Professor Matthew E. Taylor (Matt)
March 22, 2021

Reinforcement Learning for Electronic Design Automation:
Successes and Opportunities
Machine Learning (ML)

Supervised

Unsupervised

Reinforcement Learning

Environment

Agent

Action

State

Reward
AI Index 2019 Report

1998 – 2018: # of peer-reviewed AI papers grown by 300%
2014 – 2018: North America accounts for >60% of global AI patent activity

AI is the new Electricity
Data is the new Oil
Started in 1950s... Why now?

More compute
Better algos
Wider adoption & business understanding
Available talent & more accessible approaches

→ Automation
→ Optimization
→ New business processes
Reinforcement Learning (RL)

No labels: agent never told right or wrong

Agent interacts with environment (simulator or real world)

Typically can gather data, possibly at cost, by interacting with environment
Reinforcement Learning (RL)

The agent typically learns via **exploring** vs. **exploiting**

Possible goals include
- Automation
- Improvement
- Enabling novel processes
RL Applications

(Un)Supervised learning performs well for many real-world applications

Dota
Robotics
American Options Exercise Policy
Stock Trading

AlphaGO
Data Center Cooling
RL Goals

Learn to **maximize real-valued reward** signal (ideally)

- With maximal final performance
- With little data
- Reducing human effort
- Discovering novel solutions
- Handling non-stationary environments
Outline

1. Background on RL
2. Examples of RL
3. Next Steps
• 2–3 days of development
• 2013 release, 2014 reportedly making $50k/day
• Then, removed because “too addictive”
 https://www.youtube.com/watch?v=OJw4HTWvGdY
Example 1: Flappy Bird

Transition function: controlled by game
Action?
Reward?
State representation?

http://sarvagyavaish.github.io/FlappyBirdRL/
Example 2: Compiler Optimization

Scheduling Overview

TRIPS: Tera-op, Reliable, Intelligently adaptive Processing System

SPS scheduler: 2006

UT-Austin: Kathryn S. McKinley & Doug Berger

Source Code

Generic Functional Units
- Not floating point, integer, etc.
- Less idling
- Reconfigurable!

Dataflow Graph

Scheduler

Placement

Legend
- Register
- Data cache
- Execution
- Control

128! scheduling possibilities

Topology
4×4 tiles, up to 8 instructions each
Total: 128 instructions
Example 2: Compiler Optimization

State: 11 features based on current instruction & already placed
Action: Place an instruction
Reward: 0 until all instructions placed, then, what’s the speedup?

Heuristics → Learned scheduler heuristics
Per benchmark or general
47 small benchmarks
Example 3: Water Treatment

ISL Adapt, UofA, and Amii

No ground truth
Raw water from North Saskatchewan River
State: Sensors added to filtration plant
Actions: Changes like chemicals, backwash cleaning, etc.
Reward: Environmental and fiscal benefits

bit.ly/3ouscL0
Example 4: Google’s Chip Placement with Deep RL

States: Every possible partial placement of netlist onto chip canvas
Actions: Place current macro at any location on discrete canvas space
 - Don’t violate hard constraints
Reward: 0 for all actions except last action
 - Negative weighted sum of proxy wirelength & congestion
Outline

1. Background on RL
2. Examples of RL
3. Next Steps
RL Strengths

Agent can autonomously learn to maximize rewards
Programmer just specifies goals
Often much less work than directly programming
Can achieve superhuman performance
Can handle unanticipated changes in the environment
RL Weaknesses

Agent maximizes rewards whether it’s what you actually wanted or not!

- **Example**: agent collects points in a game, rather than completing level

Can require lots of computation and/or interaction with the real world

- Interacting with world can have *cost* in time, money, wear, etc.

Solutions are often black box: explainability is not well understood (yet)

Initial performance could be very poor
Real World RL: What’s a Good Problem?

Sequential experimentation / process. Other methods can’t work
Full model isn’t known (dynamic programming/planning/optimization) or is too large

How costly is exploration?
How big is the state and action space?
Is the reward “obvious”? Is it dense?
Can you see the true state?

Do you have, or can you build a simulator?
Can you bootstrap off something/someone else?
REINFORCEMENT LEARNING APPLICATIONS FOR REAL-WORLD DATA

By

PHIL OSBORNE
KAJAL SINGH
MATTHEW E. TAYLOR
Thank you! Questions?

RL
- Coursera RL specialization from U Alberta
 - https://www.coursera.org/specializations/reinforcement-learning
- Udacity class from Georgia Tech
 - https://www.udacity.com/course/reinforcement-learning--ud600
- THE book on RL (Sutton & Barto, 2018)
- Csaba Szepesvári: Algorithms in Reinforcement Learning
 - https://sites.uaberta.ca/~szepesva/rlbook.html

Deep RL
- Class on YouTube from UCL/Deepmind
 - https://www.youtube.com/playlist?list=PLqYmG7hTraZDNNjre23vqCGIVpfZ_K2RZs
- OpenAI Spinning Up in Deep RL