Prototyping to Design: Early Analysis for Power Distribution Network

Kai Wang, Aveek Sarkar, Norman Chang, Shen Lin
Apache Design Solutions Inc.
Outline

- Power integrity challenges
- Early analysis overview
- Power distribution
- Power grid planning
- Static analysis
- Dynamic analysis
- Power switch optimization
- Early CPM
Whatever the chip does
It is all about Switching Current

Switching Power:

Average current = $f(\text{freq}, \text{charge}, V) = \frac{1}{2} C \cdot V^2 \cdot \text{freq}$

Peak current = $f(\text{slew}, \text{charge}, \text{transition}, V)$

Case A: Load C & Freq f

Case B: Load 2C & Freq $\frac{1}{2}$f

Same Average but Different Dynamic Drop!
Voltage Drop Impacts

Logic Failure?

Timing Failure?

Clock Failure?

ΔV_{min} ok?

ΔV@t1 ok?

Resonance freq

Ideal

Δt

True

jitter

IsPV 2009 2009-4-12
Noise Integrity Challenges

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Drop</td>
<td>Functional and timing malfunction</td>
</tr>
<tr>
<td>Timing/Jitter</td>
<td>Package-induced timing uncertainty</td>
</tr>
<tr>
<td>ESD</td>
<td>Low yield from electrostatic discharge</td>
</tr>
<tr>
<td>Substrate</td>
<td>Analog failure from digital noise injection / coupling</td>
</tr>
<tr>
<td>EMI</td>
<td>Excessive chip emission and high electromagnetic interference</td>
</tr>
<tr>
<td>Package</td>
<td>Inadequate package selection for noise and heat toleration</td>
</tr>
</tbody>
</table>
Why Early Analysis?

- Time-to-Result breakdown for power sign-off flow
 - Time to collect clean data ~40%
 - Time to setup the flow/tool ~30%
 - Time to run the analysis ~10%
 - Time to interpret results ~20%

- How to improve?
 - Optimize project setup
 - Trained users
 - Start sooner!
Why Early Analysis?

Cost of Failure

Prototyping

Optimization

SignOff

Failure

Fast Iteration

No Iteration

Front End

P&R

Tape Out

ISPD 2009 2009-4-12
SoC Power Flow

RTL / Block Power Estimation

Partition / Floorplan

Initial Cell Placement Trial Routing

Detailed Placement & Routing

Manufacturing

Early Stage Design & Analysis

- Grid / pad / switch prototyping
- Chip power model
- Package selection
- Clamp cell placement guidance

Block-level & Full-chip Design Analysis

- Full-chip transient
- Vectorless and VCD dynamic
- On-chip inductance

Full-chip Signoff (Pass/Fail)

- IR / DvD
- Jitter
- Thermal

Pre/Post Silicon Diagnosis

- Root cause identification
- Chip power model
Early Prototyping and Analysis

Prototyping
- Grid and pad exploration
- Package planning
- Switch and pad planning
- Decap strategy

Implementation
- Partial design information
- Early dynamic and Chip-Power Model (CPM)
- Significantly improve time-to-result

Generate grid → Define “regions” → Voltage/current Maps

ISPD 2009
2009-4-12
Early Analysis Options

- **Prototyping**
 - Excel2IR, Power-Grid Plan

- **Early Grid-Check**
 - Power routing, Robustness checks

- **Switch/Pad planning**
 - Design, placement, count

- **Early Static**
 - EM checks, Pad placement

- **Early Dynamic**
 - Multi-state multi-cycle analysis

- **Early Chip Power Model**
 - Early Package Design

Extensive capabilities to design and prototype power grid

Different types of analysis to design and verify system power integrity

ISPD 2009 2009-4-12
How does it work?

Prototyping Flow

1. Define your floorplan (REGIONs)
2. Define associated power
3. Define your PG grid
4. Define the PG Pads
 ⇒ **Run your Static Analysis**
5. Define Frequencies or Current profile
6. Assign On-Die Decoupling
 ⇒ **Run your Dynamic Analysis**

Front End **P&R** **Tape Out**

Project’s Time Line

ISPD 2009 2009-4-12
Power Distribution

- Distribute user input power uniformly over user specified regions and/or over user specified IP/blocks
- Static: use DC current
- Dynamic:
 - Triangular waveforms
 - User specified PWL waveforms
 - Transistor-level simulation waveforms
Option 1

- Region E – User specified region. User specified power for this region to be distributed uniformly over power routes in the area.
Option 2

- When pin view (LEF) or detailed view (routing) is not available.
- Distribute power over top level routes over a block.
Option 3

- When LEF pin view available but detailed view (routing) not available.
- Distribute power uniformly over pins based on their connectivity to the top routing.
Option 4

- **Blk c**: hierarchical block with routing
- **Sub blk cc**: sub-block with routing
- Assign power to routing inside block or sub-block based on layer specification.
Power Grid Prototyping

- A simple & quick method for analyzing voltage drop impact.
 - Grid creation
 - Via dropping
 - Pad placement
 - Switch insertion
Prototyping Example

- Define regions and distribute power
Prototyping Example (Cont’d)

- Create mesh for internal power domain
Prototyping Example (Cont’d)

- Create mesh for external power domain
Prototyping Example (Cont’d)

- Create mesh for ground domain
Prototyping Example (Cont’d)

- Add pads
Insert switches
Grid Connectivity Checks

GridCheck
Connectivity checks
Normalized or effective

Missing Vias
Stacked or layer by layer
Filtered by user constraints

Shorts / Unconnects
Analysis w/ unclean layout
List of shorts / opens
Static Analysis

- R network extraction
- DC simulation
Static Analysis Results: IR Map

- **External Power Domain**
- **Internal Power Domain**
- **Ground Domain**
Dynamic Analysis

- RC/RLC network extraction
- User provides current profiles (optional)
- User provides timing windows for switches (low-power design)
- Transient simulation
Dynamic Results: IR Map

- External Power Domain
- Internal Power Domain
- Ground Domain
Switch Optimization Problems

- Power switch placement
- Power switch sizing
- Power switch removal
 - Specify constraint as voltage drop on switch
 - Based on static analysis result
 - Remove redundant switches as many as possible
- Power switch ramp-up scheduling
Switch Removal Example

- Nominal voltage: 1.08V
- Before removal
 - Switch number: 312
 - Maximal voltage drop across switch: 3.512mV
 - Minimal voltage drop across switch: 0.234mV
 - Average voltage drop across switch: 1.393mV
 - Worst voltage drop in internal net: 4.405mV (0.407%)
Switch Removal Result

<table>
<thead>
<tr>
<th>IR-drop Constraint On switch</th>
<th>Removed Switches Number</th>
<th>Area/Leakage Reduction</th>
<th>Max. IR Switch (mV)</th>
<th>Min. IR Switch (mV)</th>
<th>Avg. IR Switch (mV)</th>
<th>Wst. IR Internal Net (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.52mV</td>
<td>11</td>
<td>3.52%</td>
<td>3.512</td>
<td>0.354</td>
<td>1.443</td>
<td>4.405</td>
</tr>
<tr>
<td>4mV</td>
<td>173</td>
<td>55.4%</td>
<td>3.799</td>
<td>2.596</td>
<td>3.103</td>
<td>5.315</td>
</tr>
<tr>
<td>5mV</td>
<td>203</td>
<td>65.1%</td>
<td>4.902</td>
<td>3.153</td>
<td>3.953</td>
<td>7.941</td>
</tr>
<tr>
<td>6mV</td>
<td>212</td>
<td>67.9%</td>
<td>5.727</td>
<td>3.425</td>
<td>4.307</td>
<td>22.51</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>3.512</td>
<td>0.234</td>
<td>1.393</td>
<td>4.405</td>
</tr>
</tbody>
</table>

Before Removal

<table>
<thead>
<tr>
<th>IR-drop Constraint On switch</th>
<th>Removed Switches Number</th>
<th>Area/Leakage Reduction</th>
<th>Max. IR Switch (mV)</th>
<th>Min. IR Switch (mV)</th>
<th>Avg. IR Switch (mV)</th>
<th>Wst. IR Internal Net (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>3.512</td>
<td>0.234</td>
<td>1.393</td>
<td>4.405</td>
</tr>
</tbody>
</table>

ISPD 2009

2009-4-12
Switch Removal Result

Initial IR Map

IR Map with constraint = 4mV
Why Early CPM?

- CPM is a compact and accurate SPICE model for the full-chip power distribution network.
- CPM can be seamlessly integrated for package/board co-design.
- Early CPM helps in pad placement planning and early package selection.
- Different types of CPM can be generated:
 - DC current model (static analysis)
 - Spatial and temporal current model (dynamic analysis)
CPM Equivalent Circuit for Flip Chip

Flip Chip Partitions

Current signature

Topology of G_{ij}

Two-port example shown for simplicity

N = # of Partitions

2N Terminal

SPICE Equivalent Circuit

ISPD 2009 2009-4-12
How does it work?

Prototyping Flow

1. Define your floorplan (REGIONs)
2. Define associated power
3. Define your PG grid
4. Define the PG Pads
 ⇒ Run your Static Analysis
5. Define Frequencies or Current profile
6. Assign On-Die Decoupling
 ⇒ Run your Dynamic Analysis
 ⇒ Create your 1st Chip Power Model
 ⇒ Time & Freq Domain Analysis

FAO
What If?

Project’s Time Line
ISPD 2009 2009-4-12
No package parasitic are used in the simulation (Chip power model is package independent)

No separate dynamic simulation required

CPM internally performs dynamic simulation for capturing the current signature

CPM dynamic simulation run time might be higher than regular dynamic simulation time
Application of CPM in Global Power Integrity

- Global PDN target impedance
- IC-Package resonance analysis
- Dynamic voltage noise budgeting at board and package level
- Package and board optimization
- System in package (SiP)
- EMI analysis
Summary

- Early Static Analysis
 - Plan and verify power distribution network

- Early Dynamic Analysis
 - Explore different scenarios
 - Transitions from one state to another
 - Multi-cycle analysis
 - Early package design
 - Chip power model creation
 - Package response for on-die current transition
Thank You!