Diffusion-Driven Congestion Reduction for Substrate Topological Routing

Shenghua Liu 1, Guoqiang Chen 2, Tom Tong Jing 3
Lei He 3, Robby Dutta 2, Xian-Long Hong 1

1 Tsinghua University, Beijing, 100084, China
2 Magma Design Automation, Inc., San Jose, CA 95110, USA
3 UCLA, Los Angeles, CA, 90095, USA

Speaker: Shenghua Liu
Outline

- Substrate Topological Routing
- Existing Work
- Problem Formulation
- Baseline Algorithms
- Motivating Examples
- Diffusion-Driven Congestion Reduction Algorithm
- Experimental Results
- Conclusions
Outline

- Substrate Topological Routing
- Existing Work
- Problem Formulation
- Baseline Algorithms
- Motivating Examples
- Diffusion-Driven Congestion Reduction Algorithm
- Experimental Results
- Conclusions
- **Package substrate**
 - PGA (pin grid array)
 - BGA (ball grid array)

- **Two techniques to mount the die to the substrate**
 - wire bonding, WB
 - flip chip, FC
Substrate Routing

- Packaging in BGA with wire-bonding technique
 - chip is put into the cavity of substrate
 - chip I/Os are connected to bonding pads around the cavity
 - substrate routing connects bonding pads with balls

- Packaging in BGA with flip-chip technique
 - re-distribution layer, RDL, routing connects chip I/Os to bump array
 - [J. W.Fang et al., DAC, 2007] [J. W.Fang et al., ICCAD, 2005]
 - escape routing breaks bumps out to substrate routing layer
 - break points lay on the escape boundary
 - substrate routing connects break points to balls
Examples

Fig. An example of IC package.

An Example
[Cadence]

- BGA + flip-chip
- Substrate routing
Substrate Topological Routing

- Substrate routing usually has two steps: topological routing and detailed routing
- [Chen and Lee, TCAD 1996] [W. W. Dai et al., DAC 1991] discussed detailed routing
- This paper studies topological routing
- Substrate routing is preferred to be planar, even though multiple routing layers are available [Xiong et al., ASPDAC 2006]
Outline

- Substrate Topological Routing
- Existing Work
- Problem Formulation
- Baseline Algorithms
- Motivating Examples
- Diffusion-Driven Congestion Reduction Algorithm
- Experimental Results
- Conclusions
Existing Work (1)

- A very recent substrate topological routing algorithm [Liu et al., DAC 2008] [Liu et al., TCAD 2009]
 - had the best reported routability in the literature
 - is used in a state of the art commercial tool
 - proposes “dynamic pushing” to tackle the routing order problem
 - proposes “flexible via staggering” to improve the routability
 - resulted in 3.5% net unrouted for nine industrial designs

- However, the congestion reduction method of iteratively avoiding routing through congested area, limited its advantage in routability
The earlier substrate routing Surf system [Staepelaere et al. 1993]
- applied topological routing to generate rubber-band sketch [Dai et al., DAC 1991]
- transformed sketch first to spoke sketch and then to precise geometrical layout
- Surf assumed a fixed end point
- Surf completed topological routing with a global routing stage followed by a local routing.

Our formulation uses end-zone
- more flexible and therefore increases routability.

Our router (named D-Router)
- uses iterative congestion reduction by diffusion without partitioning
- avoids the problem of fixing congestion only within each bin
Existing Work (3)

- A recent on-chip router, BoxRouter [M. Cho and D. Pan, DAC 2006] achieves good routability
 - all nets within a congested window are ripped-up as a whole
 - all nets rerouted simultaneously by an integer linear programming (ILP) method.
 - the ILP method assumes Man-hattan routing, and extension to non-Manhattan substrate routing is unclear.

- D-Router
 - essentially rips-up and reroutes wire segments net-by-net, and not necessarily reroutes all nets inside a window.
 - iterates window by window while BoxRouter expands the window
 - can solve non-Manhattan substrate routing
Outline

- Substrate Topological Routing
- Existing Work
- Problem Formulation
- Baseline Algorithms
- Motivating Examples
- Diffusion-Driven Congestion Reduction Algorithm
- Experimental Results
- Conclusions
Staggered via and end-zone

- When dropping signal vias
 - close to the positions above assigned destination ball
 - vias need to be staggered
 - required offsets between staggered vias

- End-zone
 - center oz is aligned with the ball
 - radius \(R = \sum_i pd_i \) where \(pd_i \) is the maximal staggered via pitch in the layer with index \(i \)
Problem formulation

- Given
 - start-points,
 - end-zones (associated with assigned balls in the bottom layer),
 - netlist (definition of connections between start-points and end-zones),
 - and obstacles (including the escape area for escape routing, the pre-routed connections, vias, and other obstacles in the layer),

- Find
 - a topological routing solution

- Such that
 - routed nets have no intersections
 - satisfy the capacity constraints
 - and have minimal length

Fig. Substrate routing graph (SRG) in a signal layer
The substrate routing plane (SRG) is triangle-meshed by constraint Delaunay triangulation (CDT)

Uniformly spreading points are added for particle-insertion-based CDT

Capacity \(C'_e = l_e \) is the length of edge \(e \)

Congestion \(\eta_{ed} = \frac{\sum_i (w_i + s_i)}{C'_{ed}} \)

where \(w_i \) and \(s_i \) are the wire segment/end-point (i.e. via) width and space of net \(i \) that passes through edge \(e \), respectively.
Outline

- Substrate Topological Routing
- Existing Work
- Problem Formulation
- Baseline Algorithms
- Motivating Examples
- Diffusion-Driven Congestion Reduction Algorithm
- Experimental Results
- Conclusions
Baseline Algorithms (1)

- [Liu et al., DAC, 2008] is a very recent published substrate topological routing
 - Same problem formulation with D-router
 - It routes net by net based on A* algorithm with dynamic pushing and flexible via-staggering.
 - It also applies post-routing rip-up-and-reroute iteration for congestion reduction.
 - It claimed that good routing topology could be achieved at the beginning for routing convergence.

- D-router chooses its first routing iteration as an initial routing
 - Congestion is not considered firstly
Negotiation-based substrate routing is also compared

- Negotiation-based algorithm has obtained high-quality solutions to on-chip routing of FPGA [McMurchie and Ebeling 1995] and ASIC [Roy and Markov 2007] [Cho et al. 2007]
- Negotiation-based cost function was implemented based on the work [Roy and Markov 2007]

\[NC'_e = (rc + h_e) \times p_e + ec \]

where \(rc \) and \(ec \) are the realized and estimated costs, \(p_e \) reflects the present congestion, and \(h_e \) represents the congestion history. \(h_e \) is given by

\[
 h_e^{k+1} = \begin{cases}
 h_e^k + h_{inc} , & \text{if } e \text{ has overflow} \\
 h_e^k , & \text{otherwise}
\end{cases}
\]
Outline

- Substrate Topological Routing
- Existing Work
- Problem Formulation
- Baseline Algorithms
- Motivating Examples
- Diffusion-Driven Congestion Reduction Algorithm
- Experimental Results
- Conclusions
D-Router Scheme

- The scheme of D-Router
 - starts with any initial routing solution
 - One iteration of routing in [Liu et al., DAC, 2008] is used
 - then finds out each highly congested area
 - spreads out net wires to its neighbors for congestion reduction
The example in Fig (a) illustrates why D-Router is free of the routing order

- Routing order D-C-B-A generates solution (b)
- Routing order A-(BCD) get solution (c) firstly, but (d) in the later iteration by A* and Maze based router
- D-router spreads congested nets in (c), and achieves (b)
A Routing Puzzle

- The routing order problem can become harder even in a two-net case.
- Figure bellow gives a routing puzzle for the algorithm [Liu et al., DAC, 2008]

Fig. An example without a valid net ordering.
Outline

- Substrate Topological Routing
- Existing Work
- Problem Formulation
- Baseline Algorithms
- Motivating Examples
- **Diffusion-Driven Congestion Reduction Algorithm**
- Experimental Results
- Conclusions
Diffusion

- Congestion reduction in D-Router simulates the process of dopant diffusion
- Each triangle edge is an atomic location unit for net movement.
- The atomic diffusion is to move one net segment or end-point to adjacent triangle edges
- D-Router is based on an localized and non-analytical diffusion model
Diffusion window

- Define the *concentration* \(d_e(t) \) of PCDT edge \(e \) as congestion on edge \(e \) for moment \(t \)

\[
d_e(t) = \eta_e(t)
\]

- *Diffusion window* is an isolated area for congestion reduction
 - a highly congested PCDT edge \(e \) as a *diffusion source*
 - diffusion window includes edge \(e \) itself and adjacent edges sets \(E_1 \) and \(E_2 \)

Fig. A diffusion window for edge \(e \).
Diffusion velocity and direction

- Diffusion concentration inside window
 - when a net moves towards set E_1 or E_2, it may pass through more than one edge
 - *diffused edges* Edf is defined as the edges in $E1$ or $E2$ through which the net passes
 - the concentration value of Edf

 \[
 d_{Edf}(t) = \max_{e_i \in Edf} \{ \eta_e(t) \}
 \]

- Diffusion direction
 - Diffusion velocity
 \[
 v_{e+}(t) = -(d_{Edf^+}(t) - d_e(t))/d_e(t)
 \]
 \[
 v_{e-}(t) = -(d_{Edf^-}(t) - d_e(t))/d_e(t)
 \]
 where Edf^+ and Edf^- are the diffused edges in $E1$ and $E2$
 - we select the direction with higher speed to perform the diffusion at each moment
 - It means towards low concentration and low congestion.
Momentary-diffusion operations

- Each operation is an atomic net segment/end-point movement from a diffusion source to selected diffusion direction.

Case 1: Normal, Fig (a)-(b);
Case 2: Net \(n \) stops at a diffusion source \(e \), Fig (c)-(d)
Case 3: Net \(m \) stops at vertex \(v_1 \) beside net \(n \), Fig (e)-(f)
Case 4: Net \(m \) starts from vertex \(v_1 \) beside net \(n \), Fig (g)
Diffusion equilibrium and convergence

- **Condition I:** If the congestion constraint is satisfied on edge e, diffusion reaches equilibrium.

- **Condition II:** Diffusion reaches equilibrium when next momentary-diffusion is over diffusion
 - *Over diffusion* is a momentary-diffusion that makes the diffusion source less congested than diffused edges, Edf.

- **Condition III:** Both diffusion directions are blocked or forbidden

- A heap H and a taboo list Tb are maintained for the process of diffusion
 - H maintains all possible diffusion sources and is heapified by edge congestion
 - Tb maintains all the edges that are no longer allowed to diffuse congestion
 - When a diffusion source in H reaches equilibrium due to Condition II, it is added into Tb until any neighbor edge reduces congestion.
Outline

- Substrate Topological Routing
- Existing Work
- Problem Formulation
- Baseline Algorithms
- Motivating Examples
- Diffusion-Driven Congestion Reduction Algorithm
- Experimental Results
- Conclusions
Table 1 summarizes the test case characteristics

- package type and size, die size, and
- total number of nets 6415.

<table>
<thead>
<tr>
<th>Test case ID</th>
<th>Package type</th>
<th>Package size*</th>
<th>Die(s) size*</th>
<th>Number of nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>2-0-2</td>
<td>10000×10000</td>
<td>75007×700</td>
<td>315</td>
</tr>
<tr>
<td>B2</td>
<td>2-2-2</td>
<td>35000×35000</td>
<td>14000×15000</td>
<td>474</td>
</tr>
<tr>
<td>F3</td>
<td>2-2-2</td>
<td>30000×30000</td>
<td>9000×10500</td>
<td>543</td>
</tr>
<tr>
<td>P4</td>
<td>3-1-3</td>
<td>40000×40000</td>
<td>9300×9300</td>
<td>800</td>
</tr>
<tr>
<td>A5</td>
<td>3-2-3</td>
<td>35000×35000</td>
<td>12000×12000</td>
<td>506</td>
</tr>
<tr>
<td>A6</td>
<td>3-2-3</td>
<td>40000×40000</td>
<td>20000×22000</td>
<td>891</td>
</tr>
<tr>
<td>X7</td>
<td>4-2-4</td>
<td>40000×40000</td>
<td>20000×23000</td>
<td>990</td>
</tr>
<tr>
<td>A8</td>
<td>4-2-4</td>
<td>45000×45000</td>
<td>20000×19000</td>
<td>1009</td>
</tr>
<tr>
<td>S9</td>
<td>1-0-1</td>
<td>12000×12000</td>
<td>3900×6700</td>
<td>4400×5700</td>
</tr>
<tr>
<td>S10</td>
<td>2-2-2</td>
<td>37500×37500</td>
<td>11000×10000</td>
<td>4700×3800</td>
</tr>
<tr>
<td>total</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
The last nine test cases

- The last nine test cases are from [Liu et al., DAC 2008]
- However, designers practically prefer some I/Os to connect to solder balls in specified regions for the sake of PCB design
- In our experiments, the solder balls are reassigned with such region constraint
- The netlist is changed, which becomes harder to solve by [Liu et al., DAC 2008]
- Thus, new names are given to the nine test cases in order to distinguish from those in [Liu et al., DAC 2008]
Comparison results

- Two alternative algorithms for comparison
 - [7] is the recently published substrate topological routing algorithm [Liu et al., DAC, 2008]
 - Nego is negotiation-based substrate routing introduced in the baseline algorithms

Table 2: EXPERIMENTAL RESULTS
(Nego: negotiation-based substrate routing)

<table>
<thead>
<tr>
<th>Test case</th>
<th>Number of failed nets</th>
<th>Wire length (mm)</th>
<th>Runtime (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>51 41 26</td>
<td>1.64 1.69 1.70</td>
<td>5.34 9.79 7.17</td>
</tr>
<tr>
<td>B2</td>
<td>31 30 0</td>
<td>6.98 6.98 7.17</td>
<td>11.39 17.84 9.00</td>
</tr>
<tr>
<td>F3</td>
<td>24 22 0</td>
<td>7.79 7.80 7.96</td>
<td>14.36 14.41 16.91</td>
</tr>
<tr>
<td>P4</td>
<td>135 135 48</td>
<td>11.90 11.90 12.30</td>
<td>41.64 20.04 13.87</td>
</tr>
<tr>
<td>A5</td>
<td>64 63 7</td>
<td>14.90 14.90 16.30</td>
<td>15.27 17.65 10.92</td>
</tr>
<tr>
<td>A6</td>
<td>60 57 15</td>
<td>4.98 4.99 4.93</td>
<td>12.12 18.77 12.87</td>
</tr>
<tr>
<td>X7</td>
<td>45 45 8</td>
<td>6.55 6.54 6.53</td>
<td>39.51 45.11 25.38</td>
</tr>
<tr>
<td>A8</td>
<td>16 16 0</td>
<td>18.50 18.50 18.70</td>
<td>44.55 47.24 9.32</td>
</tr>
<tr>
<td>S9</td>
<td>22 20 0</td>
<td>1.67 1.67 1.65</td>
<td>2.11 3.2 0.96</td>
</tr>
<tr>
<td>S10</td>
<td>32 32 0</td>
<td>9.53 9.53 7.90</td>
<td>284.17 286.34 3.01</td>
</tr>
<tr>
<td>total</td>
<td>480 461 104 (1/4.6x)(1/4.4x)</td>
<td>— — —</td>
<td>— — —</td>
</tr>
<tr>
<td>average</td>
<td>— — —</td>
<td>8.45 8.46 8.51</td>
<td>46.05 47.04 (1/4.2x)(1/4.3x)</td>
</tr>
</tbody>
</table>

D-Router reduces the number of unrouted nets to 104, a 4.6x net number reduction, also reduces runtime by an average 4.3x
Routing results

Routing (a) before and (b) after diffusion.

The left figure is a comparison of magnified view of the corner of cases B2 and X3.

(a) (b) is the results from [Liu et al., DAC, 2008]

(c) (d) is the results generated by D-Router
Outline

- Substrate Topological Routing
- Existing Work
- Problem Formulation
- Baseline Algorithms
- Motivating Examples
- Diffusion-Driven Congestion Reduction Algorithm
- Experimental Results
- Conclusions
Conclusions

- On-chip substrate routing for high density packages is challenging
- The existing substrate routing algorithms often result in a large number of unrouted nets that have to be routed manually
- D-Router
 - an effective yet efficient diffusion-driven method
 - improves routability by a simulated diffusion process based on the duality between congestion and concentration
 - Compared with a recently published A*-based algorithm used in a state of the art commercial tool, it reduces the number of unrouted nets by 4.6x, with an average 4.3x runtime reduction
Thank you!
The “dynamic pushing” in [Liu et al., DAC, 2008] only pushes the blocking net wires, and does not “squeeze” through congested area.

An example of “dynamic pushing” in routing two nets (a) routed net A blocks the shortest connection of net B, (b) net B pushes net A for the optimal solution.