Clock Enable Timing Closure Methodology

Harish Dangat
Samsung Semiconductor
Agenda

- Basics of Clock Gating
- Fixing Clock Enable Timing in RTL-2-GDSII Flow
- Results
- Conclusion
Clock Gating Basic

- Use internal (or external) signal to disable clock

- This saves Dynamic Power

- A must for low power design

- Creates new timing paths
Two Types of Clock Gating

- Using AND gate
- Using ICG Cell

Rest of presentation is about ICG type clock gating
Register to Register Path

Check Setup-hold

Check Clock-Skew
Register to Register Path with Clock Gating

- CE Path: 1ns
- CE clk Path: 0.5ns
- Clock gated clk Path: 1ns

Harish Dangat
What is different about CE path

- Not noticed at Synthesis
- Timing available is less than cycle time
- ICG cells are not skew balanced with registers
- Violations are seen only after Clock Tree Synthesis
- Mostly affects timing critical blocks
Effect of ICG Cells Location in Clock Tree

CLK

0ns 0.25ns 0.5ns 0.75ns 1ns

Architectural Gaters

Potential bad Location CE timing

Acceptable Location

Good Location

Harish Dangat
Agenda

• Basics of Clock Gating

• Fixing Clock Enable Timing in RTL-2-GDSII Flow

• Results

• Conclusion
What to Do at RTL Level

• CE signal should be generated in the same module

• Generate CE signal from functionally related modules

• Simplify the logic that generates CE signal
CE Timing at Synthesis Step

- Reduce cycle time to ICG cells

```python
set_clock_latency  - (cycle_time/2) \ 
[get_pin all_clock_gating_registers/CK]
set_clock_latency  0  [get_pin all_clock_gating_registers/ECK]
```

- Set high setup time on ICG cells

```python
set timing_scgc_override_library_setup_hold true
set_clock_gating_style  -setup 400ps clock_gate
```

- Turn off bus sharing in Power Compiler

```python
set_clock_gating_style  -no_sharing
```
CE Timing at Floorplan Step

- When placing modules, pay attention to CE signal connectivity
- If CE signal(s) are input pins, place them close to modules that receive it

![CE timing problem](image1)
![Good CE timing](image2)

Harish Dangat
CE Timing at placement Step

- Tightening available cycle time by changing ICG setup time

```plaintext
set timing_scgc_override_library_setup_hold true
set_clock_gating_style -setup 400ps clock_gate
```

- Tightening available cycle time by changing ICG clock latency

```plaintext
set_clock_latency -(cycle_time/2) \ 
[get_pin all_clock_gating_registers/CK]
set_clock_latency 0  [get_pin all_clock_gating_registers/ECK]
```
CE Timing at placement Step (cont)

- Create group path and add extra weight

```bash
group_path -weight 5 -name CLOCK_ENABLE \\
-to [get_cell */*GATE_LATCH]
```

- Place ICG cells close to flops

```bash
setplacer_disable_auto_bound_for_gated_clock false
```
How to Select Latency?

• Apply global latency
 – Easy, Not very efficient

• Apply based on ICG depth and fanout
 – Less depth – more latency
 – More fanout – more latency

• Apply based on CTS results
 – More accurate
CE Timing at Clock Tree Synthesis

• Clone ICG Cells

```plaintext
set icg_cells { icg_cell_1 icg_cell_2 }

split_clock_net -objects [get_cells $icg_cells] \ 
-\split_intermediate_level_clock_gates -gate_sizing

remove_ideal_network [all_fanout -flat -clock_tree]
remove_propagated_clock *
remove_clock_tree
```
ICG Cloning

Harish Dangat
CE Timing at Clock Tree Synthesis
Cloning based on fanout and slack

foreach_in_collection CELLS [get_cells * -hier -filter "ref_name =~ *ICG*"] {

 set names [get_object_name $CELLS]
 set ckPins [get_object_name [get_pins -of_object [get_cells $CELLS] \
 -filter "full_name =~ */CLK"]]
 set eckPins [get_object_name [get_pins -of_object [get_cells $CELLS] \
 -filter "full_name =~ */ENABLE_CLK"]]
 set eckFanout [sizeof_collection [all_fanout -from [get_pins $eckPins] -flat]]
 set cgSlack [get_attribute [get_pins ${names}/ENABLE] max_slack]
 if {$cgSlack > -0.150 && $eckFanout > 100} {
 echo "${names}/E"
 }
}

remove_propagated_clock *
remove_clock_tree
CE Timing at Clock Tree Synthesis
Two Pass Flow

1. Placement
2. Clone clock tree
3. Write Verilog
4. New Placement
5. Clock Tree Synthesis
Agenda

• Basics of Clock Gating
• Problems Created by Clock Gating
• Fixing Clock Enable Timing in RTL-2-GDSII Flow
• Results
• Conclusion
Die Temperature Without and With Clock Gating

Relative POWER5 processor temperature (Celsius)
- without clock gating (left) and with clock gating (right)

ICG Cells and Flops Autobound
Comparing Latency Schemes

Path

CE violation (ns)

0
1
2
3
4
5
6
7
8
9
0
100
200
300
400
500
600
700
800
900
Selective latency
1ns latency
Baseline run
Results – Effect on cloning on latency

With Cloning

Without Cloning

Paths (Sorted, low to high)
Clock Subtree After Cloning

Harish Dangat
Comparing Single Pass and Two Pass flow

place_opt
clock_opt

place_opt
clock_clone
new place_opt
clock_opt
Different schemes to minimize latency
Conclusion

• Clock gating is requirement for low-power design

• Closing CE timing requires to pay attention at all stages of design

• By planning at every step, CE timing can be closed in high-speed low-power designs
Thank You!
Battery Life is Important

Smartphone power for continuous web access

http://www.phonesreview.co.uk/2012/09/26/iphone-5-vs-samsung-galaxy-s3-battery-life-confrontation/
How to Minimize Power

- Use process designed for low power
- Use low power architecture
- User power-gating
- Use Clock-gating
Power Saving Opportunity

Clock Gating

- System Algorithm
- System Architecture
- RTL
- Gate Level
- GDSII
Few Facts About Clock Tree Power

• 20% to 40% Dynamic power is consumed by clock tree

• About 80% clock tree power is consumed last stages of clock tree

Ref – ISPLED, 2008
Architectural/Corse Grain Clock Gating

USB_CLOCK

Control Logic

Clock_EN
en_usb_0

USB-0

Clock_EN
en_usb_1

USB-1

Harish Dangat
Automated/Fine Grain Clock Gating
Example of Automated/Fine Grain Clock Gating

Report: clock_gating
 -nosplit
Design: red_blk
Version: F-2011.09-SP5-1
Date: Fri Aug 17 23:27:06 2012

Clock Gating Summary

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Clock gating elements</td>
<td>3133</td>
</tr>
<tr>
<td>Number of Gated registers</td>
<td>26738 (76.90%)</td>
</tr>
<tr>
<td>Number of Ungated registers</td>
<td>38077 (23.10%)</td>
</tr>
<tr>
<td>Total number of registers</td>
<td>164815</td>
</tr>
</tbody>
</table>
What To Look For In ICG

- Too many flops used for generating CE signal
- Large delay in combinational path
- Generating flops placed away from ICG cells
- Flops used to generated ICG signal placed away from each other
- Too many flops receive gated clock
What To Look For In ICG

- Too many flops used for generating CE signal
- Large delay in combinational path
- Generating flops placed away from ICG cells
- Flops used to generated ICG signal placed away from each other
- Too many flops receive gated clock
What To Look For In ICG

- Too many flops used for generating CE signal
- Large delay in combinational path
- Generating flops placed away from ICG cells
- Flops used to generate ICG signal placed away from each other
- Too many flops receive gated clock

Harish Dangat