Today’s Talk

1) Rect. packing-base analog placement
 ➔ Sequence-pair Packing
 ➔ Constraint-driven Optimization

2) With or without packing scenario, how do we develop analog placement?
 ➔ Analytical Analog placement with proximity constraints
 ➔ Comparison : w/ and w/o topological packing technique
INPUT: A set of rectangles, each of which has width and height
OUTPUT: A placement of rectangles
SUBJECT TO: No overlapping of any pair of rectangles
OBJECTIVE: Minimize bounding box of all the rectangles

Sequence-Pair[ICCAD95], [TCAD96]
Topological Representation and Constraint Graphs

Placement (w/o any overlapping):

- a is left-of c (c is right of a)
- b is left-of c (c is right of b)
- b is below a (a is above b)

Constraint graphs:

- Vertical const. graph
- Horizontal const. graph

Compacted placement:

NOTE: G_v, G_h are weighted DAG
Sequence-Pair(1)

Placement

Sequence-Pair

$SP = (\alpha, \beta) = (abcdef, bfcaed)$

$\alpha^{-1}(X)$: position of X in α

$\alpha^{-1}(X) < \alpha^{-1}(Y), \beta^{-1}(X) < \beta^{-1}(Y) \iff X$ is left-of Y

$\beta^{-1}(X)$: position of X in β

$\alpha^{-1}(X) > \alpha^{-1}(Y), \beta^{-1}(X) < \beta^{-1}(Y) \iff X$ is below Y
Sequence-Pair(2)

Gh: horizontal constraint graph Gv: vertical constraint graph

\[
\begin{align*}
S_h & \rightarrow a \rightarrow d \rightarrow T_h \\
& \rightarrow b \rightarrow c \rightarrow e \\
& \rightarrow f
\end{align*}
\]

\[
\begin{align*}
T_v & \rightarrow a \rightarrow d \\
& \rightarrow b \rightarrow c \\
& \rightarrow e \\
& \rightarrow f \\
S_v
\end{align*}
\]

\[
\begin{align*}
X & \rightarrow Y \\
W(X)/2 + W(Y)/2
\end{align*}
\]

\[
\begin{align*}
Y & \rightarrow X \\
H(Y)/2 + H(X)/2
\end{align*}
\]

NOTE: w(X), h(X): width, height of X
1. Every placement corresponds to a sequence-pair

2. Packing according to constraint graphs can generate a minimal area placement under the same topological description

3. A solution space induced by sequence-pairs always includes an optimum placement with respect to area
Sequence-Pair(4)

Application to simulated annealing

Moves:

1. FullExchange(a, b):

2. HalfExchange(a, b, β):
Practical Applications of Packing

• Building block placement
• Floorplanning for large scale circuits
• Analog placement
• 3D Cube packing
• Polygon packing
• Scheduling for dynamic reconfigurable system

...
Analog Placement

Device Generation Cell Design Block Design

Each Placement…

1. Circuit netlist
2. Design rule
3. Specification / constraints

Layout
(Layers w/ Geometry, Contacts, Wires...)

Commemoration for Professor Y. Kajitani : ISPD 2013
Analog Placement

• Geometry-based placement
 – ILAC [CICC88], KOAN/ANAGRAM [ICCAD88]
 → larger area and time consuming

• Topology-based placement (modern)
 – BSG, Sequence-Pair, O-tree, B*-tree, TCG-S, ...
 – Constraint-driven
 • symmetry, common-centroid, alignment and others
 → smaller area and rapid convergence
Constraint-driven Placement

1. Formulation as a rectangle packing problem
2. Extensions under constraints
 ● Separation Constraint
 ● Alignment Constraint
 ● Abutment Constraint
 ● Boundary Constraint
 ● Symmetry Constraint
 ● Preplaced Constraint
 ● Range Constraint
 ● Cluster Constraint
Our Works in Constraint-driven Analog Layout

- **Placement**
 - ASPDAC04, GLSVLSI04, IEICE04, ISVLIS06a, ASPDAC09, ASPDAC08
 - AMPER produced by JEDAT

- **Routing**
 - GLSVLSI05, IEICE06

- **Compaction**
 - ASPDAC02, ISVLSI06b
 - GRANA produced by JEDAT

Analog Constraint Formulation

Separation Constraint

![Separation Constraint Diagram]

horizontal constraint graph:

maximal separation

\[w(B, \text{pdf})/2 + w(C, \text{poly})/2 + 0.85 \]

Alignment Constraint

![Alignment Constraint Diagram]

sequence-pair condition:

\[\alpha^{-1}(A) < \alpha^{-1}(B), \beta^{-1}(A) < \beta^{-1}(B) \]

bottom-alignment

\[(B-A)/2 \]

vertical constraint graph:

\[h(B)/2 - h(A)/2 \]

Abutment Constraint

![Abutment Constraint Diagram]

sequence-pair condition:

\[\alpha^{-1}(X) < \alpha^{-1}(A) \]

vertical constraint graph:

\[\min(h(A), h(B))/2 - \max(h(A), h(B))/2 \]

Symmetry Constraint

![Symmetry Constraint Diagram]

sequence-pair condition:

\[\alpha^{-1}(A) < \alpha^{-1}(B) \iff \beta^{-1}(\text{sym}(B)) < \beta^{-1}(\text{sym}(A)) \]

horizontal constraint graph:

\[w(A)/2 + d_1 \]

vertical constraint graph:

\[w(B)/2 + d_2 \]

NOTE: X is dummy node, d_1, d_2 should be precalculated
Objective and Optimization

- **Objective**: Area + Wirelength (HPWL or MST)

- **Framework**: Simulated Annealing
 - **Moves**
 - **Feasibility Check**
 - Topological Checking \rightarrow sequence-pair conditions
 - Geometrical Checking \rightarrow no positive cycle
Design Flow for Analog Layout

- Schematic Entry
 - Netlist Generation
 - Simulation & Device Sizing
- Device Generation
- Layout Constraint Generation
- Constraint-Driven Placement
- Routing
- DRC, LVS
- Compaction (option)

LPE & PostLayout Simulation
Design Case Study: LCD-Driver

NOTE: Both ICs by ‘manual’ and ‘const-driven’ implemented on NECEL 0.35um, both of them could work. (Collaboration with NEC micro systems.)
1) Rect. packing-base analog placement
 ➔ Sequence-pair Packing
 ➔ Constraint-driven Optimization

2) With or without packing scenario, how do we develop analog placement?
 ➔ Analytical Analog placement with proximity constraints
 ➔ Comparison : w/ and w/o topological packing technique
Representation of Placement (1)

(1) Schematic

(2) Symbolic/Topological Placement

(3) Physical/Geometrical Placement

(4) Electrical Placement
Representation of Placement (2)

Schematic Topological Placement Geometrical Placement Electrical Placement

Outputs
- Outline
 - I/O pin
 - Device size
- Layers
 - Design rules
- Parasitics

Steps
- Device sizing
- Floorplanning
- Device Generation (PDK)
- Layout (Placement/Routing/Compaction)
- LPE

Commemoration for Professor Y. Kajitani : ISPD 2013
Optimization of Placement

Constraint-driven

1. Spec.: $V_{off} < 1\text{mV}$
2. Extract diff. pair (A, B)
3. Symm. Const.: A and B is x-symmetry for X
4. Represent placement and constraint topologically
5. Search optimal placement under constraints

Sensitivity-driven

1. Spec.: $V_{off} < 1\text{mV}$
2. Generate parasitic network
3. Sensitivity analysis
 $$\min\left(\frac{\partial V_{\text{offset}}}{\partial X_A} + \frac{\partial V_{\text{offset}}}{\partial X_B} + \frac{\partial V_{\text{offset}}}{\partial X_C}\right)$$
4. Perturb placement of A, B, C and optimize placement

Commemoration for Professor Y. Kajitani : ISPD 2013
Constraint-driven v.s. Sensitivity-driven

Constraint-driven

- Need to substitute objective and constraints
- Available to use general optimizer like SA
- Rapid computation and global optimization
- EDA and users can have explicit consensus by means of constraints

Sensitivity-driven

- Directly optimize specification without substituting objective and constraints
- Huge computation and local optimization
- All can be done in EDA
- Need routing information for accuracy
Preliminary of Sensitivity-driven: Analytical Analog Placement

Analytical Placement
Pros: high speed, good scalability
Cons: many overlaps, messy

Proximity function induced by group information

Analytical analog placement w/ proximity constraints
1. Extract sub-netlist corresponding to current mirror, differential pair, logic primitive...

2. Place blocks corresponding to sub-netlists.
w/o Rect. Packing: Analytical Formulation

Min: CostOfHPWL + CostOfOverlap + CostOfGroupProximity

Variables: x and y-coordinates of each cell

CostOfHPWL \rightarrow LogSumExp.

CostOfHPWL \rightarrow Overlap Removal Length, Takashima, et. al. SASIMI 2010.

CostOfGroupProximity \rightarrow like an HPWL formulation.

Well Group: P-well, N-well with same potential
CM. Group: current mirrors
DP. Group: differential pairs
Signal Group: path from VDD to GND
Cap. Group: capacitances with same size
Res. Group: resistors connected in parallel or serial.
Group Proximity Cost Formulation

\[\text{GroupCost} = \max(\text{AreaOfBoundBox, SumOfCellArea}) \]

Group : \{ A, B, C, D, E, F, G, H \}

\[x_{\min} = t \times \log \exp \left(\frac{1}{t} \right) \]
\[i \in \{ A, H \} \]

\[x_{\max} = t \times \log \exp \left(\frac{r(i)}{t} \right) \]
\[i \in \{ A, H \} \]

\[t \times \log \left\{ \exp \left((x_{\max} - x_{\min}) \times (y_{\max} - y_{\min}) / t \right) + \exp \left(\frac{a(i)}{t} \right) \right\} \]
\[i \in \{ A, \ldots, H \} \]
Example: Analytical Analog Placement w/ proximity constraints

TIME : 1.0 sec.
AREA : 29,793 (100%)
HPWL : 2,998 (100%)

But, many DR-errors.
Analytical Analog Placement w/o Proximity Constraints

TIME : 1.0 sec.
AREA : 22,637 (76%)
HPWL : 4,259 (142%)
Eliminating DR-errors

De-compaction
No DR-errors.

1D-Compaction
No DR-errors.
w/ Rect. Packing: Multi-output Floorplan

- Circuit Netlist w/ Device Configuration
- Floorplan
- FP
- FP
- FP
- Diffusion/Gate-sharing
- Routing
- Layout
- Layout
- Layout
- Designer’s Choice
- Parameter Tuning

Redesign of Netlist or Regeneration of Devices
Comparison:
Rect. Packing-base Placement (1)

<table>
<thead>
<tr>
<th>AREA</th>
<th>HPWL</th>
<th>DR-errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>23,212 (78%)</td>
<td>3,443 (115%)</td>
<td>No DR</td>
</tr>
<tr>
<td>25,405 (85%)</td>
<td>4,010 (134%)</td>
<td>No DR</td>
</tr>
</tbody>
</table>

Total time for 10 placements: 7.0 sec.
Comparison:
Rect. Packing-base Placement (2)

AREA : 27,070 (91%)
HPWL : 3,814 (127%)
No DR-errors.

AREA : 26,798 (90%)
HWPL : 4,083 (136%)
No DR-errors.
Diffusions (gates) can save area if they have the same net.

Possible gate/diffusion sharing:
A set of blocks forming a topological row and array.
Different rules for separation between wells

A and B have the same potential → separation = ws1

A and B have the same well island → separation = ds2 not for wells but diffusion

A and B have different potential wells → separation = ws3

possible well-island:
a set of blocks which are rectangular extractable
Control of Adjacency: Diffusion Sharing

w/o diffusion sharing w/ diffusion sharing
Summary

- Rect. Packing:
 - Compacted
 - Multi-output
 - Soft modules
 - No DR errors
 - Easy to take constraint-driven
 - Easy to control adjacency (constraints)
 - Floorplan to estimate area

- Analytical:
 - Less wire-length
 - Quick
 - Scalability
 - Potentially applicable to sensitivity-driven
 - Initial placement for manual designer
Thank you!
Analog Layout Constraint

- **Netlist**
 - PWR/GND
 - Hierarchical Structure
 - Differential Pair,
 - Current Mirror, …
 - Logic (INV, NAND, …)

- **IP**
 - Know-how
 - Template

- **Floorplan**
 - Block Size
 - Well Island
 - Diffusion Sharing
 - Multiplier/Finger

- **Process variation**
 - $\sigma(\Delta V_{th})$, $\sigma(\Delta \beta)$, $\sigma(\Delta \lambda)$
 - Distance-Dependent
 - Size-Dependent

- **Sim. report**
 - Sensitivity
 - Parasitics

Constraint
- Guard-Ring
- Dummy
- Pair / Array
- Symmetry
- Group

Constraint-Driven Layout System

Commemoration for Professor Y. Kajitani : ISPD 2013
Separation Constraint

NOTE: \(w(X, L) = \text{width of layer } L \text{ of device } X \)

horizontal constraint graph:

- \(w(A, \text{pdiff})/2 + w(B, \text{pdiff})/2 + 1.5 \)
- \(w(B, \text{pdiff})/2 + w(C, \text{poly})/2 + 0.85 \)
- \(w(C, \text{poly})/2 + w(D, \text{poly})/2 + 0.45 \)

maximal separation

- \(w(A, \text{pdiff})/2 + w(B, \text{pdiff})/2 + 1.5 \)
- \(w(B, \text{pdiff})/2 + w(C, \text{poly})/2 + 0.85 \)
Alignment Constraint

sequence-pair condition:

\[\alpha^{-1}(A) < \alpha^{-1}(B), \beta^{-1}(A) < \beta^{-1}(B)\]
\[\text{or} \quad \alpha^{-1}(B) < \alpha^{-1}(A), \beta^{-1}(B) < \beta^{-1}(A)\]

SP=(…A…B…, …A…B…)
SP=(…B…A…, …B…A…)

vertical constraint graph:

h(B)/2-h(A)/2
h(A)/2-h(B)/2
h(B)/2-h(A)/2
0
-0
Abutment Constraint

sequence-pair condition:

\[\alpha^{-1}(A) < \alpha^{-1}(B), \beta^{-1}(A) < \beta^{-1}(B) \]

and

\[\alpha^{-1}(X) < \alpha^{-1}(A) \text{ or } \alpha^{-1}(B) < \alpha^{-1}(X) \]

or

\[\beta^{-1}(X) < \beta^{-1}(A) \text{ or } \beta^{-1}(B) < \beta^{-1}(X) \]

for \(\forall X (\neq A, B) \)

vertical constraint graph:

\[\min(h(A), h(B))/2 - \max(h(A), h(B))/2 \]

and

\[\min(h(A), h(B))/2 - \max(h(A), h(B))/2 \]
Boundary Constraint

sequence-pair condition:

\[\alpha^{-1}(A) < \alpha^{-1}(X) \text{ or } \beta^{-1}(A) < \beta^{-1}(X) \text{ for } \forall X (\neq A) \]

\[\alpha^{-1}(X) < \alpha^{-1}(B) \text{ or } \beta^{-1}(B) < \beta^{-1}(X) \text{ for } \forall X (\neq B) \]

horizontal constraint graph:

vertical constraint graph:
Range Constraint

horizontal constraint graph: vertical constraint graph:

NOTE: P, Q are dummy blocks
range const. \(\rightarrow\) preplaced const. if P and Q are the same as A
Symmetry Constraint

sequence-pair condition:

\[\alpha^{-1}(A) < \alpha^{-1}(B) \iff \beta^{-1}(\text{sym}(B)) < \beta^{-1}(\text{sym}(A)) \]

horizontal constraint graph:

vertical constraint graph:

horizontal symmetry group

pair-symmetry: (A,C), (B,D)

self-symmetry: E

NOTE: sym(A)=C, sym(B)=D, sym(E)=E

NOTE: X is dummy node, d1, d2 should be precalculated
Cluster Constraint(1)

Horizontal-Convex:
For any pair \((a, b)\) in \(X\) such that “a” is left-of “b”:
Any device “c” such that
“a” is left-of “c” and “c” is left-of “b” also belongs to \(X\)

Horizontal-convex

\[a, b, c \in X \]

Not Horizontal-convex

\[a, b \in X, c \notin X \]
Cluster Constraint(2)

X is Convexly left-of Y:
• X and Y are horizontal-convex
• No pair (a, b) such that a ∈ X is right-of b ∈ Y

X is convexly left-below Y:
• X is convexly left-of and convexly below Y
• No pair (a, b) such that a ∈ X is right-of and above b ∈ Y
Cluster Constraint (4)

sequence-pair condition for all convex relation

<table>
<thead>
<tr>
<th>X is convexly ... Y</th>
<th>Sequence-Pair (\forall a \in X) and (\forall b \in Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>left-of</td>
<td>({ \alpha^{-1}(a) < \alpha^{-1}(b) } \cup { \beta^{-1}(a) < \beta^{-1}(b) })</td>
</tr>
<tr>
<td>below</td>
<td>({ \alpha^{-1}(a) > \alpha^{-1}(b) } \cup { \beta^{-1}(a) < \beta^{-1}(b) })</td>
</tr>
<tr>
<td>right-of</td>
<td>({ \alpha^{-1}(a) > \alpha^{-1}(b) } \cup { \beta^{-1}(a) > \beta^{-1}(b) })</td>
</tr>
<tr>
<td>above</td>
<td>({ \alpha^{-1}(a) < \alpha^{-1}(b) } \cup { \beta^{-1}(a) > \beta^{-1}(b) })</td>
</tr>
<tr>
<td>left-below</td>
<td>(\beta^{-1}(a) < \beta^{-1}(b))</td>
</tr>
<tr>
<td>right-below</td>
<td>(\alpha^{-1}(a) > \alpha^{-1}(b))</td>
</tr>
<tr>
<td>right-above</td>
<td>(\beta^{-1}(a) > \beta^{-1}(b))</td>
</tr>
<tr>
<td>left-above</td>
<td>(\alpha^{-1}(a) < \alpha^{-1}(b))</td>
</tr>
</tbody>
</table>