Analysis and Optimization of Thermal Issues in High Performance VLSI

Kaustav Banerjee
Stanford University

Massoud Pedram and Amir H. Ajami
University of Southern California
Presentation Outline

- Introduction
- Thermal Effects and Reliability
- Interconnect Performance Optimization
- High-Current Effects: ESD
- Analysis of Non-uniform Chip Temperature
- Non-Uniform Temperature Dependent Delay
- Circuit Optimization: Clock Skew
- Summary
Introduction

- Sources of chip power dissipation
- Chip temperature model
- Thermal effects in interconnects
- Scaling trends and implications
Sources of Chip Power Dissipation

Devices: Close to Heat Sink
- Dynamic Power: $\propto CV^2f$ most significant
- Leakage Power: increasing with scaling
- C dominated by interconnects
- Affects interconnect temperature

Interconnects: Away from Heat Sink
- Joule Heating: I^2R
Chip Temperature Model

- 1-D Heat Conduction

\[T_{Die} = T_O + R_n \left(\frac{P}{A} \right) \]

- \(T_{Die} = 120 \, ^\circ C \) (180 nm Node)
- \(R_n = 4.75 \, \text{cm}^2 \, ^\circ C/\text{W} \)

- Assuming same Packaging and Cooling Technologies (Same \(R_n \))

\(T_{Die} \) at Other Technology Nodes Calculated
Thermal Effects in Interconnects

- An inseparable aspect of electrical power distribution and signal transmission through the interconnects
- Arise due to self-heating (or Joule heating) of interconnects caused by current flow
- Thermal effects impact interconnect electromigration reliability and design
Self Heating under DC Stress *(IRPS 96)*

Thermal impedance θ_j, defined by

$$\Delta T = P \times \theta_j$$

- ΔT increases with increasing t_{ox}

Thickness of AlCu in M4 is doubled

Cross section

Thermal Effects in Interconnects

K. Banerjee, M. Pedram and A. H. Ajami
Thermal Effects in Interconnects

Impact of Scaling Using Low-k (IEDM 96)

DC Conditions

- As \(W \) decreases, SH increases.
- Low-k increases SH by 10-15%
Scaling Trends and Implications

- **Scaling Effects (ITRS ’99)**
 - Chip Power and Area increases
 - Negligible Change in Power Density
 - Current Density in Metal Lines Increases
 - Number of Metal Levels Increases

 ➤ Chip Temperature Distribution ?

- **As Temperature Increases**
 - Electromigration (EM) Time to Failure Decreases
 - Increased $\rho(T)$ ➤ Wire Delay Increases
Scaling Effects (1): Thermal Conductivity of Dielectrics

(ITRS '99)

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td><50</td>
</tr>
<tr>
<td>HSQ</td>
<td>70</td>
</tr>
<tr>
<td>Polyimide</td>
<td>100-130</td>
</tr>
<tr>
<td>SiO₂</td>
<td>130</td>
</tr>
<tr>
<td>Air</td>
<td>180</td>
</tr>
</tbody>
</table>

Dielectric Constant (ε)
Full Chip Thermal Analysis

- Three Dimensional Heat Conduction
 - Steady State, Uniform Heat Generation (q'''), Constant Properties (k)

 \[\nabla^2 T + \frac{q'''}{k} = 0, \quad \nabla^2 T = 0 \]

 (Interconnect) (Others)

- Worst Case Simulation
 - Uniform j_{rms} for all Metal Lines
 ($ITRS$ '99')

K. Banerjee, M. Pedram and A. H. Ajami
Scaling Effects (2) : Maximum Chip Temperature (IEEDM 2000)

- Negligible Change in Power Density (ITRS ’99)
- $T_{Die} = 133 \pm 15^\circ C$
- Increase in T_{max} Due to Joule Heating of Interconnects (FEM Simulation)

Power Density [W/mm²]

Temperature [°C]

Technology Node [nm]

0 20 40 60 80 100 120 140 160 180

0 0.2 0.4 0.6 0.8 1.0

0 50 100 150 200 250

ISPD 2001 K. Banerjee, M. Pedram and A. H. Ajami
Scaling Effects (3) : Temperature Distribution (IEDM 2000)

Temperature [°C]

Distance from Substrate [µm]

Global Wires

50 nm Node

209 °C

126 °C

ISPD 2001

K. Banerjee, M. Pedram and A. H. Ajami
Scaling Effects (4) : Effects on Reliability & Performance (IEDM 2000)

% Decrease in TTF

% Increase in RC Delay

\[
\% D \text{ in } TTF = \left[1 - \frac{TTF(T_{max})}{TTF(T_{Die})} \right] \times 100
\]

\[
\% I \text{ in RC Delay} = \left[\frac{\rho(T_{max})}{\rho(T_{Die})} - 1 \right] \times 100
\]

K. Banerjee, M. Pedram and A. H. Ajami
Scaling Trends and Implications
(Summary)

- Scaling trends that cause increasing thermal effects:
 - increasing interconnect levels
 - increasing current density
 - low-k dielectrics
 - increasing thermal coupling
Presentation Outline

- Introduction
- Thermal Effects and Reliability
- Interconnect Performance Optimization
- High-Current Effects: ESD
- Analysis of Non-uniform Chip Temperature
- Temperature Dependent Performance
- Circuit Optimization: Clock Skew
- Summary
Electromigration (EM)

- Transport of mass in metal interconnects under an applied current density
- EM lifetime reliability modeled using Black’s equation given by,

\[TTF = A j^{-n} \exp \left(\frac{Q}{k_B T_m} \right) \]

- \(TTF \) is the time-to-fail
- \(A \) is a constant that depends on line geometry and microstructure
- \(j \) is the DC or average current density
- \(Q \) is the activation energy for EM (\(~0.7\) eV for AlCu)
- \(T_m \) is the metal temperature
Accelerated EM stress data yields A, Q, and n in Black’s equation, and a value of log-normal σ_{LN}.

Typical goal: achieve a 10 year lifetime.

EM stress data + Black’s equation gives a technology limit to the maximum allowed current density (j_{avg}) for the required failure rate and a desired lifetime at a reference temperature T_{ref} ($\sim 100 \, ^\circ C$).

The j_{avg} limit does not comprehend self heating.
Reliability Implications

Current Density Definitions (*DAC 99*)

- Peak, Average, and RMS current densities:

 \[j_{\text{peak}} = \frac{l_{\text{peak}}}{A} \quad j_{\text{avg}} = \frac{1}{T} \int_0^T j(t) \, dt \quad j_{\text{rms}} = \sqrt{\frac{1}{T} \int_0^T j^2(t) \, dt} \]

 \(A \) is the cross sectional area of interconnect, \(T \) is the time period of the current waveform.

- For an unipolar waveform:

 \[j_{\text{avg}} = r \, j_{\text{peak}} \quad j_{\text{rms}} = \sqrt{r} \, j_{\text{peak}} \]

 \(r \) is the duty factor

- EM is determined by \(j_{\text{avg}} \), and self-heating by \(j_{\text{rms}} \)
Reliability Implications

Impact of Self-Heating on EM (DAC 99)

- EM lifetime given by: \(T_{TTF} = A j^{-n} \exp \left(\frac{Q}{k_B T_m} \right) \)

- Due to self-heating: \(T_m = T_{ref} + \Delta T_{self-heating} \)

\[\Delta T_{self-heating} = (T_m - T_{ref}) = I_{rms}^2 R R_\theta \]

\(R_\theta \) is the effective thermal impedance given by,

\[R_\theta = \frac{t_{ins}}{K_{ins} L W_{eff}} \]

\(W_{eff} \) is the effective metal width to account for quasi-2D heat conduction.
Reliability Implications

Self-Consistent Design (Hunter 97)

- Typically, design rules specify j_{avg} from EM and j_{rms} from self-heating separately.
- Self-consistent approach: comprehends EM and self-heating simultaneously.
- The lifetime at any j_{avg} and metal temperature T_m, should be equal to or greater than the lifetime value (e.g., 10 year) under the design rule current density (j_0).

\[
\frac{\exp\left(\frac{Q}{k_B T_m}\right)}{j_{\text{avg}}^2} \geq \frac{\exp\left(\frac{Q}{k_B T_{\text{ref}}}\right)}{j_0^2}
\]
Reliability Implications

Self-Consistent Equation

- Using the relationship between j_{av}, j_{rms}, j_{peak} and r for an unipolar waveform described earlier, it can be shown that,

\[
\frac{j_{av}}{j_{rms}} = r
\]

- Incorporating the j_{rms}^2 and j_{avg}^2 values from yields the self-consistent equation,

\[
r = j_0^2 \exp \left(\frac{Q}{k_B T_m} \right) \exp \left(\frac{Q}{k_B T_{ref}} \right) \frac{t_{ins} t_m W_m \rho_m (T_m)}{(T_m - T_{ref}) K_{ins} W_{eff}}
\]

This is a single equation in the single unknown temperature T_m
Reliability Implications

Low-k/Cu: Implications for Current Density Limits

Self-consistent j_{rms} and j_{peak} decrease significantly as low-k materials are introduced.

K. Banerjee, M. Pedram and A. H. Ajami
• As r decreases, material changes (increasing j_0) will become ineffective in increasing j_{peak}.
Reliability Implications

Implications for Current Density Limits

- Comparison with AlCu

Thermal effects reduce the advantage of Cu as low-k materials are introduced
Presentation Outline

- Introduction
- Thermal Effects and Reliability
 - Interconnect Performance Optimization
- High-Current Effects: ESD
- Analysis of Non-uniform Chip Temperature
- Temperature Dependent Performance
- Circuit Optimization: Clock Skew
- Summary
Thermal effects predominant in semi-global and global interconnects which are:

- Away from the Si substrate
- Long
- Typically split into buffered segments

Long interconnects can be optimally buffered.
Performance Optimization

Performance Based Current Density (Signal Lines)

- 0.25 μm and 0.1 μm technology
- Full 3-D Interconnect capacitance extracted
- Accurate I_{opt} and s_{opt} values determined by SPICE simulations

- j_{rms} (max) occurs close to the repeater output due to the distributed nature of the interconnect.
Performance vs Reliability

- Effect of Thermal coupling Included (NTRS Based)

For point-to-point interconnects reliability design limits satisfied even after considering thermal coupling
Presentation Outline

- Introduction
- Thermal Effects and Reliability
- Interconnect Performance Optimization
- High-Current Effects: ESD
- Analysis of Non-uniform Chip Temperature
- Temperature Dependent Performance
- Circuit Optimization: Clock Skew
- Summary
High-Current Effects

Non Steady-State Scenarios

- Electrostatic Discharge (ESD)
 - A short duration (< 200 ns), high current (> 1 A) event
 - Can cause open circuit failure of metals and latent damage that impact EM reliability
Non Steady-State Self-Heating

- Self-heating characteristics of AlCu lines under short-pulse stress conditions (*Electron Device Letters 97*)

 - Metal 1, 2, & 3 show identical SH
 - Higher SH in Metal 4 is due to smaller surface area to volume ratio
 - Interconnect failure temperature is ~ 1000 °C

- Failure current densities are much higher than under normal circuit conditions
High-Current Effects

Open Circuit Failure *(IRPS 2000)*

- Passivation fracture due to the expansion of critical volume of molten AlCu. (@ 1000 °C)

- Independent of overlying dielectric thickness.

K. Banerjee, M. Pedram and A. H. Ajami
High-Current Effects

Latent Interconnect Damage *(IRPS 2000)*

Significant Electromigration Performance Degradation

Unstressed AlCu

Stressed AlCu
Summary (1)

- Thermal Analysis including Interconnect Joule Heating based on ITRS ’99
 - Peak Temperatures in ICs Increase with Technology Scaling in Spite of Constant Power Density
 - Significant Implications for Performance and Reliability
 - Advanced Chip Cooling Techniques may be Necessary

- Thermal Effects and Reliability
 - Thermal Effects Strongly Impacts EM
 - Self-Consistent Analysis: Thermal + EM
 - Point-to-Point Interconnects Optimized for Performance Meets Reliability Based Current Density Limits
 - High-Current Design Rules Must be Followed for I/O and ESD Protection Circuit Interconnects
Presentation Outline

- Introduction
- Thermal Effects and Reliability
- Interconnect Performance Optimization
- High-Current Effects: ESD
- Analysis of Non-uniform Chip Temperature
- Temperature Dependent Performance
- Circuit Optimization: Clock Skew
- Summary
Interconnect Temperature

Heat equation in Interconnect (DAC 2001)

\[
\frac{d^2 T_{\text{line}}}{dx^2} = -\frac{Q}{k_m}
\]

\[
\frac{d^2 T_{\text{line}}(x)}{dx^2} = \lambda^2 T_{\text{line}}(x) - \lambda^2 T_{\text{ref}}(x) - \theta
\]

\(\lambda\) and \(\theta\) are constants
Solution to Heat Equation

\[T(x=0) = 100 \, ^\circ\text{C} \]

\[L = 2000 \, \mu\text{m} \]

\[T(x=2000) = 100 \, ^\circ\text{C} \]

\[T_{\text{ref}} = 100 \, ^\circ\text{C} \]

Thermal profile for different technology nodes

- Tech. node 0.1 micron
- Tech. node 0.25 micron

\[T(x) \]

\[T(x) \]

Position x (micron)

\[T(x=0) = 100 \, ^\circ\text{C} \]

\[T(x=2000) = 100 \, ^\circ\text{C} \]
Non-Uniform Substrate Temperature

- Due to different switching activities, substrate temperature is generally non-uniform.
 - DPM, Functional block clock gating
 - Thermal time constant is much higher than signal propagation constant
Presentation Outline

- Introduction
- Thermal Effects and Reliability
- Interconnect Performance Optimization
- High-Current Effects: ESD
- Analysis of Non-uniform Chip Temperature
- Temperature Dependent Performance
- Circuit Optimization: Clock Skew
- Summary
Non-uniform Interconnect Thermal Profile

- Long global interconnects span large area
 - Experience substrate thermal non-uniformity with high probability

- Assuming a uniform substrate thermal profile results in delay estimation errors
 - Introduces error in wire-planning and optimization steps
Temperature Dependence of Resistance

- Resistance is dependent on temperature.

\[r(x) = \rho_0 (1 + \beta \cdot T(x)) \]

- \(\rho_0 \) is the resistance per unit length at reference temperature.
- \(\beta \) is the temperature coefficient of resistance (1/°C).

- Non-Uniform line temperature \(\Rightarrow \) non-uniform resistance profile.
 - Unit length capacitance is not affected.
Non-Uniform Temperature Dependent Delay

- Distributed RC delay model (DAC 2001)

\[D = R_d (C_L + \int_0^L c_0(x)dx) + \int_0^L r_0(x)(\int_x^L c_0(\tau)d\tau + C_L)dx \]

\[D = D_0 + (c_0L + C_L) \rho_0 \beta \int_0^L T(x)dx - c_0 \rho_0 \beta \int_0^L xT(x)dx \]

\[D_0 \text{ is the Elmore delay model at } 0 \, ^\circ C \]
Delay Degradation with Uniform \(T_{ref}(x) \)

- With uniform thermal profile (0.25 \(\mu \)m):

- 5-6% increase for each 20-degree increase in long global lines
Delay Degradation with Non-uniform $T_{\text{ref}}(x)$

- Effect of exponential thermal profiles:

- Direction of Thermal Gradient is Important

$T_L = 30 \, ^\circ \text{C}$
Directional Thermal Profile

- Increasing (decreasing) thermal profile is equivalent to decreasing (increasing) sizing profile for uniform resistance wire

- Increasing thermal profile has better performance than that of decreasing thermal profile (optimal wire sizing)
Presentation Outline

- Introduction
- Thermal Effects and Reliability
- Interconnect Performance Optimization
- High-Current Effects: ESD
- Analysis of Non-uniform Chip Temperature
- Temperature Dependent Performance
- Circuit Optimization: Clock Skew
- Summary
Clock Net Routing

- Clock is the most vulnerable signal to the underlying thermal non-uniformity
 - Have long global segments in the highest metal layers
 - Delay variations affect skew

- Clock nets must have near-zero skew among their sinks to guarantee correct functionality of the circuits
H-Tree’s

- H-Tree or bottom-up merging techniques

- Balancing loads seen at merging point in H-Tree to have zero-skew at two sides of each branch
Branching Point \((CICC \ 2001) \)

- Equal load at each sink: middle point is the branching point \((l) \)
- With non-uniform thermal profile, branching point dependent on the profile

\[p \quad l \quad q \]

\[x \quad (L-l) \]

\[x \]

\[2 \quad 1 \quad 2 \]
Branching Point cont’d

- Using thermally dependent delay, optimal branching location (l^*) is:

$$\beta \int_{0}^{l^*} T(x) \, dx + l^* - A = 0$$

A is constant

- With symmetric non-uniform thermal profile, the branching point is still at $l^* = L/2$
Movement of Branching Point

In gradually decreasing (increasing) thermal profile, optimal length l^* has to be less than (greater than) $L/2$.
Thermally Dependent Merging

- Thermal non-uniformity can introduce a significant skew in the clock tree
- Thermally-dependent bottom-up merging must be used to minimize the skew
Results *(CICC 2001)*

<table>
<thead>
<tr>
<th>$T_{\text{line}}(x)$</th>
<th>params</th>
<th>$l=l^*$</th>
<th>$l=L/2$ skew%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(x) = ax + b$</td>
<td>$T_H=170$, $T_L=90$</td>
<td>1042</td>
<td>5.42</td>
</tr>
<tr>
<td>$a = \frac{T_H - T_L}{L}$</td>
<td>$T_H=170$, $T_L=110$</td>
<td>1032</td>
<td>3.98</td>
</tr>
<tr>
<td>$b = T_L$</td>
<td>$T_H=170$, $T_L=130$</td>
<td>1021</td>
<td>2.65</td>
</tr>
<tr>
<td>$T(x) = a \cdot e^{-bx}$</td>
<td>$T_H=170$, $T_L=90$</td>
<td>957.5</td>
<td>5.24</td>
</tr>
<tr>
<td>$b = \frac{1}{L} \ln\left(\frac{T_H}{T_L}\right)$</td>
<td>$T_H=170$, $T_L=110$</td>
<td>968.66</td>
<td>3.63</td>
</tr>
<tr>
<td>$a = T_H$</td>
<td>$T_H=170$, $T_L=130$</td>
<td>979.5</td>
<td>2.40</td>
</tr>
<tr>
<td>$T(x) = T_{\text{max}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$</td>
<td>$\mu=2000$, $\sigma=1000$</td>
<td>1210</td>
<td>7.78</td>
</tr>
<tr>
<td></td>
<td>$\mu=1000$, $\sigma=400$</td>
<td>1000</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>$\mu=300$, $\sigma=700$</td>
<td>911</td>
<td>9.57</td>
</tr>
</tbody>
</table>
Effects of Non-Uniform Temperature on EDA Flow

- Interconnect non-uniform thermal profile can affect many EDA flow steps
 - Optimal layer assignment
 - Buffer insertion
 - Wire sizing
 - Gate sizing
Summary (2)

- **Impact of Non-Uniform Substrate Temperature**
 - Different switching activities in the substrate cause thermal gradients
 - Interconnect temperature is strongly dependent on substrate thermal profile
 - As technology scales, effect of substrate temperature becomes more important
Performance dependency
- Delay model for non-uniform line temperature presented
- Delay based on uniform worst case line temperature is not sufficient
- Direction of thermal gradients is important

Signal Integrity: Clock Skew
- Non-uniform substrate temperature introduces skew in the clock tree
- Bottom-up merging techniques must consider non-uniform interconnect thermal profile
- Skew can be minimized by suitable merging