DIRECTION INPUT ;
        PORT LAYER M2 ; PATH 204.4 165 271.6 165 ; END
    END C
    PIN D DIRECTION INPUT ;
```


LEF/DEF 5.7 Language Reference

Examples

```
    PORT LAYER M2 ; PATH 204.4 171 271.6 171 ; END
END D
PIN E DIRECTION INPUT ;
    PORT LAYER M1 ; PATH 204.4 213 204.4 213 ; END
END E
PIN F DIRECTION INPUT ;
    PORT LAYER M1 ; PATH 406 249406 273 ; END
END F
PIN G DIRECTION INPUT ;
    PORT LAYER M1 ; PATH 338.8 249 338.8 273 ; END
END G
PIN H DIRECTION INPUT ;
    PORT LAYER M1 ; PATH 372.4 357 372.4 381 ; END
END H
PIN VDD DIRECTION INOUT ; SHAPE RING ;
        PORT LAYER M1 ; WIDTH 3.6 ; PATH 668 3.5 668 80.5 ;
    PATH 467 80.5 467 465.5 ; PATH 668 465.5 668 500.5 ;
    PATH 4 500.5 4 465.5 ; PATH 138 465.5 138 80.5 ;
    PATH 4 80.5 4 3.5 ; LAYER M2 ; WIDTH 3.6 ; PATH 4 3.5 668 3.5;
    PATH 668 80.5 467 80.5 ; PATH 467 465.5 668 465.5 ;
    PATH 668 500.5 4 500.5 ; PATH 4 465.5 138 465.5 ;
    PATH 138 80.5 4 80.5 ; END
END VDD
PIN VSS DIRECTION INOUT ; SHAPE RING ;
    PORT LAYER M1 ; WIDTH 3.6 ; PATH 662 10 662 74 ;
    PATH 461 74 461 472 ; PATH 662 472 662 494 ; PATH 10 494 10
        472;
    PATH 144 472 144 74 ; PATH 10 74 10 10 ;LAYER M2 ; WIDTH
        3.6 ;
    PATH 10 10 662 10 ; PATH 662 74 461 74 ; PATH 461 472662
        472 ;
    PATH 662 494 10 494 ; PATH 10 472 144 472 ; PATH 144 74 10
        74;
        END
END VSS
OBS LAYER M1 ; RECT 14 14 658 70 ; RECT 14 476 658 490 ;
    RECT 148 14 457 490 ; # rectilinear shape description
    LAYER OVERLAP ; RECT 0 0 672 84 ; RECT 134.4 84 470.4 462 ;
    RECT 0 462 672 504 ; END
END I2BLOCK
MACRO LBLOCK FOREIGN LBLOCKS ; CLASS RING ; SIZE 201.6 BY 168 ; SITE
    LBLOCK ;
    PIN Z DIRECTION OUTPUT ;
        PORT LAYER M2 ; PATH 2.8 15 198.8 15 ; END
    END Z
    PIN A DIRECTION OUTPUT ;
        PORT LAYER M2 ; PATH 2.8 81 137.2 81 ; PATH 137.2 81 137.2
        69 ;
        PATH 137.2 69 198.8 69 ; END
    END A
```


LEF/DEF 5.7 Language Reference
 Examples

```
    PIN B DIRECTION INPUT ;
    PORT LAYER M2 ; PATH 2.8 165 64.4 165 ; END
END B
PIN C DIRECTION INPUT ;
    PORT LAYER M1 ; PATH 2.8 93 2.8 105 ; END
END C
PIN D DIRECTION INPUT ;
    PORT LAYER M1 ; PATH 64.4 93 64.4 105 ; END
END D
PIN E DIRECTION INPUT ;
    PORT LAYER M1 ; PATH 198.8 39 198.8 39 ; END
END E
PIN F DIRECTION INPUT ;
    PORT LAYER M1 ; PATH 198.8 45 198.8 45 ; END
END F
PIN G DIRECTION INPUT ;
        PORT LAYER M1 ; PATH 2.8 111 2.8 111 ; END END G
        PORT LAYER M2 ; WIDTH 3.6 ; PATH 1.8 27 199.8 27 ; END
END VDD
PIN VSS DIRECTION INOUT ;
    PORT LAYER M2 ; WIDTH 3.6 ; PATH 1.8 57 199.8 57 ; END
END VSS
OBS LAYER M2 ; RECT 1.0 80 66.2 166.5 ; RECT 1.0 1.5 200.6 23 ;
    RECT 1.0 31 200.6 53 ; RECT 1.0 61 200.6 82.5 ;
    # rectilinear shape description
    LAYER OVERLAP ; RECT 0 0 201.6 84 ; RECT 0 84 67.2 168;
    END
END LBLOCK
END LIBRARY
```


DEF

The following example shows a design netlist.

```
DESIGN DEMO4CHIP ;
    TECHNOLOGY DEMO4CHIP ;
    ARRAY DEMO4 ;
    UNITS DISTANCE MICRONS 100 ;
    COMPONENTS 243 ;
- CORNER1 CORNER ; - CORNER2 CORNER ; - CORNER3 CORNER ;
    - CORNER4 CORNER ; - C01 IN1X ; - C02 IN1Y ; - C04 IN1X ;
    - C05 IN1X ; - C06 IN1Y ;
    - C07 IN1Y ; - C08 IN1Y ; - C09 IN1Y ; - C10 IN1X ; - C11 IN1X ;
    - C13 BIDIR1Y ; - C14 INV ; - C15 BUF ; - C16 BUF ; - C17 BUF ;
    - C19 BIDIR1Y ; - C20 INV ; - C21 BUF ; - C22 BUF ; - C23 BUF ;
    - C25 BIDIR1Y ; - C26 INV ; - C27 BUF ; - C28 BUF ; - C29 BUF ;
    - C31 BIDIR1Y ; - C32 INV ; - C33 BUF ; - C34 BUF ; - C35 BUF ;
    - C37 BIDIR1X ; - C39 INV ; - C40 BUF ; - C41 BUF ; - C42 BUF ;
```


LEF/DEF 5.7 Language Reference
 Examples

- C44 BIDIR1X ; - C45 INV ; - C46 BUF ; - C47 BUF ; - C48 BUF ;
- C50 BIDIR1Y ; - C51 INV ; - C52 BUF ; - C53 BUF ; - C54 BUF ;
- C56 BIDIR1X ; - C57 INV ; - C58 BUF ; - C59 BUF ; - C60 BUF ;
- D02 BIDIR1X ; - D03 INV ; - D04 BUF ; - D05 BUF ; - D06 BUF ;
- D08 BIDIR1X ; - D09 INV ; - D10 BUF ; - D11 BUF ; - D12 BUF ;
- D14 BIDIR1X ; - D15 INV ; - D16 BUF ; - D17 BUF ; - D19 BUF ;
- D33 BIDIR1Y ; - D34 INV ; - D35 BUF ; - D36 BUF ; - D37 BUF ;
- D39 BIDIR1Y ; - D40 INV ; - D41 BUF ; - D42 BUF ; - D43 BUF ;
- D45 BIDIR1Y ; - D46 INV ; - D47 BUF ; - D48 BUF ; - D49 BUF ;
- D82 OR2 ; - D83 OR2 ; - D84 OR2 ; - D85 OR2 ; - D86 OR2 ;
- D87 OR2 ; - D88 OR2 ; - D89 OR2 ; - D90 OR2 ; - D91 OR2 ;
- D92 OR2 ; - D93 OR2 ;
- E01 AND3 ; - E02 AND3 ; - E03 AND3 ; - E04 AND3 ; - E05 AND3 ;
- E06 AND3 ; - E07 AND3 ; - E08 AND3 ; - E09 AND3 ; - E10 AND3 ;
- E11 AND3 ; - E12 AND3 ; - E13 AND3 ; - E14 AND3 ; - E15 AND3 ;
- E16 AND3 ;
- EE16 IN1X ; - E17 IN1X ; - E18 IN1X ; - E19 IN1X ; - E20 IN1X ;
- E21 IN1X ; - E22 IN1X ; - E23 IN1Y ; - E24 IN1Y ; - E25 IN1Y ;
- E26 INV ; - E27 AND2 ; - E28 AND2 ; - E29 AND2 ; - E30 AND2 ;
- E31 AND2 ; - E32 AND2 ; - E33 OR2 ; - E34 OR2 ; - E35 OR2 ;
- E36 OR2 ; - E37 IN1Y ; - E38A01 DFF3 ; - E38A02 DFF3 ;
- E38A03 DFF3 ;- E38A04 DFF3 ; - E38A05 DFF3 ; - F01 I2BLOCK ;
- F04 OR2 ; - F06 OR2 ; - F07 OR2 ; - F08 OR2 ; - F09 SQUAREBLOCK ;
- F12 LBLOCK ;
- Z14 INV ; - Z15 BUF ; - Z16 BUF ; - Z17 BUF ; - Z20 INV ;
- Z21 BUF ; - Z22 BUF ; - Z23 BUF ; - Z26 INV ; - Z27 BUF ;
- Z28 BUF ; - Z29 BUF ; - Z32 INV ; - Z33 BUF ; - Z34 BUF ;
- Z35 BUF ; - Z39 INV ; - Z40 BUF ; - Z41 BUF ; - Z42 BUF ;
- Z45 INV ; - Z46 BUF ; - Z47 BUF ; - Z48 BUF ; - Z51 INV ;
- Z52 BUF ; - Z53 BUF ; - Z54 BUF ; - Z57 INV ; - Z58 BUF ; - Z59 BUF ;
- Z60 BUF ; - Z103 INV ; - Z104 BUF ; - Z105 BUF ; - Z106 BUF ;
- Z109 INV ; - Z110 BUF ; - Z111 BUF ; - Z112 BUF ; - Z115 INV ;
- Z116 BUF ; - Z117 BUF ; - Z119 BUF ; - Z134 INV ; - Z135 BUF ;
- Z136 BUF ; - Z137 BUF ; - Z140 INV ; - Z141 BUF ; - Z142 BUF ;
- Z143 BUF ; - Z146 INV ; - Z147 BUF ; - Z148 BUF ; - Z149 BUF ;
- Z182 OR2 ; - Z183 OR2 ; - Z184 OR2 ; - Z185 OR2 ; - Z186 OR2 ;
- Z187 OR2 ; - Z188 OR2 ; - Z189 OR2 ; - Z190 OR2 ; - Z191 OR2 ;
- Z192 OR2 ; - Z193 OR2 ; - Z201 AND3 ; - Z202 AND3 ; - Z203 AND3 ;
- Z204 AND3 ; - Z205 AND3 ; - Z206 AND3 ; - Z207 AND3 ; - Z208 AND3 ;
- Z209 AND3 ; - Z210 AND3 ; - Z211 AND3 ; - Z212 AND3 ; - Z213 AND3 ;
- Z214 AND3 ; - Z215 AND3 ; - Z216 AND3 ; - Z226 INV ; - Z227 AND2 ;
- Z228 AND2 ; - Z229 AND2 ; - Z230 AND2 ; - Z231 AND2 ; - Z232 AND2 ;
- Z233 OR2 ; - Z234 OR2 ; - Z235 OR2 ; - Z236 OR2 ; - Z38A01 DFF3 ;
- Z38A02 DFF3 ; - Z38A03 DFF3 ; - Z38A04 DFF3 ; - Z38A05 DFF3 ; END COMPONENTS

NETS 222 ;

- VDD (Z216 B) (Z215 B) (Z214 C) (Z214 B)
(Z213 C) (Z213 B) (Z212 C) (Z212 B) (Z211 C) (Z211 B)
(Z210 C) (E23 Z) (Z143 Z) (Z142 Z) (Z141 Z) (Z119 Z)
(Z117 Z) (Z116 Z) (Z106 Z) (Z105 Z) (Z104 Z) (Z34 Z)

LEF/DEF 5.7 Language Reference Examples

(Z33 Z) (Z28 Z) (Z27 Z) (Z22 Z) (Z21 Z) (Z16 Z)
(Z15 Z) (D45 PO) (D14 PO) (C01 PI) (D45 TN) (D39 TN)
(D33 TN) (D14 TN) (D08 TN) (D02 TN) (C56 TN) (C50 TN)
(C44 TN) (C37 TN) (C31 TN) (C25 TN) (C19 TN) (C13 TN) ;

- VSS (Z209 C) (Z208 C) (Z207 C) (Z206C) (Z205 C)
(Z204 C) (Z203 C) (Z202 C) (Z201 C) (Z149 Z) (Z148 Z)
(Z147 Z) (Z137 Z) (Z136 Z) (Z135 Z) (Z112 Z) (Z111 Z)
(Z110 Z) (Z60 Z) (Z59 Z) (Z58 Z) (Z54 Z) (Z53 Z)
(Z52 Z) (Z47 Z) (Z46 Z) (Z41 Z) (Z40 Z) (E18 Z)
(D49 Z) (D43 Z) (D45 A) (D39 A) (D33 A) (D14 A)
(D08 A) (D02 A) (C56 A) (C50 A) (C44 A) (C37 A)
(C31 A) (C25 A) (C19 A) (C13 A) ; - XX1001 (Z38A04 G)
(Z38A02 G) ; - XX100 (Z38A05 G) (Z38A03 G) (Z38A01 G) ;
- XX907 (Z236 B) (Z235 B) ; - XX906 (Z234 B) (Z233 B) ;
- XX904 (Z232 B) (Z231 B) ; - XX903 (Z230 B) (Z229 B) ;
- XX902 (Z228 B) (Z227 B) ;
- XX900 (Z235 A) (Z233 A) (Z232 A) (Z230 A) (Z228 A) (Z226 A) ;
- Z38QN4 (Z38A04 QN) (Z210 B) ; - COZ131 (Z38A04 Q) (Z210 A) ;
- Z38QN3 (Z38A03 QN) (Z209 B) ; - COZ121 (Z38A03 Q) (Z209 A) ;
- Z38QN2 (Z38A02 QN) (Z208 B) ; - COZ111 (Z38A02 Q) (Z208 A) ;
- Z38QN1 (Z38A01 QN) (Z207 B) ; - COZ101 (Z38A01 Q) (Z207 A) ;
- XX901 (Z236 A) (Z234 A) (Z231 A) (Z229 A) (Z227 A) (Z226 Z) (Z193 A) ;
- X415 (Z149 A) (Z148 A) (Z147 A) (Z146 Z) ; - X413 (Z143 A)
(Z142 A) (Z141 A) (Z140 Z) ;
- X411 (Z137 A) (Z136 A) (Z135 A) (Z134 Z) ;
- X405 (Z119 A) (Z117 A) (Z116 A) (Z115 Z) ;
- X403 (Z112 A) (Z111 A) (Z110 A) (Z109 Z) ;
- X401 (Z106 A) (Z105 A) (Z104 A) (Z103 Z) ;
- X315 (Z60 A) (Z59 A) (Z58 A) (Z57 Z) ;
- X313 (Z54 A) (Z53 A) (Z52 A) (Z51 Z) ;
- DIS051 (Z216 A) (Z48 Z) ;
- X311 (Z48 A) (Z47 A) (Z46 A) (Z45 Z) ;
- DIS041 (Z215 A) (Z42 Z) ; - X309 (Z42 A) (Z41 A) (Z40 A)
(Z39 Z) ;
- X307 (Z35 A) (Z34 A) (Z33 A) (Z32 Z) ;
- DIS031 (Z214 A) (Z35 Z) ; - DIS021 (Z213 A) (Z29 Z) ;
- X305 (Z29 A) (Z28 A) (Z27 A) (Z26 Z) ;
- DIS011 (Z212 A) (Z23 Z) ;
- X303 (Z23 A) (Z22 A) (Z21 A) (Z20 Z) ;
- DIS001 (Z211 A) (Z17 Z) ;
- X301 (Z17 A) (Z16 A) (Z15 A) (Z14 Z) ;
- X1000 (E38A05 G) (E38A03 G) (E38A01 G) (E37 Z) ;
- CNTEN (Z38A05 Q) (E38A05 Q) (E25 A) ;
- VIH20 (E37 PI) (E25 PO) ; - X0907 (E36 B) (E35 B) (E25 Z) ;
- CCLK0 (F09 A) (E24 A) ; - VIH19 (E25 PI) (E24 PO) ;
- X0906 (E34 B) (E33 B) (E24 Z) ; - CATH1 (F09 Z) (E23 A) ;
- VIH18 (E24 PI) (E23 PO) ; - CRLIN (F08 Z) (E22 A) ;
- VIH17 (E23 PI) (E22 PO) ; - X0904 (E32 B) (E31 B) (E22 Z) ;
- NXLIN (F07 Z) (E21 A) ; - VIH16 (E22 PI) (E21 PO) ;
- X0903 (E30 B) (E29 B) (E21 Z) ; - RPT1 (E06 Z) (E20 A) ;
- VIH15 (E21 PI) (E20 PO) ; - X0902 (E28 B) (E27 B) (E20 Z) ;
- AGISL (F04 Z) (E19 A) ; - VIH14 (E20 PI) (E19 PO) ;
- X0900 (E35 A) (E33 A) (E32 A) (E30 A) (E28 A) (E26 A)
(E19 Z) ;
- TSTCN (Z38A05 QN) (E38A05 QN) (E18 A) ;
- VIH13 (E19 PI) (E18 PO) ; - BCLK1 (F01 A) (E17 A) ;
- VIH12 (E18 PI) (E17 PO) ; - CLR0 (F01 Z) (EE16 A) ;
- VIH11 (E17 PI) (EE16 PO) ; - BCLKX1 (Z216 C) (E17 Z)
(E16 C) ; - CLRX0 (Z38A05 CD) (Z38A03 CD) (Z38A01 CD)
(Z215 C) (E38A05 CD) (E38A03 CD) (E38A01 CD) (EE16 Z)
(E15 C) ; - E38QN4 (E38A04 QN) (E10 B) ;
- CAX131 (E38A04 Q) (E10 A) ; - E38QN3 (E38A03 QN) (E09 B) ;
- CAX121 (E38A03 Q) (E09 A) ; - E38QN2 (E38A02 QN) (E08 B) ;
- CAX111 (E38A02 Q) (E08 A) ; - E38QN1 (E38A01 QN) (E07 B) ;
- CAX101 (E38A01 Q) (E07 A) ;
- SDD111 (Z38A05 D) (Z205 Z) (E38A05 D) (E05 Z) ;
- SDD121 (Z38A04 D) (Z204 Z) (E38A04 D) (E04 Z) ;
- X0901 (E36 A) (E34 A) (E31 A) (E29 A) (E27 A) (E26 Z)
(D93 A) ;
- VIH21 (Z192 A) (E37 PO) (D92 A) ;
- STRDENB0 (Z206B) (Z202 B) (Z201 B) (Z189B) (Z188B)
(F12 A) (E06 B) (E02 B) (E01 B) (D89 B) (D88 B) ;
- STRDENA0 (Z202 A) (Z201 A) (Z183 B) (Z182 B) (F12 Z)
(F01 H) (E02 A) (E01 A) (D83 B) (D82 B) ;
- DAB151 (F12 H) (D48 Z) ; - DAA151 (F08 B) (D47 Z) ;
- X0415 (D49 A) (D48 A) (D47 A) (D46 Z) ;
- SDD151 (Z38A01 D) (Z201 Z) (E38A01 D) (E01 Z) (D45 EN) ;
- X0414 (Z146 A) (D46 A) (D45 ZI) ; - D151 (E14 C) (D45 IO) ;
- DAB141 (F12 G) (D42 Z) ; - DAA141 (F08 A) (D41 Z) ;
- X0413 (D43 A) (D42 A) (D41 A) (D40 Z) ;
- SDD141 (Z38A02 D) (Z202 Z) (E38A02 D) (E02 Z) (D39 EN) ;
- VIH60 (D45 PI) (D39 PO) ; - X0412 (Z140 A) (D40 A) (D39 ZI) ;
- D141 (E13 C) (D39 IO) ; - SDI131 (E16 B) (D37 Z) ;
- DAB131 (F12 F) (D36 Z) ; - DAA131 (F07 B) (D35 Z) ;
- X0411 (D37 A) (D36 A) (D35 A) (D34 Z) ;
- VIH58 (Z193 Z) (D93 Z) (D33 PI) ;
- SDD131 (Z38A03 D) (Z203 Z) (E38A03 D) (E03 Z) (D33 EN) ;
- VIH59 (D39 PI) (D33 PO) ; - X0410 (Z134 A) (D34 A) (D33 ZI) ;
- D131 (E12 C) (D33 IO) ; - SDI101 (E15 B) (D19 Z) ; ...
- X0315 (C60 A) (C59 A) (C58 A) (C57 Z) ;
- SDD071 (Z211 Z) (E11 Z) (C56 EN) ;
- VIH53 (Z190 Z) (D90 Z) (D02 PI) (C56 PO) ;
- X0314 (Z57 A) (C57 A) (C56 ZI) ;
- D071 (E08 C) (C56 IO) ; - SDI061 (E11 B) (C54 Z) ;
- DAB061 (F09 H) (C53 Z) ; - DAA061 (F04 A) (C52 Z) ;
- X0313 (C54 A) (C53 A) (C52 A) (C51 Z) ;
- SDD061 (Z212 Z) (E12 Z) (C50 EN) ;
- VIH52 (Z189 Z) (D89 Z) (C56 PI) (C50 PO) ;
- X0312 (Z51 A) (C51 A) (C50 ZI) ;
- D061 (E07 C) (C50 IO) ; - SDI051 (E16 A) (C48 Z) ;
- DAB051 (F09 G) (C47 Z) ; - DAA051 (F01 G) (C46 Z) ;

LEF/DEF 5.7 Language Reference Examples

- X0311 (C48 A) (C47 A) (C46 A) (C45 Z) ;
- SDD051 (Z213 Z) (E13 Z) (C44 EN) ;
- VIH51 (Z188 Z) (D88 Z) (C50 PI) (C44 PO) ;
- X0310 (Z45 A) (C45 A) (C44 ZI) ;
- D051 (E06 C) (C44 IO) ; - SDI041 (E15 A) (C42 Z) ;
- DAB041 (F09 F) (C41 Z) ; - DAA041 (F01 F) (C40 Z) ;
- X0309 (C42 A) (C41 A) (C40 A) (C39 Z) ;
- SDD041 (Z214 Z) (E14 Z) (C37 EN) ;
- VIH50 (Z187 Z) (D87 Z) (C44 PI) (C37 PO) ;
- X0308 (Z39 A) (C39 A) (C37 ZI) ;
- D041 (E05 C) (C37 IO) ; - SDI031 (E14 A) (C35 Z) ;
- DAB031 (F09 E) (C34 Z) ; - DAA031 (F01 E) (C33 Z) ;
- X0307 (C35 A) (C34 A) (C33 A) (C32 Z) ;
- SDD031 (Z215 Z) (E15 Z) (C31 EN) ;
- VIH49 (Z186 Z) (D86 Z) (C37 PI) (C31 PO) ;
- X0306 (Z32 A) (C32 A) (C31 ZI) ;
- D031 (E04 C) (C31 IO) ; - SDI021 (E13 A) (C29 Z) ;
- DAB021 (F09 D) (C28 Z) ; - DAA021 (F01 D) (C27 Z) ;
- X0305 (C29 A) (C28 A) (C27 A) (C26 Z) ;
- SDD021 (Z216 Z) (E16 Z) (C25 EN) ;
- VIH48 (Z185 Z) (D85 Z) (C31 PI) (C25 PO) ;
- X0304 (Z26 A) (C26 A) (C25 ZI) ;
- D021 (E03 C) (C25 IO) ; - SDI011 (E12 A) (C23 Z) ;
- DAB011 (F09 C) (C22 Z) ; - DAA011 (F01 C) (C21 Z) ;
- X0303 (C23 A) (C22 A) (C21 A) (C20 Z) ;
- SDD011 (Z209 Z) (E09 Z) (C19 EN) ;
- VIH47 (Z184 Z) (D84 Z) (C25 PI) (C19 PO) ;
- X0302 (Z20 A) (C20 A) (C19 ZI) ;
- D011 (E02 C) (C19 IO) ; - SDI001 (E11 A) (C17 Z) ;
- DAB001 (F09 B) (C16 Z) ; - DAA001 (F01 B) (C15 Z) ;
- X0301 (Z14 A) (C17 A) (C16 A) (C15 A) (C14 Z) ;
- VIH45 (Z182 Z) (D82 Z) (C13 PI) ;
- SDD001 (Z210 Z) (E10 Z) (C13 EN) ;
- VIH46 (Z183 Z) (D83 Z) (C19 PI) (C13 PO) ;
- X0300 (C14 A) (C13 ZI) ; - D001 (E01 C) (C13 IO) ;
- CCLKB0 (Z234 Z) (Z189 A) (E34 Z) (D89 A) (C11 A) ;
- VIH10 (EE16 PI) (C11 PO) ;
- StRAAA (Z206 A) (E06 A) (C11 Z) ;
- CCLKA0 (Z233 Z) (Z188 A) (E33 Z) (D88 A) (C10 A) ;
- VIH9 (C11 PI) (C10 PO) ;
- STRB00 (Z192 B) (D92 B) (C10 Z) ;
- CRLINB1 (Z232 Z) (Z187 A) (E32 Z) (D87 A) (C09 A) ;
- VIH8 (C10 PI) (C09 PO) ;
- STRA00 (Z187 B) (D87 B) (C09 Z) ;
- CRLINA1 (Z231 Z) (Z186 A) (E31 Z) (D86 A) (C08 A) ;
- VIH7 (C09 PI) (C08 PO) ;
- X10001 (E38A04 G) (E38A02 G) (C08 Z) ;
- NXLINB1 (Z230 Z) (Z185 A) (E30 Z) (D85 A) (C07 A) ;
- VIH6 (C08 PI) (C07 PO) ;
- CLRX00 (Z38A04 CD) (Z38A02 CD) (E38A04 CD) (E38A02CD) (C07 Z) ;

LEF/DEF 5.7 Language Reference

Examples

- NXLINA1 (Z229 Z) (Z184 A) (E29 Z) (D84 A) (C06 A) ;
- VIH5 (C07 PI) (C06 PO) ;
- STRBB0 (Z205 B) (Z193 B) (E05 B) (D93 B) (C06 Z) ;
- RPTB1 (Z228 Z) (Z183 A) (E28 Z) (D83 A) (C05 A) ;
- VIH4 (C06 PI) (C05 PO) ;
- STRAA0 (Z205 A) (Z186 B) (E05 A) (D86 B) (C05 Z) ;
- RPTA1 (Z227 Z) (Z182 A) (E27 Z) (D82 A) (C04 A) ;
- VIH3 (C05 PI) (C04 PO) ;
- STRB0 (Z204 B) (Z203 B) (Z191 B) (Z190 B) (E04 B)
(E03 B) (D91 B) (D90 B) (C04 Z) ;
- CNTENB0 (Z236 Z) (Z191 A) (E36 Z) (D91 A) (C02 A) ;
- VIH2 (C04 PI) (C02 PO) ;
- STRA0 (Z204 A) (Z203 A) (Z185 B) (Z184 B) (E04 A) (E03 A) (D85 B) (D84 B) (C02 Z) ;
- CNTENA0 (Z235 Z) (Z190 A) (E35 Z) (D90 A) (C01 A) ;
- VIH1 (C02 PI) (C01 PO) ; - CALCH (E37 A) (C01 Z) ;
\#

Scan Chain Synthesis Example

You define the scan chain in the COMPONENTS and SCANCHAINS sections in your DEF file.

```
COMPONENTS 100 ;
- SIN MUX ;
- SOUT PAD ;
- C1 SDFF ;
- C2 SDFF ;
- C3 SDFF ;
- C4 SDFF ;
- B1 BUF ;
- A1 AND ; ...
END COMPONENTS
NETS 150 ;
- N1 (C1 SO) (C3 SI) ;
- N2 (C3 SO) (A1 A) ; ...
END NETS
```

You do not need to define any scan nets in the NETS section. This portion of the NETS section shows the effect of the scan chain process on existing nets that use components you specify in the SCANCHAINS section.

```
SCANCHAINS 1 ;
- SC
+ COMMONSCANPINS (IN SI) (OUT SO)
+ START SIN Z2
+ FLOATING C1 C2 C3
```

```
    + ORDERED C4 B1 (IN A) (OUT Q) ;
    + STOP SOUT A ;
END SCANCHAINS
```

Because components C1, C2, and C3 are floating, TROUTE SCANCHAIN can synthesize them in any order in the chain. TROUTE synthesizes ordered components (C4 and B1) in the order you specify.

Optimizing LEF Technology for Place and Route

This appendix contains the following information.

- Overview
- Guidelines for Routing Pitch on page 352
- Guidelines for Wide Metal Spacing on page 354
- Guidelines for Wire Extension at Vias on page 355
- Guidelines for Default Vias on page 357
- Guidelines for Stack Vias (MAR Vias) and Samenet Spacing on page 359
- Example of an Optimized LEF Technology File on page 363

Overview

This appendix provides guidelines for defining the optimized technology section in the LEF file to get the best performance using Cadence ${ }^{\circledR}$ place-and-route tools, especially Cadence Ultra Router. The LEF syntax shown is based on Silicon Ensemble ${ }^{\circledR}$ Place-and-Route 5.2 or newer.

For the following guidelines, the preferred routing direction for metall and all other odd metal layers is horizontal. The preferred routing direction for metal2 and all other even metal layers is vertical. Standard cells are arranged in horizontal rows.

This appendix discusses the following LEF statements.

```
LAYER layerName
    TYPE ROUTING ;
    PITCH distance ;
    WIDTH defWidth ;
    SPACING minSpacing [RANGE minwidth maxwidth] ;
    WIREEXTENSION value ;
END layerName
```

```
VIA viaName DEFAULT
    [TOPSTACKONLY]
    LAYER layerName RECT pt pt ; ...
```

END viaName
SPACING
SAMENET
layerName layerName minSpace [STACK] ;
END SPACING

Guidelines for Routing Pitch

The following is a summary for choosing the right pitch for an existing design library. For detailed information on determining routing pitch, refer to the Cadence Abstract Generator User Guide.

Pitch Measurement

Line-to-via

Via-to-via

Line-to-line

DESIGN RULE No. 1

W. $1 \quad$ Minimum width of metal1 $=0.23 \mathrm{um}$
S. 1 Minimum space between two metal1 regions $=0.23 \mathrm{um}$
W. $2 \quad$ Minimum and maximum width of cut1 $=0.26$ um
E. $1 \quad$ Minimum extension of metall beyond cut1 $=0.01$ um
W. $3 \quad$ Minimum width of metal3 $=0.28 \mathrm{um}$
S. 2 Minimum space between two metal3 regions $=0.28$ um
W. $4 \quad$ Minimum and maximum width of cut2 $=0.26$ um
E. 2 Minimum extension of metal1 beyond cut2 $=0.01 \mathrm{um}$

Although the minimum metal1 routing pitch is 0.485 um from the design rule, you should use 0.56 um instead, to match the metal3 routing pitch in the same preferred direction.

LEF Construct No. 1

```
LAYER metal1
    TYPE ROUTING ;
    WIDTH 0.23 ;
    SPACING 0.23 ;
    PITCH 0.56 ;
    DIRECTION HORIZONTAL ;
```

```
END metal1
LAYER metal3
    TYPE ROUTING ;
    WIDTH 0.28 ;
    SPACING 0.28 ;
    PITCH 0.56 ;
    DIRECTION HORIZONTAL ;
```

END metal3

Recommendations

- Use line-to-via spacing for both the horizontal and vertical direction.
- Allow diagonal vias with the routing pitch.
- Align the routing pitch for metall and metal2, with the pins inside the standard cells.
- Have uniform routing pitch in the same preferred direction. The pitch ratio should be 2 3 or 1-2. It is better to define the metal1 pitch larger than necessary in order to achieve a $1-1$ ratio because the metall width is usually smaller the metal2 and metal3 widths.

Pitch Recommendations for Library Development

- All pins should be on the grid, and only those portions of the pins that are accessible to the router should be modeled as pins. For example, 45 degree pin geometry.
- The height of the cell should be the even multiple of the metall pitch, and the width of the cell should be the even multiple of the metal2 pitch.
- The blockage modeling, especially for metal1, should be simplified as much as possible. For example, it is very common for the entire area within the cell boundary to be obstructed in metal1, so use a single rectangular blockage instead of many small blockages.

Guidelines for Wide Metal Spacing

The SPACING statement in the LEF LAYER section is applied to both regular and special wires. You can use the Cadence® ultra router option frouteUseRangeRule to determine which objects to check against the SPACING RANGE statement. The default checks both pin and obstruction.

LEF/DEF 5.7 Language Reference

Optimizing LEF Technology for Place and Route

DESIGN RULE No. 2

S. 1

Minimum space between two metal1 regions $=0.23$ um
S. 2

Minimum space between metal lines with one or both metal line width and length are greater than 10um $=0.6$ um

LEF CONSTRUCT No. 2

```
LAYER metal1
    WIDTH 0.23 ;
    SPACING 0.23 ;
    SPACING 0.6 RANGE 10.002 1000;
```

END metal1

Guidelines for Wire Extension at Vias

The following guidelines are for wire extension at vias.

LEF/DEF 5.7 Language Reference

Optimizing LEF Technology for Place and Route

DESIGN RULE No. 3

W. $1 \quad$ Minimum and maximum width of cut1 $=0.26$ um
W. $2 \quad$ Minimum width of metal2 $=0.28 \mathrm{um}$
E. 1 Minimum extension of metal2 beyond cut1 $=0.01$ um
E. 2 Minimum extension of metal2 end-of-line region beyond cut1 $=0.06 \mathrm{um}$

LEF CONSTRUCT No. 3

```
LAYER metal2
    TYPE ROUTING ;
    WIDTH 0.28 ;
    SPACING 0.28 ;
    PITCH 0.56 ;
    WIREEXTENSION 0.19 ;
    DIRECTION VERTICAL ;
```

END metal2
VIA via23 DEFAULT
LAYER metal2 ;
RECT -0.14-0.14 0.14 0.14 ; \# Use square via
LAYER cut2 ;
RECT -0.13-0.13 0.13 0.13;
LAYER metal3 ;
RECT -0.14-0.14 0.140 .14 ; \# Use square via

END via23

Recommendations

- Use the WIREEXTENSION statement instead of defining multiple vias because the width of the metal2 in cut1 is the same as the default routing width of the metal2 layer.
- Define the DEFAULT VIA as a square via.

Guidelines for Default Vias

The following guidelines are for default vias.

DESIGN RULE No. 4

W. $1 \quad$ Minimum width of metal1 $=0.23 \mathrm{um}$
W. $2 \quad$ Minimum and maximum width of cut1 $=0.26$ um
E. $1 \quad$ Minimum extension of metall beyond cut1 $=0.01$ um
E. 2 Minimum extension of metal1 end-of-line region beyond cut1 $=0.06 \mathrm{um}$

Case A:

Use WIREEXTENSION and square DEFAULT VIA

Case B:

Use Horizontal and Vertical DefaULT VIAs

LEF/DEF 5.7 Language Reference

Optimizing LEF Technology for Place and Route

LEF CONSTRUCT No. 4 (Case B)

```
LAYER metal1
    TYPE ROUTING ;
    WIDTH 0.23 ;
    SPACING 0.23 ;
    PITCH 0.56 ;
    DIRECTION HORIZONTAL ;
END metal1
VIA vial2_H DEFAULT
    LAYER metal1 ;
            RECT -0.19 -0.14 0.19 0.14 ; # metal1 end-of-line
            extension 0.6 in both directions
        LAYER cut1 ;
            RECT -0.13 -0.13 0.13 0.13 ;
    LAYER metal2 ;
            RECT -0.14 -0.14 0.14 0.14 ;
END via12_H
VIA vial2_V DEFAULT
    LAYER metal1 ;
            RECT -0.14 -0.19 0.14 0.19 ; # metal1 end-of-line
            extension 0.6 in both directions
    LAYER cut1 ;
            RECT -0.13 -0.13 0.13 0.13 ;
    LAYER metal2 ;
            RECT -0.14 -0.14 0.14 0.14 ;
END via12_V
```


Recommendations

- If the width of the end-of-line metal extension is the same as the default metal routing width, as in Case A, use the WIREEXTENSION statement in the LEF LAYER section, and define a square via in the DEFAULT VIA section.
- If the width of the end-of-line metal extension is the same as the width of the via metal, as in Case B, define one horizontal DEFAULT VIA and one vertical DEFAULT VIA to cover the required metal extension area in both pregerred and non-preferred routing directions. Do not use the wIREEXTENSION statement in the LEF LAYER section.

Guidelines for Stack Vias (MAR Vias) and Samenet Spacing

The following guidelines are for stack vias (minimum area rule) and SAMENET SPACING.

LEF/DEF 5.7 Language Reference

Optimizing LEF Technology for Place and Route

DESIGN RULE No. 5

W. $1 \quad$ Minimum width of metal2 $=0.28 \mathrm{um}$
W. $2 \quad$ Minimum and maximum width of cut2 $=0.26$ um
E. $1 \quad$ Minimum extension of metal2 beyond cut $2=0.01$ um
A. 1 Minimum area of metal2 $=0.2025$ um
C. 1

Cut2 can be fully or partially stacked on cut1, contact or any combination
W. 1
W. 2
E. $1 \quad$ Minimum extension of metal2 beyond cut3 $=0.01 \mathrm{um}$
A. 1 Minimum area of metal3 $=0.2025$ um
C. 1

Cut3 can be fully or partially stacked on cut2, cut1, contact or any combination

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

Minimum routing area of metal3 $=0.28 \times 0.94=0.2632>0.2 .25(\mathrm{MAR})$

LEF CONSTRUCT No. 5

```
VIA via23_stack_north DEFAULT TOPOFSTACKONLY
    LAYER metal2 ;
        RECT -0.14 -0.14 0.14 0.6 ; # MAR = 0.28 x 0.74
    LAYER cut2 ;
```


LEF/DEF 5.7 Language Reference

Optimizing LEF Technology for Place and Route

```
    RECT -0.13 -0.13 0.13 0.13 ;
    LAYER metal3 ;
    RECT -0.14 -0.14 0.14 0.14 ;
END via23_stack_north
VIA via23_stack_south DEFAULT TOPOFSTACKONLY
    LAYER metal2 ;
            RECT -0.14 -0.6 0.14 0.14 ; # MAR = 0.28 x 0.74
    LAYER cut2 ;
            RECT -0.13 -0.13 0.13 0.13 ;
    LAYER metal3 ;
            RECT -0.14 -0.14 0.14 0.14 ;
END via23_stack_south
VIA via34_stack_east DEFAULT TOPOFSTACKONLY
    LAYER metal3 ;
            RECT -0.14 -0.14 0.6 0.14 ; # MAR = 0.28 x 0.74
    LAYER cut3 ;
            RECT -0.13 -0.13 0.13 0.13 ;
    LAYER metal4 ;
            RECT -0.14 -0.14 0.14 0.14 ;
END via34_stack_east
VIA via34_stack_west DEFAULT TOPOFSTACKONLY
    LAYER metal3 ;
            RECT -0.6 -0.14 0.14 0.14 ; # MAR = 0.28 x 0.74
    LAYER cut3 ;
            RECT -0.13 -0.13 0.13 0.13 ;
    LAYER metal4 ;
            RECT -0.14 -0.14 0.14 0.14 ;
END via34_stack_west
```


Recommendations

- The minimum metal routing segment (two vias between one pitch grid) with or without end-of-line metal extension should automatically satisfy the minimum area rule.
- If vias are stackable, create the TOPSTACKONLY vias with a rectangular shape blocking only one neighboring grid for both sides of the preferred routing direction. In other words, one north oriented and one south oriented for vertical-preferred routing layers, and one east oriented and one west oriented for horizontal-preferred routing layers.

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

- Use slightly larger dimensions for the via size to make them an even number, so they snap to the manufacturing grids.
- The STACK keyword in the SAMENETSPACING statements only allows vias to be fully overlapped (stacked) by SROUTE commands. To allow vias to be partially overlapped, set the environment variable SROUTE.ALLOWOVERLAPINSTACKVIA to TRUE.
- The metall layer does not require a MAR via because all metal1 pins should satisfy the minimum area rules.

Example of an Optimized LEF Technology File

```
VERSION 5.2 ;
NAMESCASESENSITIVE ON ;
BUSBITCHARS "[]" ;
UNITS
    DATABASE MICRONS 100 ;
END UNITS
LAYER metal1
    TYPE ROUTING ;
    WIDTH 0.23 ;
    SPACING 0.23 ;
    SPACING 0.6 RANGE 10.02 1000;
    PITCH 0.56 ;
    DIRECTION HORIZONTAL ;
END metal1
LAYER cut1
    TYPE CUT ;
END cut1
LAYER metal2
    TYPE ROUTING ;
    WIDTH 0.28 ;
    SPACING 0.28;
    SPACING 0.6 RANGE 10.02 1000;
    PITCH 0.56 ;
    WIREEXTENSION 0.19 ;
    DIRECTION VERTICAL ;
```


LEF/DEF 5.7 Language Reference

Optimizing LEF Technology for Place and Route

```
END metal2
LAYER cut2
    TYPE CUT ;
END cut2
LAYER metal3
    TYPE ROUTING ;
    WIDTH 0.28 ;
    SPACING 0.28 ;
    SPACING 0.6 RANGE 10.02 1000;
    PITCH 0.56 ;
    WIREEXTENSION 0.19 ;
    DIRECTION HORIZONTAL ;
END metal3
LAYER cut3
    TYPE CUT ;
END cut3
LAYER metal4
    TYPE ROUTING ;
    WIDTH 0.28 ;
    SPACING 0.28 ;
    SPACING 0.6 RANGE 10.02 1000;
    PITCH 0.56 ;
    WIREEXTENSION 0.19 ;
    DIRECTION VERTICAL ;
END metal4
LAYER cut4
    TYPE CUT ;
END cut4
LAYER metal5
    TYPE ROUTING ;
    WIDTH 0.28 ;
    SPACING 0.28;
    SPACING 0.6 RANGE 10.02 1000;
```


LEF/DEF 5.7 Language Reference

Optimizing LEF Technology for Place and Route

```
PITCH 0.56 ;
WIREEXTENSION 0.19 ;
DIRECTION HORIZONTAL ;
END metal5
LAYER cut5
    TYPE CUT ;
END cut5
LAYER metal6
    TYPE ROUTING ;
    WIDTH 0.44 ;
    SPACING 0.46 ;
    SPACING 0.6 RANGE 10.02 1000;
    PITCH 1.12 ;
    DIRECTION VERTICAL ;
END metal6
```


\#\#\# start DEFAULT VIA \#\#\#

```
VIA via12_H DEFAULT
```

VIA via12_H DEFAULT
LAYER metal1 ;
LAYER metal1 ;
RECT -0.19 -0.14 0.19 0.14 ; \# metal1 end-of-line ext 0.6
RECT -0.19 -0.14 0.19 0.14 ; \# metal1 end-of-line ext 0.6
LAYER cut1 ;
LAYER cut1 ;
RECT -0.13 -0.13 0.13 0.13 ;
RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal2 ;
LAYER metal2 ;
RECT -0.14 -0.14 0.14 0.14 ;
RECT -0.14 -0.14 0.14 0.14 ;
END via12_H
END via12_H
VIA via12_V DEFAULT
VIA via12_V DEFAULT
LAYER metal1 ;
LAYER metal1 ;
RECT -0.14 -0.19 0.14 0.19 ; \# metal1 end-of-line ext 0.6
RECT -0.14 -0.19 0.14 0.19 ; \# metal1 end-of-line ext 0.6
LAYER cut1 ;
LAYER cut1 ;
RECT -0.13 -0.13 0.13 0.13 ;
RECT -0.13 -0.13 0.13 0.13 ;
LAYER metal2 ;
LAYER metal2 ;
RECT -0.14 -0.14 0.14 0.14 ;
RECT -0.14 -0.14 0.14 0.14 ;
END via12_V
END via12_V
VIA via23 DEFAULT
VIA via23 DEFAULT
LAYER metal2 ;
LAYER metal2 ;
RECT -0.14 -0.14 0.14 0.14 ;
RECT -0.14 -0.14 0.14 0.14 ;
LAYER cut2 ;

```
    LAYER cut2 ;
```

LEF/DEF 5.7 Language Reference
Optimizing LEF Technology for Place and Route

```
    RECT -0.13 -0.13 0.13 0.13 ;
    LAYER metal3 ;
    RECT -0.14 -0.14 0.14 0.14 ;
END via23
VIA via34 DEFAULT
    LAYER metal3 ;
            RECT -0.14 -0.14 0.14 0.14 ;
    LAYER cut3 ;
            RECT -0.13 -0.13 0.13 0.13;
    LAYER metal4 ;
            RECT -0.14 -0.14 0.14 0.14 ;
END via34
VIA via45 DEFAULT
    LAYER metal4 ;
            RECT -0.14 -0.14 0.14 0.14 ;
    LAYER cut4 ;
            RECT -0.13 -0.13 0.13 0.13;
    LAYER metal5 ;
            RECT -0.14 -0.14 0.14 0.14 ;
END via45
VIA via56_H DEFAULT
    LAYE\overline{R}}\mathrm{ metal5 ;
        RECT -0.24 -0.19 0.24 0.19 ;
    LAYER cut5 ;
        RECT -0.18 -0.18 0.18 0.18;
    LAYER metal6 ;
        RECT -0.27 -0.27 0.27 0.27 ;
END via56_H
VIA via56_V DEFAULT
    LAYE\overline{R}}\mathrm{ metal5 ;
            RECT -0.19 -0.24 0.19 0.24;
    LAYER cut5 ;
            RECT -0.18 -0.18 0.18 0.18 ;
    LAYER metal6 ;
            RECT -0.27 -0.27 0.27 0.27 ;
END via56_V
### end DEFAULT VIA ###
```


LEF/DEF 5.7 Language Reference

 Optimizing LEF Technology for Place and Route
\#\#\# start STACK VIA \#\#\#

```
VIA via23_stack_north DEFAULT TOPOFSTACKONLY
    LAYER metal2 ;
            RECT -0.14 -0.14 0.14 0.6 ; # MAR = 0.28 x 0.74
    LAYER cut2 ;
            RECT -0.13 -0.13 0.13 0.13 ;
    LAYER metal3 ;
            RECT -0.14 -0.14 0.14 0.14 ;
END via23_stack_north
VIA via23_stack_south DEFAULT TOPOFSTACKONLY
    LAYER metal2 ;
            RECT -0.14 -0.6 0.14 0.14 ; # MAR = 0.28 x 0.74
    LAYER cut2 ;
            RECT -0.13 -0.13 0.13 0.13 ;
    LAYER metal3 ;
            RECT -0.14 -0.14 0.14 0.14 ;
END via23_stack_south
VIA via34_stack_east DEFAULT TOPOFSTACKONLY
    LAYER metal3 ;
            RECT -0.14 -0.14 0.6 0.14 ; # MAR = 0.28 x 0.74
    LAYER cut3 ;
            RECT -0.13 -0.13 0.13 0.13 ;
    LAYER metal4 ;
            RECT -0.14 -0.14 0.14 0.14 ;
END via34_stack_east
VIA via34_stack_west DEFAULT TOPOFSTACKONLY
    LAYER metal3 ;
            RECT -0.6 -0.14 0.14 0.14 ; # MAR = 0.28 x 0.74
    LAYER cut3 ;
            RECT -0.13 -0.13 0.13 0.13 ;
    LAYER metal4 ;
            RECT -0.14 -0.14 0.14 0.14 ;
END via34_stack_west
VIA via45_stack_north DEFAULT TOPOFSTACKONLY
    LAYER metal4 ;
            RECT -0.14 -0.14 0.14 0.6 ; # MAR = 0.28 x 0.74
    LAYER cut4 ;
```

LEF/DEF 5.7 Language Reference Optimizing LEF Technology for Place and Route

```
        RECT -0.13 -0.13 0.13 0.13 ;
    LAYER metal5 ;
    RECT -0.14 -0.14 0.14 0.14 ;
END via45_stack_north
VIA via45_stackssouth DEFAULT TOPOFSTACKONLY
        LAYER meta\\4 ;
            RECT -0.14 -0.6 0.14 0.14 ; # MAR = 0.28 x 0.74
    LAYER cut4 ;
            RECT -0.13 -0.13 0.13 0.13 ;
    LAYER metal5 ;
            RECT -0.14 -0.14 0.14 0.14 ;
END via45_stack_south
VIA via56_stack_east DEFAULT TOPOFSTACKONLY
        LAYER metal5 ;
            RECT -0.19 -0.19 0.35 0.19 ; # MAR = 0.38 x 0.54
    LAYER cut5 ;
            RECT -0.18 -0.18 0.18 0.18 ;
    LAYER metal6 ;
            RECT -0.27 -0.27 0.27 0.27 ;
END via56_stack_east
VIA via56_stack_west DEFAULT TOPOFSTACKONLY
    LAYER metal5 ;
            RECT -0.35 -0.19 0.19 0.19 ; # MAR = 0.38 x 0.54
    LAYER cut5 ;
            RECT -0.18 -0.18 0.18 0.18 ;
    LAYER metal6 ;
            RECT -0.27 -0.27 0.27 0.27 ;
END via56_stack_west
### end STACK VIA ###
```


Calculating and Fixing Process Antenna Violations

This appendix describes process antenna violations and how you can use the router to correct them. It includes the following sections:

- Overview on page 370
- Using Process Antenna Keywords in the LEF and DEF Files on page 374
- Calculating Antenna Ratios on page 375
- Checking for Antenna Violations on page 392
- Using Antenna Diode Cells on page 403
- Using DiffUseOnly on page 404
- Calculations for Hierarchical Designs on page 405

LEF/DEF 5.7 Language Reference

Calculating and Fixing Process Antenna Violations

Overview

During deep submicron wafer fabrication, gate damage can occur when excessive static charges accumulate and discharge, passing current through a gate. If the area of the layer connected directly to the gate or connected to the gate through lower layers is large relative to the area of the gate and the static charges are discharged through the gate, the discharge can damage the oxide that insulates the gate and cause the chip to fail. This phenomenon is called the process antenna effect (PAE).

To determine the extent of the PAE, the router calculates the area of the layer relative to the area of the gates connected to it, or connected to it through lower layers. The number it calculates is called the antenna ratio. Each foundry sets a maximum allowable antenna ratio for the chips it fabricates.

For example, assume a foundry sets a maximum allowable antenna ratio of 500 . If a net has two input gates that each have an area of 1 square micron, any metal layers that connect to the gates and have an area larger than 1,000 square microns have process antenna violations because they would cause the antenna ratio to be higher than 500 :

Antenna Ratio $=\frac{\text { Area of metal layer }}{\text { Area of gates }} \quad 500=\frac{1000}{1+1}$

To tell the router the values to use when it calculates the antenna ratio, you set antenna keywords in the LEF and DEF files. The router measures potential damage caused by PAE by checking the ratio it calculates against the values specified by the antenna keywords. When it finds a net whose antenna ratio for a specified layer exceeds the maximum allowed value for that layer, it finds a process antenna violation and attempts to fix it using one or both of the following methods:

- Changing the routing so the routing layers connected to a gate or connected to a gate through lower layers are not so large that they build enough static charge to damage the gate
- Inserting diodes that protect the gate by providing an alternate path to discharge the static charge

LEF can specify several types of antenna ratios, including ratios for PAE damage on one layer only and ratios calculated by adding accumulated damage on several layers. In addition, LEF can specify ratios based on the area of the metal wires or the cut area of vias.

LEF/DEF 5.7 Language Reference

Calculating and Fixing Process Antenna Violations

What Are Process Antennas?

In a chip manufacturing process, metal layers are built up, layer by layer, starting with the firstlevel metal layer (usually referred to as metal1). Next, the metal1-metal2 vias are created, then the second-level metal layer, then metal2-metal3 vias, and so on.

On each metal layer, metal is initially deposited so it covers the entire chip. Then, the unneeded portions of the metal are removed by etching, typically in plasma (charged particles).

Figure C -1 on page 371 shows a section of an imaginary chip after the unneeded metal from metal2 is removed.

Figure C-1

In the figure,

- Gate areas for transistors are labelled G_{k}, where k is a sequential number starting with 1.
- Wire segments are labelled $N_{i, j}$
- N signifies that the wire segment is an electrically connected node
- i specifies the metal layer to which the node belongs
- j is a sequential number for the node on that metal layer
- Nodes are labelled so that all pieces of the metal geometry on layer metal ${ }_{i}$ that are electrically connected by conductors at layers below metal ${ }_{i}$ belong to the same node. For example, the two metal2 wire segments that belong to node $N_{2,1}$ are electrically connected to gates $\mathrm{G}_{1}, \mathrm{G}_{2}$, and G_{3} by a piece of wire on metal1 (labelled $\mathrm{N}_{1,2}$).

Thick oxide insulates the already-fabricated structures below metal2, preventing them from direct contact with the plasma. The metal2 geometries, however, are exposed to the plasma,

LEF/DEF 5.7 Language Reference

Calculating and Fixing Process Antenna Violations
and collect charge from it. As the metal geometries collect charge, they build up voltage potential.

Because the metal geometries collect charge during the metallization process, they are referred to as process antennas. In general, the more area covered by the metal geometries that are exposed to the plasma (that is, the larger the process antennas), the more charge they can collect.

In Figure C-1 on page 371, note the following:

- Node $\mathrm{N}_{1,1}$ is electrically connected to gates G_{1} and G_{2}.
- Node $\mathrm{N}_{1,2}$ is electrically connected to gate G_{3}.
- Node $N_{2,1}$ (node $N_{2,1}$ has two pieces of metal) is electrically connected to gates G_{1}, G_{2}, and G_{3}.
- Node $N_{1,3}$ and node $N_{2,2}$ are electrically connected to gate G_{4}.
- Node $N_{1,4}$ and node $N_{2,3}$ are electrically connected to the diffusion (diode).

What Is the Process Antenna Effect (PAE)?

If the voltage potential across the gate oxide becomes large enough to cause current to flow across the gate oxide, from the process antennas to the gates to which the process antennas are electrically connected, the current can damage the gate oxide. The process antenna effect (PAE) is the term used to describe the build-up of charge and increase in voltage potential. The larger the total gate area that is electrically connected to the process antennas on a specific layer, the more charge the connected gates can withstand.

In the imaginary chip in Figure C-1 on page 371, if the current were to flow, the following would happen, as a result of the node-gate connections:

- The charge collected by process antennas on nodes $N_{1,1}, N_{1,2}$, and $N_{2,1}$ would be discharged through one or more of gates G_{1}, G_{2}, and G_{3}.
- The charge collected by process antennas on nodes $N_{1,3}$ and $N_{2,2}$ would be discharged through gate G_{4}.
- The charge collected by process antennas on node $N_{1,4}$ and $N_{2,3}$ would be discharged through the diode.

LEF/DEF 5.7 Language Reference

Calculating and Fixing Process Antenna Violations

What Is the Antenna Ratio?

Because the total gate area that is electrically connected to a node (and therefore connected to the process antennas) determines the amount of charge from the process antennas the electrically connected gates can withstand, and because the size of the process antennas connected to the node determines how much charge the antennas collect, it is useful to calculate the ratio of the size of the process antennas on a node to the size of the gate area that is electrically connected to the node. This is the antenna ratio. The greater the antenna ratio, the greater the potential for damage to the gate oxide.

If you check a chip and obtain an antenna ratio greater than the threshold specified by the foundry, gate damage is likely to occur.

Figure C-2 on page 373 shows the same section of the imaginary chip as the previous figure. The shaded areas in this figure represent the process antennas on node $N_{2,1}$ and the gates to which they connect: gates $\mathrm{G}_{1}, \mathrm{G}_{2}$, and G_{3}. The shaded gates discharge the electricity collected by the process antennas on node $\mathrm{N}_{2,1}$.

Figure C-2

What Can Be Done to Improve the Antenna Ratio?

If there is an alternate path for the current to flow, the charge on the node can be discharged through the alternate path before the voltage potential reaches a level that damages the gate. For example, a Zener diode, which allows current to flow in the reverse direction when the reverse bias reaches a specified breakdown voltage, provides an alternate path, and helps avoid building up so much charge at the node that the charge is discharged through the gate

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations
oxide. Diffusion features that form the output of a logic gate (source and drain of transistors) can provide such an alternate discharge path.

Routers typically use two methods to decrease the antenna ratio:

- Changing the routing by breaking the metal layers into smaller pieces
- Inserting antenna diode cells to discharge the current

Both of these methods supply alternate paths for the current. For details about how to specify antenna diode cells, see "Using Antenna Diode Cells" on page 403.

Using Process Antenna Keywords in the LEF and DEF Files

You tell the router the values to use for the gate, diffusion, and metal areas by setting values for process antenna keywords in the LEF and DEF files for your design. You also tell the router the values to use for the threshold process antenna ratios by setting the keywords.

The following table lists LEF version 5.5 antenna keywords.

If the keyword ends with ...	It refers to ...
area	Area of the gates or diffusion
	Measured in square microns
factor	Area multiplier used for the metal nodes

Examples

ANTENNADIFFAREA ANTENNAGATEAREA

ANTENNAAREAFACTOR ANTENNASIDEAREAFACTOR

Note: Use DIFFUSEONLY if you want the multiplier to apply only when connecting to diffusion. For more information, see "Using DiffUseOnly" on page 404.

LEF/DEF 5.7 Language Reference
Calculating and Fixing Process Antenna Violations

If the keyword ends with ...
 ```ratio```
 It refers to ...
 Relationship the router is calculating
 Cum is used in keywords for cumulative antenna ratio.
 Calculating Antenna Ratios

Examples

ANTENNAAREARATIO
ANTENNASIDEAREARATIO
ANTENNADIFFAREARATIO
ANTENNADIFFSIDEAREARATIO
ANTENNACUMAREARATIO
ANTENNACUMSIDEAREARATIO
ANTENNACUMDIFFAREARATIO
ANTENNACUMDIFFSIDEAREARATIO

Tools should calculate antenna ratios using one of the following models:

- The partial checking model

Using this model, you calculate damage to gates by process antennas on one layer. For example, if you use the partial checking model to calculate the PAE referred to a gate from metal3, you do not consider any potential damages referred to that gate from metallization steps on metal1 or metal2.

You use this model to calculate a partial antenna ratio (PAR). A PAR tells you if any single metallization step is likely to inflict damage to a gate.

■ The cumulative checking model
This model is more conservative than the partial checking model. It adds damage to a gate caused by the PAE referred to the gate from each metallization step, starting from metal1 up to the layer that is being checked. For example, if you use the cumulative checking model to calculate the PAE referred to a gate from metal3, you add the PAR from the relevant antenna areas on metal1, metal2, and metal3.

You use this model to calculate a cumulative antenna ratio (CAR). A CAR adds the damages on successive layers together to accumulate them as the layers are built up.

Calculating the Antenna Area

The area used to model the charge-collecting ability of a node is called the antenna area. The router calculates the antenna area for one of the following areas:

- The drawn area (the top surface area of the metal shape)

LEF/DEF 5.7 Language Reference

 Calculating and Fixing Process Antenna Violations- The side area (the area of the sides of the metal shape)

The height of each side is taken from the thickness statement for that layer.
Figure C-3 on page 376 shows drawn and side areas.

Figure C-3

Drawn area

Side area

Antenna Area Factor

You can increase or decrease the calculated antenna area by specifying an antenna area factor in the LEF file.

- Use ANTENNAAREAFACTOR to adjust the calculation of the drawn area.
- Use ANTENNASIDEAREAFACTOR to adjust the calculation of the side area.

The default value of both factors is 1 .
The final ratio check can be scaled (that is, made more or less pessimistic) by using the ANTENNAAREAFACTOR or ANTENNASIDEAREAFACTOR values that are used to multiply the final PAR and CAR values.

Note: The LEF and DEF ANTENNA values are always unscaled values; only the final ratiocheck is affected by the scale factors.

Calculating a PAR

The general $\operatorname{PAR}\left(m_{1}\right)$ equation for a single layer is calculated as:

The existing ANTENNAAREAFACTOR statement is shown as metalFactor for the metal area. It has no effect on the diff_area, gate_area, or cut_area shown. Likewise, the ANTENNAAREADIFFREDUCEPWL statement is shown as diffMetalReduceFactor, the

LEF/DEF 5.7 Language Reference

 Calculating and Fixing Process Antenna ViolationsANTENNAAREAMINUSDIFF statement is shown as minusDifffactor, and the ANTENNAGATEPLUSDIFF statement is shown as plusDi ffFactor. For cut layer, the ratio equation illustrates the effect of an ANTENNAAREAFACTOR cutFactor statement as metalfactor. If there is no preceding ANTENNAAREAFACTOR statement, the metalfactor value defaults to 1.0 .

For single layer rules, the PAR value is compared to ANTENNA [SIDE] AREARATIO and/or ANTENNADIFF [SIDE] AREARATIO, as appropriate. For cumulative layer rules, the CAR values is compared to ANTENNACUM [SIDE] AREARATIO and/or ANTENNACUMDIFF [SIDE] AREARATIO, as appropriate.

The following example uses a simplified formula to calculate a PAR, without including the various area factors:

$$
\operatorname{PAR}\left(N_{i, j}, G_{k}\right)=\frac{\operatorname{Area}\left(N_{i, j}\right)}{G_{k} \in C\left(N_{i, j}\right)} \quad \sum_{G_{k}} \quad \operatorname{Area}\left(G_{k}\right)
$$

$\operatorname{PAR}\left(N_{i, j}, G_{k}\right)$ is the partial antenna ratio for node j on metal ${ }_{i}$ with respect to gate G_{k}, where G_{k} is electrically connected to node $\mathrm{N}_{\mathrm{i}, j}$ by layer i or below.

Area $\left(N_{i, j}\right)$ is the drawn or side area of node $N_{i, j}$.
$C\left(N_{i, j}\right)$ is the set of gates G_{k} that are electrically connected to $N_{i, j}$ through the layers below metal ${ }_{i}$.

Area $\left(G_{k}\right)$ is the drawn or side area of gate G_{k}. (The reason to include the G_{k} parameter for PAR is to maintain uniformity with the notation for CAR.)

Note: For a specified node $N_{i, j}$, the $\operatorname{PAR}\left(N_{i, j}, G_{k}\right)$ for all gates G_{k} that are connected to the node $N_{i, j}$ using metal ${ }_{i}$ or below are identical.

Calculations for PAR on the First Metal Layer

Figure C-4 on page 378 shows a section of an imaginary chip after the first metal layer is processed.

Figure C-4

The shaded areas in the figure represent the wire segment and the gates whose areas you must compute to evaluate the formula below.

To calculate $\operatorname{PAR}\left(N_{i, j}, G_{k}\right)$ for node $N_{1,1}$, a node on the first metal layer, with respect to gate G_{1}, use the following formula:

$$
\operatorname{PAR}\left(\mathrm{N}_{1,1}, \mathrm{G}_{1}\right)=\frac{\operatorname{Area}\left(\mathrm{N}_{1,1}\right)}{\operatorname{Area}\left(\mathrm{G}_{1}\right)+\operatorname{Area}\left(\mathrm{G}_{2}\right)}
$$

Because gates G_{1} and G_{2} both connect to node $N_{1,1}$, the following statement is true:

```
PAR (N
```

To calculate PAR for node $N_{1,2}$, another node on the first metal layer, with respect to gate G_{3}, use the following formula:

$$
\operatorname{PAR}\left(\mathrm{N}_{1,2}, \mathrm{G}_{3}\right)=\frac{\operatorname{Area}\left(\mathrm{N}_{1,2}\right)}{\operatorname{Area}\left(\mathrm{G}_{3}\right)}
$$

To calculate $\operatorname{PAR}\left(N_{i, j}, G_{k}\right)$ for node $N_{1,3}$, another node on the first metal layer, with respect to gate G_{4}, use the following formula:

$$
\operatorname{PAR}\left(\mathrm{N}_{1,3}, \mathrm{G}_{4}\right)=\frac{\operatorname{Area}\left(\mathrm{N}_{1,3}\right)}{\operatorname{Area}\left(\mathrm{G}_{4}\right)}
$$

Calculations for PAR on the Second Metal Layer

Figure C-5 on page 379 shows the chip after the second metal layer is processed.

LEF/DEF 5.7 Language Reference

Calculating and Fixing Process Antenna Violations

Figure C-5

The shaded areas in the figure represent the wire segments and the gates whose areas you must compute to evaluate the formula below.
$N_{2,1}$ consists of two pieces of metal on the second layer that are electrically connected at this step in the fabrication process. Therefore, to calculate $\operatorname{PAR}\left(\mathrm{N}_{2,1}, \mathrm{G}_{1}\right)$, you must add the area of both pieces together.

To calculate $\operatorname{PAR}\left(\mathrm{N}_{\mathrm{i}, j}, \mathrm{G}_{k}\right)$ for node $\mathrm{N}_{2,1}$, a node on the second metal layer, with respect to gate G_{1}, use the following formula:

$$
\operatorname{PAR}\left(\mathrm{N}_{2,1}, \mathrm{G}_{1}\right)=\frac{\operatorname{Area}\left(\mathrm{N}_{2,1}\right)}{\operatorname{Area}\left(\mathrm{G}_{1}\right)+\operatorname{Area}\left(\mathrm{G}_{2}\right)+\operatorname{Area}\left(\mathrm{G}_{3}\right)}
$$

As on the first layer,

Calculations for PAR on the Third Metal Layer

Figure C-6 on page 380 shows the chip after the third metal layer is processed.

Figure C-6

The shaded areas in the figure represent the wire segment and the gates whose areas you must compute to evaluate the formula below.

To calculate $\operatorname{PAR}\left(N_{i, j}, G_{k}\right)$ for node $N_{3,1}$, a node on the third metal layer, with respect to gate G_{1}, use the following formula:

$$
\operatorname{PAR}\left(N_{3,1}, G_{1}\right)=\frac{\operatorname{Area}\left(N_{3,1}\right)}{\operatorname{Area}\left(G_{1}\right)+\operatorname{Area}\left(G_{2}\right)+\operatorname{Area}\left(G_{3}\right)+\operatorname{Area}\left(G_{4}\right)}
$$

As on the prior layers,

```
PAR}(\mp@subsup{N}{3,1}{},\mp@subsup{G}{1}{})=\operatorname{PAR}(\mp@subsup{N}{3}{},1,\mp@subsup{G}{2}{})=\operatorname{PAR}(\mp@subsup{N}{3}{},1,\mp@subsup{G}{3}{})=\operatorname{PAR}(\mp@subsup{N}{3}{},1,\mp@subsup{G}{4}{}
```


Calculations for PAR on the Fourth Metal Layer

Figure C-7 on page 381 shows the chip after the fourth metal layer is processed.

Figure C-7

The shaded areas in the figure represent the wire segment and the gates whose areas you must compute to evaluate the formula below.

To calculate $\operatorname{PAR}\left(N_{i}, j, G_{k}\right)$ for the fourth metal layer, use the following formula:

$$
\operatorname{PAR}\left(\mathrm{N}_{4,1}, \mathrm{G}_{1}\right)=\frac{\operatorname{Area}\left(\mathrm{N}_{4,1}\right)}{\operatorname{Area}\left(\mathrm{G}_{1}\right)+\operatorname{Area}\left(\mathrm{G}_{2}\right)+\operatorname{Area}\left(\mathrm{G}_{3}\right)+\operatorname{Area}\left(\mathrm{G}_{4}\right)}
$$

As on the prior layers,
$\operatorname{PAR}\left(N_{4}, 1, G_{1}\right)=\operatorname{PAR}\left(N_{4}, 1, G_{2}\right)=\operatorname{PAR}\left(N_{4}, 1, G_{3}\right)=\operatorname{PAR}\left(N_{4}, 1, G_{4}\right)$
Note: Node $N_{4,1}$ is connected to the diffusion layer through the output diode. After the router calculates the antenna ratio, it compares its calculations to the area of the diffusion, instead of the area of the gates.

Calculating a CAR

To calculate a CAR, the router adds the PARs for all the relevant nodes on the specified or lower metal layers that are electrically connected to a gate. Therefore, CAR ($\mathrm{N}_{i},{ }_{j}, \mathrm{G}_{k}$) designates the cumulative damage to gate G_{k} by metallization steps up to the current level of metal, i.

To create a single accumulative model that combines both metal and cut damage into one model, specify the ANTENNACUMROUTINGPLUSCUT statement for the layer, so that:

LEF/DEF 5.7 Language Reference

Calculating and Fixing Process Antenna Violations

$$
\operatorname{CAR}\left(\mathrm{m}_{\mathrm{i}}\right)=\operatorname{PAR}\left(\mathrm{m}_{\mathrm{i}}\right)+\operatorname{CAR}\left(\mathrm{v}_{\mathrm{i}-1}\right)
$$

This means that the CAR from the cut layer below this metal layer is accumulated, instead of the CAR from the metal layer below this metal layer.

Note: In practice, the router only needs to keep track of the worst-case CAR; however, the CARs for all of the gates shown in Figure C-8 on page 382 are described here.

The router calculates an antenna ratio with respect to a node-gate pair. To find the CAR for the node $N_{i},{ }_{j}$ - gate G_{k} pair, you trace the path of the current between gate G_{k} and node $N_{i},{ }_{j}$ and add the PAR with respect to gate G_{k} for the all nodes in the path between the first metal layer and layer i that you can trace back to G_{k}.

Figure C-8

The path of the current between gate G_{2} and node $\mathrm{N}_{4,1}$ is shaded.

Important

In Figure C-8 on page 382 , node $N_{1,2}$ is not shaded because it was not electrically connected to G_{2} when metal1 was processed. That is, because the charge accumulated on $\mathrm{N}_{1,2}$ when metal1 was processed cannot damage gate G_{1}, the router does not include it in the calculations for $\operatorname{CAR}\left(\mathrm{N}_{2,1}, \mathrm{G}_{1}\right)$.

Another way to explain this is to say that the PAE from node $\mathrm{N}_{1,2}$ with respect to gate G_{2} is 0 .

Calculations for CAR on the First Metal Layer

Figure C-9 on page 383 shows the chip after the first metal layer is processed.
Figure C-9

Diode

In the figure above,
$\operatorname{CAR}\left(\mathrm{N}_{1}, 1, \mathrm{G}_{1}\right)=\operatorname{PAR}\left(\mathrm{N}_{1,1}, \mathrm{G}_{1}\right)$
$\operatorname{CAR}\left(\mathrm{N}_{1,1}, \mathrm{G}_{2}\right)=\operatorname{PAR}\left(\mathrm{N}_{1,1}, \mathrm{G}_{2}\right)$
Because $\operatorname{PAR}\left(N_{1,1}, G_{1}\right)$ equals $\operatorname{PAR}\left(N_{1,1}, G_{2}\right), \operatorname{CAR}\left(N_{1,1}, G_{1}\right)$ equals $\operatorname{CAR}\left(N_{1,1}, G_{2}\right)$.
Note: In general, $\operatorname{CAR}\left(\mathrm{N}_{i}, j^{\prime}, \mathrm{G}_{k}\right)$ equals $\operatorname{CAR}\left(\mathrm{N}_{i}, j^{\prime}, \mathrm{G}_{k}\right.$,) if the two gates G_{k} and G_{k}, are electrically connected to the same node on metal1, the lowest layer that is subject to the process antenna effect.

Calculations for CAR on the Second Metal Layer

Figure C-10 on page 384 shows the chip after the second metal layer is processed.

Figure C-10

Important

In the figure above, $N_{1,2}$ is not included in the calculations for $\operatorname{CAR}\left(N_{2,1}, G_{1}\right)$
because it was not electrically connected to G_{1} when metal1 was processed. That is, because the charge accumulated on $\mathrm{N}_{1,2}$ when metal1 was processed cannot damage gate G_{1}, the router does not include it in the calculations for CAR $\left(\mathrm{N}_{2}, 1, \mathrm{G}_{1}\right)$.

In the figure above,
$\operatorname{CAR}\left(\mathrm{N}_{2,1}, \mathrm{G}_{1}\right)=\operatorname{PAR}\left(\mathrm{N}_{1,1}, \mathrm{G}_{1}\right)+\operatorname{PAR}\left(\mathrm{N}_{2,1}, \mathrm{G}_{1}\right)$
$\operatorname{CAR}\left(\mathrm{N}_{2,1}, \mathrm{G}_{2}\right)=\operatorname{PAR}\left(\mathrm{N}_{1,1}, \mathrm{G}_{2}\right)+\operatorname{PAR}\left(\mathrm{N}_{2,1}, \mathrm{G}_{2}\right)$
Gates G_{1} and G_{2} have the same history with regard to PAE because they are connected to the same piece of metal1, so they have the same CAR for any node on a specified layer:

$$
\operatorname{CAR}\left(\mathrm{N}_{2,1}, \mathrm{G}_{1}\right)=\operatorname{CAR}\left(\mathrm{N}_{2,1}, \mathrm{G}_{2}\right)
$$

Calculations for CAR on the Third Metal Layer

Figure C-11 on page 385 shows the chip after the third metal layer is processed.

Figure C-11

The path of the current between gate G_{1} and node $N_{3,1}$ is shaded.

Gate G_{1}

In the figure above,
$\operatorname{CAR}\left(\mathrm{N}_{3,1}, \mathrm{G}_{1}\right)=\operatorname{PAR}\left(\mathrm{N}_{1}, 1, \mathrm{G}_{1}\right)+\operatorname{PAR}\left(\mathrm{N}_{2,1}, \mathrm{G}_{1}\right)+\operatorname{PAR}\left(\mathrm{N}_{3}, 1, \mathrm{G}_{1}\right)$

Gate G_{2}

In the figure above,
$\operatorname{CAR}\left(N_{3,1}, G_{2}\right)=\operatorname{PAR}\left(N_{1,1}, G_{2}\right)+\operatorname{PAR}\left(N_{2,1}, G_{2}\right)+\operatorname{PAR}\left(N_{3,1}, G_{2}\right)$
$\operatorname{CAR}\left(N_{3,1}, G_{1}\right)$ equals $\operatorname{CAR}\left(N_{3}, 1, G_{2}\right)$ because gates G_{1} and G_{2} are both electrically connected to the same node, $\mathrm{N}_{1,1}$, on metal1 and therefore have the same history with regard to PAE. Therefore, the formula for $\operatorname{CAR}\left(N_{3,2}, G_{2}\right)$ is $\operatorname{CAR}\left(N_{3,1}, G_{1}\right)=\operatorname{CAR}\left(N_{3,1}, G_{2}\right)$

Gates G_{3} and G_{4}

Gates G_{3} and G_{4} are not connected to the same node on metal1 and therefore do not have the same history with regard to PAE. Therefore, the $\operatorname{CAR}\left(N_{3,1}, G_{3}\right)$ and $\operatorname{CAR}\left(N_{3,1}, G_{4}\right)$ do not necessarily equal $\operatorname{CAR}\left(\mathrm{N}_{3}, 1, \mathrm{G}_{1}\right)$ or $\operatorname{CAR}\left(\mathrm{N}_{3}, 1, \mathrm{G}_{2}\right)$.

In Figure C-12 on page 386, the relevant areas for calculating CAR for gate G_{3} are shaded.

Figure C-12

In the figure above,
$\operatorname{CAR}\left(N_{3,1}, G_{3}\right)=\operatorname{PAR}\left(N_{1,2}, G_{3}\right)+\operatorname{PAR}\left(N_{2,1}, G_{3}\right)+\operatorname{PAR}\left(N_{3,1}, G_{3}\right)$
In Figure C-13 on page 386, the relevant areas for calculating CAR for gate G_{4} are shaded.
Figure C-13

In the figure above,

$$
\operatorname{CAR}\left(N_{3,1}, G_{4}\right)=\operatorname{PAR}\left(N_{1}, 3, G_{4}\right)+\operatorname{PAR}\left(N_{2,2}, G_{4}\right)+\operatorname{PAR}\left(N_{3,1}, G_{4}\right)
$$

Calculations for CAR on the Fourth Metal Layer

The following figure shows the chip after the fourth metal layer is processed.
Note: Node $^{N_{4,1}}$ is connected to the diffusion layer through the output diode. After the router calculates the antenna ratio, it compares its calculations to the area of the diffusion, instead of the area of the gates.

Gates G_{1} and G_{2}

In Figure C-14 on page 387, the relevant areas for calculating $\operatorname{CAR}\left(\mathrm{N}_{4,1}, \mathrm{G}_{1}\right)$ and $\operatorname{CAR}\left(\mathrm{N}_{4,1}, \mathrm{G}_{2}\right)$ are shaded.

Figure C-14

In the figure above,

```
CAR ( N
```



```
CAR ( N
```


Gate G_{3}

In Figure C -15 on page 388, the relevant areas for calculating $\operatorname{CAR}\left(\mathrm{N}_{4,1}, \mathrm{G}_{3}\right)$ are shaded.
Figure C-15

In the figure above,
$\operatorname{CAR}\left(\mathrm{N}_{4,1}, \mathrm{G}_{3}\right)=\operatorname{PAR}\left(\mathrm{N}_{1}, 2, \mathrm{G}_{3}\right)+\operatorname{PAR}\left(\mathrm{N}_{2,1}, \mathrm{G}_{3}\right)$
$+\operatorname{PAR}\left(\mathrm{N}_{3,1}, \mathrm{G}_{3}\right)+\operatorname{PAR}\left(\mathrm{N}_{4,1}, \mathrm{G}_{3}\right)$
$\operatorname{CAR}\left(N_{4,1}, G_{3}\right)$ does not equal $\operatorname{CAR}\left(N_{4,1}, G_{1}\right) \operatorname{or} \operatorname{CAR}\left(N_{4,1}, G_{2}\right)$ because it is not connected to the same node on metal1.

Gate G_{4}

In Figure C-16 on page 389, the relevant areas for calculating $\operatorname{CAR}\left(\mathrm{N}_{4}, 1, \mathrm{G}_{4}\right)$ are shaded.

Figure C-16

In the figure above,

```
\(\operatorname{CAR}\left(\mathrm{N}_{4}, 1, \mathrm{G}_{4}\right)=\operatorname{PAR}\left(\mathrm{N}_{1}, 3, \mathrm{G}_{4}\right)+\operatorname{PAR}\left(\mathrm{N}_{2,2}, \mathrm{G}_{4}\right)\)
    \(+\operatorname{PAR}\left(\mathrm{N}_{3}, 1, \mathrm{G}_{4}\right)+\operatorname{PAR}\left(\mathrm{N}_{4}, 1, \mathrm{G}_{4}\right)\)
```

$\operatorname{CAR}\left(N_{4,1}, G_{4}\right)$ does not equal $\operatorname{CAR}\left(N_{4}, 1, G_{1}\right), \operatorname{CAR}\left(N_{4}, 1, G_{2}\right)$, or $\operatorname{CAR}\left(N_{4}, 1, G_{3}\right)$ because it is not connected to the same node on metal1.

Calculating Ratios for a Cut Layer

The router calculates damage from a cut layer separately from damage from a metal layer.
Calculations for the cut layers do not use side area modelling.

Calculating a PAR on a Cut Layer

The general $\operatorname{PAR}\left(\mathrm{c}_{\mathrm{i}}\right)$ equation for a single layer is calculated as:
$\operatorname{PAR}\left(\mathrm{c}_{\mathrm{i}}\right)=(($ cutFactor x cut_area) x diffAreaReduceFactor $)-($ minusDiffFactor x diff_area $)$
gate_area + (plusDiffFactor x diff_area)

The existing ANTENNAAREAFACTOR statement is shown as cutFactor for the metal area. Likewise, the ANTENNAAREADIFFREDUCEPWL statement is shown as diffAreaReduceFactor, the ANTENNAAREAMINUSDIFF statement is shown as
minusDiffFactor, and the ANTENNAGATEPLUSDIFF statement is shown as plusDifffactor. For cut layer, the ratio equation illustrates the effect of an ANTENNAAREAFACTOR cutFactor statement as metal Factor. If there is no preceding ANTENNAAREAFACTOR statement, the metalFactor value defaults to 1.0 .

In the figures and text that follow,

- $\mathrm{Ci} j$ is the cut layer between metal ${ }_{i}$ and metal ${ }_{j}$.
- $\mathrm{N}_{\mathrm{C} i j, k}$ specifies an electrically connected node on Cij .
- The nodes are numbered sequentially, from left to right.

Figure C-17 on page 390 shows the chip after the c12 process step.
Figure C-17

In the figure above,

$$
\operatorname{PAR}\left(\mathrm{N}_{\mathrm{C} 12,1}, \mathrm{G}_{1}\right)=\frac{\operatorname{Area}\left(\mathrm{N}_{\mathrm{C} 12,1}\right)}{\operatorname{Area}\left(\mathrm{G}_{1}\right)+\operatorname{Area}\left(\mathrm{G}_{2}\right)}
$$

As in calculations on the metal layers,
$\operatorname{PAR}\left(\mathrm{N}_{\mathrm{C} 12,1}, \mathrm{G}_{1}\right)=\operatorname{PAR}\left(\mathrm{N}_{\mathrm{C} 12,1}, \mathrm{G}_{2}\right)$

Calculating a CAR on a Cut Layer

As explained in "Calculating Antenna Ratios":

$$
\operatorname{CAR}\left(\mathrm{c}_{\mathrm{i}}\right)=\operatorname{PAR}\left(\mathrm{c}_{\mathrm{i}}\right)+\operatorname{CAR}\left(\mathrm{c}_{\mathrm{i}-1}\right)
$$

To create a single accumulative model that combines both metal and cut damage into one model, specify the ANTENNACUMROUTINGPLUSCUT statement for the layer, so that:

$$
\operatorname{CAR}\left(\mathrm{c}_{\mathrm{i}}\right)=\operatorname{PAR}\left(\mathrm{c}_{\mathrm{i}}\right)+\operatorname{CAR}\left(\mathrm{m}_{\mathrm{i}-1}\right)
$$

This means that the CAR from the metal layer below this cut layer is accumulated, instead of the CAR from the cut layer below this cut layer.

Figure C-18 on page 391 shows the chip after the C23 process step.
Figure C-18

The router calculates the CAR with respect to gate G_{3} after the cut C23 process step as follows:

$$
\operatorname{CAR}\left(\mathrm{N}_{\mathrm{C} 23,1}, \mathrm{G}_{3}\right)=\frac{\operatorname{Area}\left(\mathrm{N}_{\mathrm{C} 12,2}\right)}{\operatorname{Area}\left(\mathrm{G}_{3}\right)}+\frac{\operatorname{Area}\left(\mathrm{N}_{\mathrm{C} 23,1}\right)}{\operatorname{Area}\left(\mathrm{G}_{1}\right)+\operatorname{Area}\left(\mathrm{G}_{2}\right)+\operatorname{Area}\left(\mathrm{G}_{3}\right)}
$$

Figure C-19 on page 392 shows the chip after the C34 process step.

Figure C-19

The router calculates the CAR with respect to gate G_{3} after the cut C34 process step as follows:

$$
\begin{aligned}
& \operatorname{CAR}\left(\mathrm{N}_{\mathrm{C} 34,1}, \mathrm{G}_{3}\right)= \\
& \frac{\operatorname{Area}\left(\mathrm{N}_{\mathrm{C} 12,2}\right)}{\operatorname{Area}\left(\mathrm{G}_{3}\right)}+\frac{\operatorname{Area}\left(\mathrm{N}_{\mathrm{C} 23,1}\right)}{\operatorname{Area}\left(\mathrm{G}_{1}\right)+\operatorname{Area}\left(\mathrm{G}_{2}\right)+\operatorname{Area}\left(\mathrm{G}_{3}\right)}+\frac{\operatorname{Area}\left(\mathrm{N}_{\mathrm{C} 34,1}\right)}{\operatorname{Area}\left(\mathrm{G}_{1}\right)+\operatorname{Area}\left(\mathrm{G}_{2}\right)+\operatorname{Area}\left(\mathrm{G}_{3}\right)+\operatorname{Area}\left(\mathrm{G}_{4}\right)}
\end{aligned}
$$

Checking for Antenna Violations

For each metal layer, the router performs several antenna checks, using the keywords and values specified in the LEF or DEF file. The router can perform the following four types of antenna checks, depending on the keywords you set in the LEF file:

- Area Ratio Check

- Side Area Ratio Check
- Cumulative Area Ratio Check
- Cumulative Side Area Ratio Check

LEF/DEF 5.7 Language Reference

 Calculating and Fixing Process Antenna Violations
Area Ratio Check

The area ratio check compares the PAR for each layer to the value of the ANTENNAAREARATIO or ANTENNADIFFAREARATIO.

The router calculates the PAR as follows:

$$
\operatorname{PAR}\left(\mathrm{N}_{i}, j, \mathrm{G}_{k}\right)=\frac{\text { Drawn area of } \mathrm{N}_{i, j}}{\Sigma \text { Area of gates connected below } \mathrm{N}_{i, j}}
$$

According to the formula above, the area ratio check finds the PAR for node $N_{i, j}$ with respect to gate G_{k} by dividing the drawn area of the node by the area of the gates that are electrically connected to it. The final PAR is multiplied by the ANTENNAAREAFACTOR (the default value for the factor is 1) and compared to the ANTENNAAREARATIO or ANTENNADIFFAREARATIO. If the PAR is greater than the ANTENNAAREARATIO or ANTENNADIFFAREARATIO specified in the LEF file, the router finds a process antenna violation and attempts to fix it.

The link between $\operatorname{PAR}\left(N_{i}, j, G_{k}\right)$ and a PAE violation at node $N_{i, j}$ depends on whether node $N_{i, j}$ is connected to a piece of diffusion, as follows:

- If there is no connection from node $N_{i, j}$ to a diffusion area through the current and lower layers, a violation occurs when the PAR is greater than the ANTENNAAREARATIO.
- If there is a connection from node $N_{i, j}$ to a diffusion area through current and lower layers, a violation occurs when the PAR is greater than the ANTENNADIFFAREARATIO.
- If there is a connection from node $N_{i, j}$ to a diffusion area through current and lower layers, and ANTENNADIFFAREA is not specified for an output or inout pin, the value is 0 .

Side Area Ratio Check

The side area ratio check compares the PAR computed based on the side area of the nodes for each layer to the value of the ANTENNASIDEAREARATIO or
ANTENNADIFFSIDEAREARATIO.
The router calculates the PAR as follows:

$$
\operatorname{PAR}\left(\mathrm{N}_{i, j} \mathrm{G}_{k}\right)=\frac{\text { Side area of } \mathrm{N}_{i, j}}{\Sigma \text { Area of gates connected below } \mathrm{N}_{i, j}}
$$

According to the formula above, the area ratio check finds the PAR for node $N_{i, j}$ with respect to gate G_{k} by dividing the side area of the node by the area of the gates that are electrically

LEF/DEF 5.7 Language Reference

Calculating and Fixing Process Antenna Violations
connected to $N_{i, j}$. The final PAR is multiplied by the ANTENNASIDEAREAFACTOR (the default value for the factor is 1) and compared to the ANTENNASIDEAREARATIO or ANTENNADIFFSIDEAREARATIO. If the PAR is greater than the ANTENNASIDEAREARATIO or ANTENNADIFFSIDEAREARATIO specified in the LEF file, the router finds a process antenna violation and attempts to fix it.

The link between $\operatorname{PAR}\left(N_{i, j}, G_{k}\right)$ and a PAE violation at node $N_{i, j}$ depends on whether node $N_{i, j}$ is connected to a piece of diffusion, as follows:

- If there is no connection to the diffusion area through the current and lower layers, a violation occurs when the PAR is greater than the ANTENNASIDEAREARATIO.
- If there is a connection to the diffusion area through current and lower layers, a violation occurs when the PAR is greater than the ANTENNADIFFSIDEAREARATIO.
- If there is a connection to the diffusion area through current and lower layers, and ANTENNADIFFAREA is not specified for an output or inout pin, the value is 0 .

Cumulative Area Ratio Check

The cumulative area ratio check compares the CAR to the value of ANTENNACUMAREARATIO or ANTENNACUMDIFFAREARATIO. The CAR is equal to the sum of the PARs of all nodes on the same or lower layers that are electrically connected to the gate.

Note: When you use CARs, you can ignore metal layers by not specifying the CAR keywords for those layers. For example, if you want to check metal1 using a PAR and the remaining metal layers using a CAR, you can define ANTENNAAREARATIO or ANTENNASIDEAREARATIO for metal1, and ANTENNACUMAREARATIO or ANTENNACUMSIDEAREARATIO for the remaining metal layers.

The cumulative area ratio check finds the CAR for node $N_{i, j}$ with respect to gate G_{k} by adding the PARs for all layers of metal, from the current layer down to metal1, for all nodes that are electrically connected G_{k}. The final CAR is multiplied by the ANTENNAAREAFACTOR (the default value for the factor is 1) and compared to the ANTENNACUMAREARATIO or ANTENNACUMDIFFAREARATIO. If the CAR is greater than the ANTENNACUMAREARATIO or ANTENNACUMDIFFAREARATIO specified in the LEF file, the router finds a process antenna violation and attempts to fix it.

The link between CAR ($N_{i, j}, G_{k}$) and a PAE violation at node $N_{i, j}$ depends on whether node $N_{i, j}$ is connected to a piece of diffusion, as follows:

- If there is no connection to a diffusion area through the current and lower layers, a violation occurs when the CAR is greater than the ANTENNACUMAREARATIO.
- If there is a connection to a diffusion area through current and lower layers, a violation occurs when the CAR is greater than the ANTENNACUMDIFFAREARATIO.
- If there is a connection to a diffusion area through current and lower layers, and ANTENNADIFFAREA is not specified for an output or inout pin, the value is 0 .

Cumulative Side Area Ratio Check

The cumulative side area ratio check compares the CAR to the value of the ANTENNACUMSIDEAREARATIO or ANTENNACUMDIFFAREARATIO.

Note: When you use CARs, you can ignore metal layers by not specifying the CAR keywords for those layers. For example, if you want to check metal1 using a PAR and the remaining metal layers using a CAR, you can define ANTENNAAREARATIO or ANTENNASIDEAREARATIO for metal1, and ANTENNACUMAREARATIO or ANTENNACUMSIDEAREARATIO for the remaining metal layers.

The cumulative side area ratio check finds the CAR for node $\mathrm{N}_{\mathrm{i}, j}$ with respect to gate G_{k} by adding the PARs for all layers of metal, from the current layer down to metal1, for all nodes that are electrically connected G_{k}. The final CAR is multiplied by the ANTENNASIDEAREAFACTOR (the default value for the factor is 1) and compared to the ANTENNACUMSIDEAREARATIO or ANTENNACUMDIFFAREARATIO. If the CAR is greater than the ANTENNACUMSIDEAREARATIO or ANTENNACUMDIFFAREARATIO specified in the LEF file, the router finds a process antenna violation and attempts to fix it.

- If there is no connection to a diffusion area through the current and lower layers, a violation occurs when the CAR is greater than the ANTENNACUMSIDEAREARATIO.
- If there is a connection to a diffusion area through current and lower layers, a violation occurs when the CAR is greater than the ANTENNACUMSIDEAREARATIO.
- If there is a connection to a diffusion area through current and lower layers, and ANTENNACUMDIFFAREA is not specified for an output or inout pin, the value is 0 .

Cut Layer Process Antenna Model Examples

- Example 1

To create the following process antenna rule for a cut layer via 1:

$$
\text { cut_area } /(\text { gate_area }+2.0 \times \text { diff_area })<=10
$$

Cut layers should include the following information:
ANTENNAGATEPLUSDIFF 2.0 ;
ANTENNADIFFAREARATIO 10 ;

LEF/DEF 5.7 Language Reference

 Calculating and Fixing Process Antenna Violations
- Example 2

Assume the following process antenna rule:
cut_area x PWL(diff_area) / gate_area $<=10$
This rule uses a cumulative model with diffusion area reduction function, where:

- \quad PAR $=$ (cut_area x diffReduceFactor) $/$ gate_area $<=10$
- diffReduceFactor $=1.0$ for diff_area $<0.1 \mu \mathrm{~m}^{2}$
- diffReduceFactor $=0.2$ for diff_area $>=0.1 \mu \mathrm{~m}^{2}$

Cut layers should include the following information:

```
ANTENNAAREADIFFREDUCEPWL ( ( 0.0 1.0 ) ( 0.0999 1.0 ) ( 0.1 0.2 )
    ( 1000.0 0.2 ) ) ;
ANTENNACUMDIFFAREARATIO 10;
```

For examples of models that use the ANTENNACUMROUTINGPLUSCUT and the ANTENNAAREAMINUSDIFF rules, see the examples below in "Routing Layer Process Antenna Models."

Routing Layer Process Antenna Model Examples

The following process antenna rule examples use the topology shown in Figure C-20 on page 396. In this figure, there are two polysilicon gates (G1, G2), one diffusion connection (D1), contacts (C), and via ($V 1, V 2$) and metal (M1, M2, M3) shapes. Note that M1,2 is one LEF PIN, and M1,3 is a different LEF PIN. The other metal is routing.

Figure C-20

The following area values are also used for the examples:
G1 $=1.0$
$\mathrm{D} 1=0.5$
$M 2,1=4.0$
$\mathrm{G} 2=2.0$
$\mathrm{M} 1,1=1.0$
$\mathrm{M} 2,2=5.0$
All Cs $=0.1$
M1,2 $=2.0$
$\mathrm{M} 3,1=6.0$
All Vs $=0.1$
$M 1,3=3.0$
$M 3,2=9.0$

Example 1

The following process antenna rule combines cut area and metal area into one cumulative rule:

$$
\text { ratio }=\left(\text { metal } _ \text {area }+10 x \text { cut } _ \text {area }\right) / \text { gate } _ \text {area }
$$

- The cumulative ratio $<=1000$ for diffusion <0.1, and $<=4000$ for diffusion $>=0.1$
- The single layer ratio $<=500$ for diffusion <0.1, and $<=1500$ for diffusion $>=0.1$

Every routing layer should include the following information:

```
ANTENNACUMROUTINGPLUSCUT ;
ANTENNACUMDIFFAREARATIO ( ( 0.0 1000) (0.0999 1000) (0.1 4000)
    ( 1000.0 4000 ) ) ;
ANTENNADIFFAREARATIO ( ( 0.0 5000) (0.0999 500 ) (0.1 1500)
    (1000.0 1500 ) ) ;
```

Every cut layer should include the following information:

```
ANTENNAAREAFACTOR 10 ; #10.0 x cut area
ANTENNACUMROUTINGPLUSCUT ;
ANTENNACUMDIFFAREARATIO ( ( 0.0 1000) (0.0999 1000) (0.1 4000)
    ( 1000.0 4000 ) ) ;
ANTENNADIFFAREARATIO ( ( 0.0 5000 ) ( 0.0999 500 ) ( 0.1 1500)
    ( 1000.0 1500 ) ) ;
```

Note: ANTENNAAREARATIO and ANTENNACUMAREARATIO are not required because the *DIFFAREARATIO statements are checked, even if diff_area is equal to 0.

For gate G1, the PARs and CARs are computed as follows:

1. $\operatorname{CAR}(\mathrm{C}, \mathrm{G} 1)=10 \mathrm{x}$ area $(\mathrm{C} 1) / \operatorname{area}(\mathrm{G} 1)=10 \times 0.1 / 1.0=1.0$

The polysilicon and contact cut layer and shapes are not normally visible in LEF and DEF. If the contact cut area should be included, its CAR value should be included with LEF PIN A, using appropriate ANTENNA statements. The M1 PIN area should not be
included because M1 area is a PIN shape in the LEF and will be added in by tools reading LEF. Therefore, there should be two antenna statements for LEF PIN A, either:
ANTENNAGATEAREA 1.0 LAYER M1 ;
ANTENNAMAXCUTCAR 1.0 LAYER C ;
or:
ANTENNAGATEAREA 1.0 LAYER M1 ;
ANTENNAMAXAREACAR 1.0 LAYER M1 ;
Because the M1 PIN area is not included in the MAXAREACAR value, both of sets of statements give the same results. For more details, see "Calculations for Hierarchical Designs."

Similarly, the LEF PIN B should have values, such as either:

```
ANTENNAGATEAREA 2.0 LAYER M1 ;
ANTENNADIFFAREA 0.5 LAYER M1 ;
ANTENNAMAXCUTCAR 1.0 LAYER C ; #only C2 affects G2; C3 does not
or:
ANTENNAGATEAREA 2.0 LAYER M1 ;
ANTENNADIFFAREA 0.5 LAYER M1 ;
ANTENNAMAXAREACAR 1.0 LAYER M1 ; #only C2 affects G2; C3 does not
```

2. $\operatorname{PAR}(\mathrm{M} 1, \mathrm{G} 1)=\operatorname{area}(\mathrm{M} 1,2) / \operatorname{area}(\mathrm{G} 1)=2 / 1=2.0$
3. $\operatorname{CAR}(\mathrm{M} 1, \mathrm{G} 1)=\operatorname{PAR}(\mathrm{M} 1, \mathrm{G} 1)+\mathrm{PIN}$ A's CAR(C,G1)

PIN A's CAR(C,G1) $=$ ANTENNAMAXCUTCAR for LAYER $C=1.0$
$=2.0+1.0=3.0$
4. diode_area $=0$, single-layer $\operatorname{PWL}(0)=500$, check $\operatorname{PAR}(\mathrm{M} 1, \mathrm{G} 1)=2.0<=500$, cum-layer $\operatorname{PWL}(0)=1000$, therefore check CAR(M1,G1) $=3.0<=1000$
5. $\operatorname{PAR}(\mathrm{V} 1, \mathrm{G} 1)=10 \mathrm{x}$ area $(\mathrm{V} 1,2+\mathrm{V} 1,3) / \operatorname{area}(\mathrm{G} 1)=10 \times 0.2 /(1)=2.0$
6. $\operatorname{CAR}(\mathrm{V} 1, \mathrm{G} 1)=\operatorname{PAR}(\mathrm{V} 1, \mathrm{G} 1)+\mathrm{CAR}(\mathrm{M} 1, \mathrm{G} 1)=2.0+3.0=5.0$
7. diode_area $=0$, single-layer $\operatorname{PWL}(0)=500$, check $\operatorname{PAR}(\mathrm{V} 1, \mathrm{G} 1)=2.0<=500$, cum_layer $\operatorname{PWL}(0)=1000$, therefore check CAR $($ V1,G1 $)=5.0<=1000$
8. $\operatorname{PAR}(\mathrm{M} 2, \mathrm{G} 1)=\operatorname{area}(\mathrm{M} 2,1+\mathrm{M} 2,2) / \operatorname{area}(\mathrm{G} 1+\mathrm{G} 2)=(4+5) /(1+2)=3.0$
9. $\operatorname{CAR}(\mathrm{M} 2, \mathrm{G} 1)=\operatorname{PAR}(\mathrm{M} 2, \mathrm{G} 1)+\mathrm{CAR}(\mathrm{V} 1, \mathrm{G} 1)=3.0+5.0=8.0$
10. diode_area $=0.5$, single-layer $\operatorname{PWL}(0.5)=1500$, check $\operatorname{PAR}(\mathrm{M} 2, \mathrm{G} 1)=3.0<=1500$, cum_layer $\operatorname{PWL}(0.5)=4000$, therefore check $\operatorname{CAR}(\mathrm{M} 2, \mathrm{G} 1)=8.0<=4000$
11. $\operatorname{PAR}(\mathrm{V} 2, \mathrm{G} 1)=10 \mathrm{x} \operatorname{area}(\mathrm{V} 2,1+\mathrm{V} 2,2) / \operatorname{area}(\mathrm{G} 1+\mathrm{G} 2)=10 \times 0.2 /(1+2)=0.67$
12. $\operatorname{CAR}(\mathrm{V} 2, \mathrm{G} 1)=\operatorname{PAR}(\mathrm{V} 2, \mathrm{G} 1)+\mathrm{CAR}(\mathrm{M} 2, \mathrm{G} 1)=0.67+8.0=8.67$
13. diode_area $=0.5$, single-layer $\operatorname{PWL}(0.5)=1500$, check $\operatorname{PAR}(\mathrm{V} 2, \mathrm{G} 1)=0.67<=1500$, cum_layer PWL $(0.5)=4000$, therefore check CAR $(V 2, G 1)=8.67<=4000$
14. $\operatorname{PAR}(\mathrm{M} 3, \mathrm{G} 1)=\operatorname{area}(\mathrm{M} 3,1+\mathrm{M} 3,2) / \operatorname{area}(\mathrm{G} 1+\mathrm{G} 2)=(6+9) /(1+2)=5$
15. $\operatorname{CAR}(\mathrm{M} 3, \mathrm{G} 1)=\operatorname{PAR}(\mathrm{M} 3, \mathrm{G} 1)+\mathrm{CAR}(\mathrm{V} 2, \mathrm{G} 1)=5+8.67=12.34$
16. diode_area $=0.5$, single-layer $\operatorname{PWL}(0.5)=1500$, check $\operatorname{PAR}(\mathrm{M} 3, \mathrm{G} 1)=5<=1500$, cum_layer $\operatorname{PWL}(0.5)=4000$, therefore check $\operatorname{CAR}($ M3,G1 $)=13.67<=4000$

Example 2

The following cumulative rule is the same as the rule in Example 1, except it also subtracts the diff_area factor. Only the cumulative model is used.

$$
\text { ratio }=\left[\left(\text { metal } _ \text {area }+10 x \text { cut_area }\right)-(100 x \text { diff_area })\right] / \text { gate_area }
$$

Every routing layer should include the following information:

```
ANTENNACUMROUTINGPLUSCUT ;
ANTENNAAREAMINUDIFF 100.0 ;
ANTENNACUMDIFFAREARATIO 1000;
```

Every cut layer should include the following information:

```
ANTENNAAREAFACTOR 10 ; #10.0 x cut area
ANTENNACUMROUTINGPLUSCUT ;
ANTENNAAREAMINUDIFF 100.0 ;
ANTENNACUMDIFFAREARATIO 1000;
```

For gate G1, the PARs and CARs are computed as follows:

1. $\operatorname{CAR}(\mathrm{C}, \mathrm{G} 1)=10 \mathrm{x}$ area $(\mathrm{C} 1) / \operatorname{area}(\mathrm{G} 1)=10 \times 0.1 / 1.0=2.0$

This value is on the LEF PIN, as mentioned in Example 1.
2. $\operatorname{PAR}(\mathrm{M} 1, \mathrm{G} 1)=\operatorname{area}(\mathrm{M} 1,2) / \operatorname{area}(\mathrm{G} 1)-(100 \mathrm{x}$ diff_area $)=(2 / 1)-(100 \times 0)=2.0$
3. $\operatorname{CAR}(\mathrm{M} 1, \mathrm{G} 1)=\operatorname{PAR}(\mathrm{M} 1, \mathrm{G} 1)+\mathrm{PIN}$ A's CAR(C,G1)

PIN A's CAR(M1) $=$ ANTENNAMAXAREACAR for LAYER M1 $=1.0$
$=2.0+1.0=3.0$
4. Check $\operatorname{CAR}(\mathrm{M} 1, \mathrm{G} 1)=3.0<=1000$
5. PAR(V1,G1) $=[10 \mathrm{x}$ area(V1,2 $+\mathrm{V} 1,3)-(100 \mathrm{x}$ diff_area $)] / \operatorname{area}(\mathrm{G} 1)$
$=[(10 \times .2)-(100 \times 0)] /(1)=2.0$
6. $\operatorname{CAR}(\mathrm{V} 1, \mathrm{G} 1)=\operatorname{PAR}(\mathrm{V} 1, \mathrm{G} 1)+\mathrm{CAR}(\mathrm{M} 1, \mathrm{G} 1)=2.0+3.0=5.0$
7. Check $\operatorname{CAR}(\mathrm{V} 1, \mathrm{G} 1)=5.0<=1000$
8. $\operatorname{PAR}(\mathrm{M} 2, \mathrm{G} 1)=[\operatorname{area}(\mathrm{M} 2,1+\mathrm{M} 2,2)-(100 \mathrm{x} \operatorname{area}(\mathrm{D} 1))] / \operatorname{area}(\mathrm{G} 1+\mathrm{G} 2)$ $=[(4+5)-(100 \times 0.5) /(1+2)=-13.67$
9. $\operatorname{CAR}(\mathrm{M} 2, \mathrm{G} 1)=\operatorname{PAR}(\mathrm{M} 2, \mathrm{G} 1)+\mathrm{CAR}(\mathrm{V} 1, \mathrm{G} 1)=-13.67+5.0=-8.67$, truncate to 0
10. Check $\operatorname{CAR}(\mathrm{M} 2, G 1)=0<=1000$
11. $\operatorname{PAR}(\mathrm{V} 2, \mathrm{G} 1)=[(10 \mathrm{x}$ area(V2,1+V2,2)) $-(100 \mathrm{x}$ area(D1) $] / \operatorname{area}(\mathrm{G} 1+\mathrm{G} 2)$ $=[(10 \times 0.2)-(100 \times 0.5)] /(1+2)=-16.0$
12. $\operatorname{CAR}(\mathrm{V} 2, \mathrm{G} 1)=\operatorname{PAR}(\mathrm{V} 2, \mathrm{G} 1)+\mathrm{CAR}(\mathrm{M} 2, \mathrm{G} 1)=-16.0+0=-16.0$, truncate to 0
13. Check CAR(V2,G1) $=0<=1000$
14. $\operatorname{PAR}(\mathrm{M} 3, \mathrm{G} 1)=[\operatorname{area}(\mathrm{M} 3,1+\mathrm{M} 3,2)-(100 \mathrm{x}$ area(D1) $)] / \operatorname{area}(\mathrm{G} 1+\mathrm{G} 2)$ $=[(6+9)-(100 \times 0.5)] /(1+2)=-11.67$
15. $\operatorname{CAR}(\mathrm{M} 3, \mathrm{G} 1)=\operatorname{PAR}(\mathrm{M} 3, \mathrm{G} 1)+\mathrm{CAR}(\mathrm{V} 2, \mathrm{G} 1)=-11.67+0=-11.67$, truncate to 0
16. Check CAR(M3,G1) $=0<=1000$

Example 3

The following cumulative rule for metal layers includes a diffusion area factor added into the denominator of the ratio:

Single layer: metal_area / (gate_area +2.0 x diff_area) $<=1000$
Cumulative for the layer: metal_area / (gate_area +2.0 x diff_area) $<=5000$
Every metal layer should include the following information:

```
ANTENNAPLUSGATEDIFF 2.0 ;
ANTENNADIFFAREARATIO 1000;
ANTENNACUMDIFFAREARATIO 5000;
```

Note: The via area is ignored in this example. If an independent via model is needed, similar statements should be added to the via layers, which would be computed separately.

For gate G1, the PARs and CARs are computed as follows:

1. $\operatorname{PAR}(\mathrm{M} 1, \mathrm{G} 1)=\operatorname{area}(\mathrm{M} 1,2) / \operatorname{area}(\mathrm{G} 1)=2.0 / 1=2$
2. $\operatorname{CAR}(\mathrm{M} 1, \mathrm{G} 1)=\operatorname{PAR}(\mathrm{M} 1, \mathrm{G} 1)=2$
3. Check $\operatorname{PAR}(\mathrm{M} 1, \mathrm{G} 1)=2<=1000$, check $\operatorname{CAR}(\mathrm{M} 1, G 1)=2<=5000$
4. $\operatorname{PAR}(\mathrm{M} 2, \mathrm{G} 1)=\operatorname{area}(\mathrm{M} 2,1+\mathrm{M} 2,2) /[\operatorname{area}(\mathrm{G} 1+\mathrm{G} 2)+2 \mathrm{x} \operatorname{area}(\mathrm{D} 1)]$

$$
=(4+5) /[(1+2)+2 \times 0.5]=2.25
$$

5. $\operatorname{CAR}(\mathrm{M} 2, \mathrm{G} 1)=\operatorname{CAR}(\mathrm{M} 1, \mathrm{G} 1)+\operatorname{PAR}(\mathrm{M} 2, \mathrm{G} 1)=2+2.25=4.25$
6. Check $\operatorname{PAR}(\mathrm{M} 1, \mathrm{G} 1)=2.25<=1000$, check $\operatorname{CAR}(\mathrm{M} 1, \mathrm{G} 1)=4.25<=5000$
7. $\operatorname{PAR}(\mathrm{M} 3, \mathrm{G} 1)=\operatorname{area}(\mathrm{M} 3,1+\mathrm{M} 3,2) /[\operatorname{area}(\mathrm{G} 1+\mathrm{G} 2)+2 \mathrm{x} \operatorname{area}(\mathrm{D} 1)]$ $=(6+9) /[(1+2)+2 \times 0.5]=3.75$
8. $\operatorname{CAR}(\mathrm{M} 3, \mathrm{G} 1)=\operatorname{PAR}(\mathrm{M} 3, \mathrm{G} 1)+\mathrm{CAR}(\mathrm{M} 2, \mathrm{G} 1)=3.75+4.25=8.0$
9. Check $\operatorname{PAR}(\mathrm{M} 1, \mathrm{G} 1)=3.75<=1000$, check $\operatorname{CAR}(\mathrm{M} 1, \mathrm{G} 1)=8.0<=5000$

Example 4

Assume a cumulative rule that includes a diffusion area reduction value and a routing ratio of 1000. The reduction value is 1.0 if the diff_area is less than $0.1,0.2$ if the diff_area equals 0.1 , and decreases linearly to 0.1 if the diff_area equals 1.0. The reduction value remains 0.1 if the diff_area is greater than 1.0.

Every metal layer should include the following information:

```
ANTENNAAREADIFFREDUCEPWL ( ( 0.0 1.0 ) (0.0999 1.0 ) (0.1 0.2 ) ( 1.0 0.1 )
    ( 1000.0 0.1 ) ) ;" ;
ANTENNACUMDIFFAREARATIO 1000;
```

Note: The via area is ignored in this example. If an independent via model is needed, similar statements should be added to the via layers, which would be computed separately.

For gate G1, the PARs and CARs are computed as follows:

1. Initial $\operatorname{PAR}(\mathrm{M} 1, \mathrm{G} 1)=\operatorname{area}(\mathrm{M} 1,2) / \operatorname{area}(\mathrm{G} 1)=2.0 / 1=2$
2. diode_area $=0, \operatorname{PWL}(0)=1.0$, therefore initial $\operatorname{PAR}(\mathrm{M} 1, \mathrm{G} 1)$ is multiplied by 1.0 to give $\operatorname{PAR}(\mathrm{M} 1, \mathrm{G} 1)=2 \times 1=2$
3. $\operatorname{CAR}(\mathrm{M} 1, \mathrm{G} 1)=\operatorname{PAR}(\mathrm{M} 1, \mathrm{G} 1)=2$
4. Check $\operatorname{CAR}(\mathrm{M} 1, \mathrm{G} 1)<=1000$, therefore check $2<=1000$
5. Initial $\operatorname{PAR}(\mathrm{M} 2, \mathrm{G} 1)=\operatorname{area}(\mathrm{M} 2,1+\mathrm{M} 2,2) / \operatorname{area}(\mathrm{G} 1+\mathrm{G} 2)=(4+5) /(1+2)=3$
6. diode_area $=0.5, \operatorname{PWL}(0.5)=0.155$, therefore initial $\operatorname{PAR}(\mathrm{M} 2, \mathrm{G} 1)$ is multiplied by 1.0 to give $\operatorname{PAR}(\mathrm{M} 2, \mathrm{G} 1)=3 \times 0.155=0.465$
7. $\operatorname{CAR}(\mathrm{M} 2, \mathrm{G} 1)=\operatorname{CAR}(\mathrm{M} 1, \mathrm{G} 1)+\operatorname{PAR}(\mathrm{M} 2, \mathrm{G} 1)=2+0.465=2.465$
8. Check CAR(M2,G1) <= 1000, therefore check $2.465<=1000$
9. Initial $\operatorname{PAR}(\mathrm{M} 3, \mathrm{G} 1)=\operatorname{area}(\mathrm{M} 3,1+\mathrm{M} 3,2) / \operatorname{area}(\mathrm{G} 1+\mathrm{G} 2)=(6+9) /(1+2)=5$
10. diode_area $=0.5, \operatorname{PWL}(0.5)=0.155$, therefore initial $\operatorname{PAR}(\mathrm{M} 3, \mathrm{G} 1)$ is multiplied by 0.155 to give $\operatorname{PAR}(\mathrm{M} 3, \mathrm{G} 1)=5 \times 0.1555=0.775$
11. $\operatorname{CAR}(\mathrm{M} 3, \mathrm{G} 1)=\operatorname{PAR}(\mathrm{M} 3, \mathrm{G} 1)+\mathrm{CAR}(\mathrm{M} 2, \mathrm{G} 1)=0.775+2.465=3.24$
12. Check CAR(M3,G1) <= 1000, therefore check $3.24<=1000$

Example Using the Antenna Keywords

The following example is a portion of a LEF file that shows the antenna keywords for a process that has cumulative area ratio damage for metal and cut layers.

Assume you have the following antenna rules for your process:

1. A maximum cumulative metal to gate area ratio of 1000
2. If a diode of greater than .1 microns is connected to the metal, the maximum metal ratio is: ratio $=$ diode_area $\times 2000+5000$
3. A maximum cumulative via to gate area ratio of 20
4. If a diode of greater than .1 microns is connected to the via, the maximum via ratio is: ratio $=$ diode_area $\times 200+100$

The corresponding LEF file would include:

```
LAYER M1
```

 TYPE ROUTING ;
 ANTENNACUMAREARATIO 1000 ;
 ANTENNACUMDIFFAREARATIO
 PWL ((01000) (0.0991000) (0.15200) (100205000) ;
 END M1
LAYER VIA1
TYPE CUT ;
ANTENNACUMAREARATIO 20 ;
ANTENNACUMDIFFAREARATIO
PWL ((020) (0.09920) (0.1120) (10020100)) ;

A typical standard cell that has only M1 pins and routing inside of it would have:

```
MACRO INV1X
    CLASS CORE ;
    PIN IN
        DIRECTION INPUT ;
        ANTENNAGATEAREA . 5 LAYER M1 ; # connects to 0.5 \mum^2 poly gate
        ANTENNAPARTIALMETALAREA 1.0 LAYER M1 ; # has 1.0 \mum^2 M1 area.
            # Note that it should not include the M1 pin area, just the M1 routing
            # area that is not included in the PIN shapes. In many cases, all of the
            # M1 routing is included in the PIN, so this value is 0, and not in the
            # LEF at all.
        ANTENNAMAXAREACAR 10.0 LAYER M1 ; # has 10.0 cumulative ratio so far.
                    # This value can include area from internal poly routing if poly routing
                    # damage is accumulated with the metal layers. It does not include
                    # the area of the M1 pin area, just the M1 routing area that is not
                    # included in the PIN shapes. If poly damage is not included, and all
                    # of the M1 routing is included in the PIN, this value will be 0, and
                    # not in the LEF at all.
        ...
    END IN
    PIN OUT
        DIRECTION OUTPUT ;
        ANTENNADIFFAREA . 2 LAYER M1 ; # connects to 0.2 \mum^2 difusion area
        ANTENNAPARTIALMETALAREA 1.0 LAYER M1 ; # has 1.0 \mum^2 M1 area
        # No ANTENNAMAXAREACAR value because no internal poly gate is connected
    END OUT
END INV1X
```


Using Antenna Diode Cells

Routers generally use one of two methods to fix process antenna violations:

- Change the routing by breaking the metal layers into smaller pieces

■ Insert antenna diode cells to discharge the current

LEF/DEF 5.7 Language Reference

Calculating and Fixing Process Antenna Violations

Changing the Routing

One method routers use to fix antenna violations is to limit the charge that is collected through the metal nodes exposed to the plasma. To do this, it goes up one layer or pushes the routing down one layer whenever the process antenna ratio exceeds the ratio set in the LEF file.

The router changes the routing by disconnecting nets with antenna violations and making the connections to higher metal layers instead. It does not make the connections to lower layers. This method works because the top metal layer always completes the connection from the gate to the output drain area of the driver, which is a diode that provides a discharge path.

Inserting Antenna Diode Cells

The second method routers use to repair antenna violations is to insert antenna diode cells in the design. The electrical charges on the metal that connects to the diodes is then discharged through the diode diffusion layer and substrate. The router inserts the diode cells automatically.

The following example shows a LEF definition of an antenna diode cell, with the CLASS CORE ANTENNACELL and ANTENNADIFFAREA defined:

```
MACRO antennal
    CLASS CORE ANTENNACELL ;
    PIN ANT1
        AntennaDiffArea 1.0 ;
        PORT
        LAYER metal1 ;
        RECT 0.190 2.380 0.470 2.660;
        END
    END ANT1
END antennal
```


Using DiffUseOnly

LEF defines only one value for ANTENNAAREAFACTOR and one value for ANTENNASIDEAREAFACTOR, with or without DIFFUSEONLY, per layer. If you specify more than one antenna area or side area factor for a layer, only the last one is used. The AREAFACTOR value lets you scale the value of the metal area. If you use the DIFFUSEONLY keyword, only metal attached to diffusion is scaled.

Suppose you have the following LEF file:

```
Antenna.lef
-----------
LAYER M3
TYPE ROUTING ;
PITCH 0.56 ;
DIRECTION HORIZONTAL ;
WIDTH 0.28 ; SPACING 0.28 ;
SPACING 0.36 RANGE 1.0 250.0 ;
CAPACITANCE CPERSQDIST 0.0009762 ;
RESISTANCE RPERSQ 0.129;
THICKNESS 0.60 ;
AntennaAreaRatio 10000 ;
AntennaDiffAreaRatio 10000 ;
AntennaAreaFactor 1.2 DiffUseOnly ;
AntennaSideAreaRatio 5000 ;
AntennaDiffSideAreaRatio 5000 ;
AntennaSideAreaFactor 1.4 DiffUseOnly ;
END M3
```

Figure C-21

In the figure,

- The input pin H01 of GATE_M2_M3 connects the metal wires to metal1, metal2, and metal3 in sequence.

■ The ANTENNAAREAFACTOR 1.2 DIFFUSEONLY and ANTENNASIDEAREAFACTOR 1.4 DIFFUSEONLY apply to metal3 routing.
■ Prior to metal3 fabrication, there is no path to the diffusion diode. This causes the default factor of 1.0 to apply to the metal1 and metal2 segments shown when calculating PARs.

Calculations for Hierarchical Designs

The following section illustrates computation of antenna ratios for hierarchical designs.

LEF and DEF Keywords for Hierarchical Designs

If the keyword ends with ...

area
sideArea

CAR

It refers to ...

Drawn area or side area of the metal wires. Measured in square microns.

Relationship the router is calculating

CAR is used in keywords for cumulative antenna ratio.

Examples

ANTENNAPARTIALCUTAREA
ANTENNAPARTIALMETALAREA
ANTENNAPARTIALMETALSIDEAREA
ANTENNAPINDIFFAREA
ANTENNAPINGATEAREA
ANTENNAPINPARTIALCUTAREA
ANTENNAMAXAREACAR
ANTENNAMAXCUTCAR
ANTENNAMAXSIDEAREACAR
ANTENNAPINMAXAREACAR
ANTENNAPINMAXCUTCAR
ANTENNAPINMAXSIDEAREACAR

Design Example

Figure C-22 on page 407 represents a macro block. This block can be a custom hard block or part of a bottom-up hierarchical flow. The resulting PAE values will be the same in either case. In the example,

- Gates G_{1}, G_{2}, G_{3}, and G_{4} are the same size.
- \quad Node $N_{1,3}$ is larger than node $N_{1,2}$.
- Vias (cuts) are all the same size.
- The I/O pin is on metal3.
- The area of diffusion for D_{1} is area (Diff_{1}).
- The area of diffusion for D_{2} is area (Diff_{2}).
- The area of the cut layer that connects node $N_{3,1}$ and node $N_{4,2}$ is area $\left(N_{C 34,1}\right)$.
- Any damage from the poly layer or poly-to-metal1 via is ignored.

Figure C-22

Relevant Metal Areas

■ The relevant metal area for PAE calculations is the partial metal drawn area and side area connected directly to the I/O pin on the inside of the macro on the specified layer.

- Only the same metal layer as the I/O pin or above is needed for PAR calculations in hierarchical designs.

Important

Do not include the drawn area or side area of the I/O pin in the area calculations for the block, because the router includes these areas in the calculations for the upper level. Only the internal routing area that is not part of the I/O pin should be included.

For the design in the figure above, you must specify values for the following metal areas in the LEF file:

```
ANTENNAPARTIALMETALAREA area (N3,2) LAYER Metal3 ;
ANTENNAPARTIALMETALAREA area (N4,2) LAYER Metal4 ;
ANTENNAPARTIALMETALSIDEAREA sideArea(N3,2) LAYER Metal3 ;
ANTENNAPARTIALMETALSIDEAREA sideArea (N4,2) LAYER Metal4 ;
```

You do not need to specify an Antennapartialmetalarea or ANTENNAPARTIALSIDEMETALAREA for any layer lower than metal3 because the I/O pin is on metal3; that is, there is no connection outside the block until metal3 is processed.

LEF/DEF 5.7 Language Reference

Calculating and Fixing Process Antenna Violations

Relevant Gate, Diffusion, and Cut Areas

- The relevant gate and diffusion areas are the gate and diffusion areas that connect directly to the I/O pin on the specified layer or are electrically connected to the pin through lower layers.
- The relevant partial cut area is above the current pin layer and inside the macro on the specified layer.

For the design in the figure above, you must specify values for the following gate, diffusion, and cut areas in the LEF file:

```
ANTENNAGATEAREA area (G}\mp@subsup{|}{2}{}+\mp@subsup{G}{3}{}+\mp@subsup{G}{4}{})\mathrm{ LAYER Metal3 ;
ANTENNADIFFAREA area(Diff 1) LAYER Metal3 ;
ANTENNADIFFAREA area(Diff }
ANTENNAPARTIALCUTAREA area(N (N4,2) LAYER Via34 ;
```


Calculating the CAR

Use the following keywords to calculate the actual CAR on the I/O pin layer or above.

- The relevant maximum CAR value of the drawn and side areas are from the metal layer that is on or below the I/O pin layer.
- The relevant maximum CAR value of the cut layer is from the cut layer that is immediately above the I/O pin layer.

For the example in Figure C-22 on page 407, the keywords and calculations for metal3 and via34 would be:

ANTENNAMAXAREACAR $\left(\frac{N_{1,3}}{G_{4}}+\frac{N_{2,2}}{G_{2}+G_{3}+G_{4}}+\frac{N_{3,2}}{G_{2}+G_{3}+G_{4}}\right)$ LAYER Metal3; ANTENNAMAXSIDEAREACAR $\left(\frac{N_{1,3}}{G_{4}}+\frac{N_{2,2}}{G_{2}+G_{3}+G_{4}}+\frac{N_{3,1}}{G_{2}+G_{3}+G_{4}}\right)$ LAYER Metal3; ANTENNAMAXCUTCAR $\left(\frac{N_{12,3}+N_{12,4}}{G_{4}}+\frac{N_{23,2}}{G_{2}+G_{3}+G_{4}}+\frac{N_{34,2}}{G_{2}+G_{3}+G_{4}}\right)$ LAYER Via34;

LEF/DEF 5.7 Language Reference Calculating and Fixing Process Antenna Violations

Sample LEF File for a Bottom-Up Hierarchical Design

For a macro block like that shown in Figure C-22 on page 407, you should have the following pin information in your LEF file, ignoring SIDEAREA values:

```
PIN example
    ANTENNAGATEAREA 0.3 LAYER METAL3 ; # area of G }\mp@subsup{\mp@code{2}}{2}{+}\mp@subsup{G}{3}{}+\mp@subsup{G}{4}{
    ANTENNADIFFAREA 1.0 LAYER METAL3 ; # area of D1
    ANTENNAPARTIALMETALAREA 10.0 LAYER METAL3 ; # area of N N3,2
    ANTENNAMAXAREACAR 100.0 LAYER METAL3 ; # max CAR of N N3,2
    ANTENNAPARTIALCUTAREA 0.1 LAYER VIA34 ; # area of N N34,2
    ANTENNAMAXCUTCAR 5.0 LAYER VIA34 ; # max cut CAR of N N34,2
    ANTENNAGATEAREA 0.3 LAYER METAL4 ; # area of G 
    ANTENNADIFFAREA 2.0 LAYER METAL4 ; # area of D D }+\mp@subsup{D}{2}{
    ANTENNAPARTIALMETALAREA 12.0 LAYER METAL4 ; # area of N4,2
    ANTENNAMAXAREACAR 130.0 LAYER METAL4 ; # max CAR of N
END example
```


Top-Down Hierarchical Design Example

In a top-down design, the router uses the top-level antenna values to check for process antennas inside the block. If the top level is routed first, the top-level routing CAR and PAR values can be passed down into the DEF for the sub-block. This method can also be used to pass down estimated "budgets" for PAR and CAR values.

Set the following keywords in the DEF file for the design. In a top-down design you assign a value to the I/O pin that indicates how much routing, CAR, and PAR occurred outside the block already.

```
MACRO macroName
    CLASS BLOCK ;
        PIN pinName
        DIRECTION OUTPUT ;
        [ANTENNAPINPARTIALMETALAREA value [LAYER layerName] ;] ...
        [ANTENNAPINPARTIALMETALSIDEAREA value [LAYER layerName] ;] ...
        [ANTENNAPINGATEAREA value [LAYER layerName] ;] ...
        [ANTENNAPINDIFFAREA value [LAYER layerName] ;] ...
        [ANTENNAPINMAXAREACAR value [LAYER layerName] ;] ...
        [ANTENNAPINMAXSIDEAREACAR value [LAYER layerName] ;] ...
        [ANTENNAPINPARTIALCUTAREA value [LAYER cutlayerName] ;] ...
        [ANTENNAPINMAXCUTCAR value LAYER cutlayerName] ;] ...
```


LEF/DEF 5.7 Language Reference

 Calculating and Fixing Process Antenna ViolationsEND Z
END macroName

Sample DEF File for a Top-Down Hierarchical Design

An example of the DEF keywords for Figure C-22 on page 407 would be:

```
PINS 100 ;
```

 - example + NET example1
 + ANTENNAPINPARTIALMETALAREA (\(\mathrm{N}_{3,1}\)) LAYER Metal3;
 + ANTENNAPINPARTIALMETALSIDEAREA (\(N_{3}, 1\) LAYER Metal3;
 + ANTENNAPINGATEAREA \(\left(\mathrm{G}_{1}\right)\) LAYER Metal3 ;
 \# No ANTENNAPINDIFFAREA for this example
 + ANTENNAPINMAXAREACAR \(\left(\frac{N_{1,1}+N_{2,1}+N_{3,1}}{G_{1}}\right)\) LAYER MEtE1B;
 + ANTENNAPINMAXSIDEAREACAR \(\left(\frac{N_{1,1}+N_{2,1}+N_{3,1}}{G_{1}}\right)\) LAYER MRtal3;
 + ANTENNAPINPARTIALCUTAREA (\(\mathrm{N}_{34,1}\)) LAYER via34 ;
 + ANTENNAFINIMAXCUTCAR \(\left(\frac{N_{34,1}+N_{23,1}+N_{121}}{G_{1}}\right)\) LAYER ME tol3;
 + ANTENNAPINGATEAREA \(\left(G_{1}\right)\) LAYER Metal4 ;
 + ANTENNAPINPARTIALMETALAREA \(\left(\mathrm{N}_{4,1}\right)\) LAYER Metal4;
 + ANTENNAPINPARTIALMETALSIDEAREA \(\left(N_{4}, 1\right)\) LAYER Metal4 ;

LEF/DEF 5.7 Language Reference

Index

Symbols

,... in syntax 8
... in syntax $\underline{8}$
[] in syntax $\quad \underline{8}$
\{\} in syntax 8
I in syntax 8

A

abutment pins $\underline{\underline{200}}$
alias
expansion in DEF and LEF 229
names in DEF and LEF $\underline{228}$
statements in LEF and DEF $\underline{227}$

B

blockages, simplified 192
braces in syntax $\underline{8}$
brackets in syntax $\underline{8}$
BUSBITCHARS statement
description, DEF $\underline{246}$

C

capacitance
peripheral $\underline{92}$
wire-to-ground 89
cell modeling
combining blockages 192
characters
escape 239
information $\underline{8}$
COMPONENTS statement
description, DEF $\underline{246}$
conventions
user-defined arguments $\underline{7}$
user-entered text $\underline{7}$
COVER model, definition in LEF 173

D

database
converting LEF values to integer values $\underline{212}$
debugging
DEF files 232
LEF libraries 232 parametric macros 232
DEF
example $\underline{344}$
syntax overview 238
DEF syntax
PINS 271
DEF syntax and description
BUSBITCHARS 246
COMPONENTS $\underline{\underline{246}}$
DESIGN 251
DIEAREA $\underline{\underline{251}}$
DIVIDERCHAR 15, 252
GCELLGRID 254
GROUPS 256
HISTORY $\underline{256}$
NETS 257
PINPROPERTIES 286
PROPERTYDEFINITIONS 287
REGIONS 288
ROW 289
SPECIALNETS 298
TECHNOLOGY $\underline{322}$
TRACKS 323
UNITS DISTANCE MICRONS $\underline{323}$
VERSION 324
VIAS 325
DESIGN statement
description, DEF 251
diagonal vias, recommendation for RGrid 172
DIEAREA statement
description, DEF $\underline{251}$
DIVIDERCHAR statement
description, DEF 15, $\underline{252}$

LEF/DEF 5.7 Language Reference

E

 edge capacitance $\underline{92}$EEQ statement, LEF syntax 179
electrically equivalent models, LEF syntax 179
endcap models, definition in LEF 174
equivalent models
electrically equivalent (EEQ) 179
error checking, utilities $\underline{232}$
escape character $\underline{239}$

F

feedthrough pins
LEF 200
FOREIGN references
LEF syntax 179
offset between LEF and GDSII 179

G

GCell grid
restrictions 255
uniform, in DEF $\underline{255}$
GCELLGRID statement
description, DEF $\underline{254}$
GROUPS statement
description, DEF $\underline{\underline{256}}$

H

HISTORY statement
description, DEF $\underline{\underline{256}}$

I

INOUT pins, netlist 194
INPUT DEF command
error checking $\underline{232}$
INPUT GDSII command
with incremental LEF $\underline{\underline{231}}$
INPUT LEF command
error checking 232
incremental capability $\underline{\underline{231}}$
INPUT pins, netlist 194
italics in syntax $\quad \underline{7}$
L
LAYER (nonrouting) statement description, LEF 16, 76
layers
for LEF via descriptions $\underline{\underline{216}}$
routing order in LEF $8 \underline{2}$
LEF
example 333
files
distance precision 12
line length 12
overview 12
routing layer order 82
LEF syntax
overview 14
LEF syntax and description
LAYER, nonrouting 16, 76
MACRO 172
NONDEFAULT rule $\underline{203}$
OBS, macro obstruction 190
PIN macro 193
PROPERTYDEFINITIONS $\underline{\underline{207}}$
SITE 209
UNITS 211
VERSION 214
VIA 215
VIARULE 220
VIARULE viaRuleName
GENERATE 221
LEF values converted to integer values $\underline{212}$ legal characters $\underline{8}$ library design, simplifying blockages 192 literal characters $\underline{7}$

M

macro obstruction, OBS statement description, LEF 187, 190
macro PIN statement
description, LEF 193
MACRO statement
description, LEF 172
models, site orientation 183
mustjoin pins 197

LEF/DEF 5.7 Language Reference

N

netlist pins
INOUT 194
INPUT 194
OUTPUT 194
nets
mustJoin nets $\underline{\underline{259}}$
NETS statement
description, DEF 257
NONDEFAULT rule statement
description, LEF $\underline{\underline{203}}$

0

OBS (macro obstruction) statement
description, LEF 187, 190
obstructions, simplified 192
Or-bars in syntax $\underline{8}$
orientation
models 183
pin 250, 267, 284
OUTPUT pins, netlist 194
overlaps, specifying in LEF 192

P

peripheral capacitance $\underline{92}$
PIN (macro) statement
description, LEF 193
PINPROPERTIES statement
description, DEF $\underline{286}$
pins
abutment 200
direction in LEF 196
external, DEF $\underline{272}$
feedthrough pins in LEF $\underline{\underline{200}}$
INOUT 194
INPUT 194
modeling in LEF 193
mustjoin 197
netlist 194
orientation 250, 267, 284
OUTPUT 194
power geometries $\underline{201}$
ring 200
using in LEF $\underline{\underline{202}}$
PINS statement
syntax, DEF 271
PITCH parameter, ratio in three-layer design 171
placement site function, SITE statement in LEF $\underline{209}$
ports
in LEF 199
multiple pins 199
power pin
geometries in LEF $\underline{201}$
PROPERTYDEFINITIONS statement
description, DEF $\underline{287}$
description, LEF $\underline{207}$

R

REGIONS statement
description, DEF 288
regular expressions $\underline{9}$
regular wiring
orthogonal paths 267, 308
RGrid, description 171
ring pins $\underline{200}$
routing time, diagonal vias 172
routing width, LEF syntax 128
ROW statement
description, DEF $\underline{289}$

S

scan chains
example $\underline{349}$
rules 295
SI units in LEF 212
SITE statement
description, LEF $\underline{\underline{209}}$
sites
symmetry $\underline{211}$
special wiring
description 303
pins and wiring, DEF 309
SPECIALNETS statement
description, DEF $\underline{298}$
syntax conventions $\underline{7}$

T

TECHNOLOGY statement
description, DEF 322
three-layer design, pitch ratio 171
TRACKS statement
description, DEF 323
U
UNITS DISTANCE MICRONS statement
description, DEF 323
UNITS statement
description, LEF 211
V
values in library database 212
VERSION statement
description, DEF 324
vertical bars in syntax 8
VIA statement
description, LEF $\underline{215}$
VIARULE statementdescription, LEF $\underline{220}$
VIARULE viaRuleName GENERATEstatement
description, LEF $\underline{221}$
vias
default vias in LEF 216
layers for vias in LEF $\underline{216}$
VIAS statement
description, DEF 325
w
wide wire signal wire, specifying $\underline{203}$
wiring, regular
orthogonal paths 267, $\underline{308}$
wiring, special
description 303
pins and wiring $\underline{309}$

[^0]: LAYER cut12

[^1]: LAYER metal1

