A Fast Algorithm for Rectilinear Steiner Trees with Length Restrictions on Obstacles

Stephan Held and Sophie Spirkl

Research Institute for Discrete Mathematics, University of Bonn

ISPD, March 30–April 2, 2014
Motivation

Example

obstacle-avoiding

obstacle-unaware
Motivation

Example

obstacle-avoiding

obstacle-unaware
Motivation

Example

obstacle-avoiding
reach-aware
obstacle-unaware
Definition (Reach-aware Steiner tree)

Input:
- terminals \(T \),
- rectilinear obstacles \(R \),
- a reach length \(L \in [0, \infty) \).

A Steiner tree \(Y \) connecting \(T \) is reach-aware if the length of each connected component in the intersection of \(Y \) with the interior of the blocked area \((\bigcup_{r \in R} r)^\circ \) is bounded by \(L \).

- All objects are considered to be in \(\mathbb{R}^2 \) with the \(\ell_1 \)-norm.
- This formulation does not depend on representation of blocked area, therefore we will assume \(R \) to be a set of rectangles.
Reach-aware Steiner tree problem

Find a reach-aware Steiner tree of minimum length.

Example

- **obstacle-avoiding**
 - \(L = 0 \)

- **reach-aware**
 - \(0 < L < \infty \)

- **obstacle-unaware**
 - \(L = \infty \)
Problem Formulation

Reach-aware Steiner tree problem
Find a reach-aware Steiner tree of minimum length.

Previous Result
Müller-Hannemann and Peyer [2003]:
- Steiner tree algorithm on augmented Hanan grid
- 2-approximation with super-quadratic running time and space
- $\frac{2k}{2k-1}\alpha$-approximation for rectangles, where α is the approximation ratio in graphs
Main Result

Let \(k = |T| + |R| \) denote the size of the input.

Theorem (Held and S. [2014])

A graph containing shortest reach-aware paths between all pairs of terminals of size \(O(k^2 \log k) \) can be computed in \(O(k^2 \log k) \) time.

Corollary (Held and S. [2014])

A 2-approximation for the minimum reach-aware Steiner tree problem can be computed in \(O((k \log k)^2) \) time.

- If the number of corners of each rectilinear obstacle is bounded by a constant, the running time is \(O(k(\log k)^2) \).
Let $k = |T| + |R|$ denote the size of the input.

Theorem (Held and S. [2014])

A graph containing shortest reach-aware paths between all pairs of terminals of size $O(k^2 \log k)$ can be computed in $O(k^2 \log k)$ time.

Corollary (Held and S. [2014])

A 2-approximation for the minimum reach-aware Steiner tree problem can be computed in $O((k \log k)^2)$ time.

- If the number of corners of each rectilinear obstacle is bounded by a constant, the running time is $O(k(\log k)^2)$.
Reach-Aware Visibility Graph

We construct the reach-aware visibility graph with the following properties:

- There is a reach-aware shortest path between every pair of terminals.
- Every subset of the edge set is reach-aware.

Lemma

A minimum terminal spanning tree is a 2-approximation.
We construct the *reach-aware visibility graph* with the following properties:

- There is a reach-aware shortest path between every pair of terminals.
- Every subset of the edge set is reach-aware.

Lemma

A minimum terminal spanning tree is a 2-approximation.
For $L = 0$, Clarkson et al. [1987] proved that a graph containing shortest paths between all terminals of size $\mathcal{O}(k \log k)$ can be computed in $\mathcal{O}(k(\log k)^2)$ time.

We generalized their construction.

Other previous results include:

- PTAS by Min et al. [2003]
- 2-approximations by Lin et al. [2008], Long et al. [2008], Liu et al. [2009]
- Exact algorithm by Huang et al. [2013]
For $L = 0$, Clarkson et al. [1987] proved that a graph containing shortest paths between all terminals of size $O(k \log k)$ can be computed in $O(k(\log k)^2)$ time.

We generalized their construction.

Other previous results include:

- PTAS by Min et al. [2003]
- 2-approximations by Lin et al. [2008], Long et al. [2008], Liu et al. [2009]
- Exact algorithm by Huang et al. [2013]
Path Decomposition Lemma

The set of endpoints \mathcal{E} contains all terminals and obstacle corners.

The bounding box of two endpoints is empty, if it intersects no other endpoint.

Lemma (Clarkson et al. [1987])

A shortest obstacle-avoiding path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1-shortest path.

This modification preserves length and obstacle-avoidance.
Path Decomposition Lemma

Goal

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1-shortest path.

This modification preserves length and reach-awareness.

- The lemma does not hold in the reach-aware case:
Path Decomposition Lemma

Goal

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1-shortest path.

This modification preserves length and reach-awareness.

- The lemma does not hold in the reach-aware case:
Goal

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1-shortest path.

This modification preserves length and reach-awareness.

- The lemma does not hold in the reach-aware case:
Mirror Points

Definition

A mirror point (blue square) is the endpoint of an axis-parallel connection across an obstacle at a non-convex corner (green disk).

Endpoints \mathcal{E}

- From now on, we only consider the extended set of endpoints \mathcal{E}, which contains terminals, obstacle corners and mirror points.
Mirror Points

Definition

A **mirror point** (blue square) is the endpoint of an axis-parallel connection across an obstacle at a non-convex corner (green disk).

Endpoints \(\mathcal{E} \)

- From now on, we only consider the extended set of endpoints \(\mathcal{E} \), which contains terminals, obstacle corners and mirror points.
A mirror point (blue square) is the endpoint of an axis-parallel connection across an obstacle at a non-convex corner (green disk).

From now on, we only consider the extended set of endpoints \mathcal{E}, which contains terminals, obstacle corners and mirror points.
A mirror point (blue square) is the endpoint of an axis-parallel connection across an obstacle at a non-convex corner (green disk).

From now on, we only consider the extended set of endpoints \mathcal{E}, which contains terminals, obstacle corners and mirror points.
Path Decomposition Lemma

Definition

For two points s and t, their closed bounding box is **empty**, if it contains no endpoints except for s and t.

![Diagram](image)

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is **empty**, and
- its restriction to that bounding box is an ℓ_1-shortest path.

This modification preserves length and reach-awareness.
Path Decomposition Lemma

Definition

For two points \(s \) and \(t \), their closed bounding box is **empty**, if it contains no endpoints except for \(s \) and \(t \).

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is **empty**, and
- its restriction to that bounding box is an \(\ell_1 \)-shortest path.

This modification preserves length and reach-awareness.
Definition

For two points \(s \) and \(t \), their closed bounding box is **empty**, if it contains no endpoints except for \(s \) and \(t \).

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is **empty**, and
- its restriction to that bounding box is an \(\ell_1 \)-shortest path.

This modification preserves length and reach-awareness.
Path Decomposition Lemma

Definition

For two points \(s \) and \(t \), their closed bounding box is empty, if it contains no endpoints except for \(s \) and \(t \).

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an \(\ell_1 \)-shortest path.

This modification preserves length and reach-awareness.
Path Decomposition Lemma

Definition

For two points s and t, their closed bounding box is empty, if it contains no endpoints except for s and t.

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s.t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1-shortest path.

This modification preserves length and reach-awareness.
Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1-shortest path.

This modification preserves length and reach-awareness.

This fixes the earlier example:
Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1-shortest path.

This modification preserves length and reach-awareness.

- This fixes the earlier example:
Medians

Algorithm

- Take a set of points
- Insert vertical line at median of x-coordinates
- Connect all points to median line
- Proceed recursively left and right

- Size $\mathcal{O}(k \log k)$
- Contains shortest paths between terminals
Medians

Algorithm

- Take a set of points
- Insert vertical line at median of x-coordinates
- Connect all points to median line
- Proceed recursively left and right

- Size $O(k \log k)$
- Contains shortest paths between terminals
Algorithm

- Take a set of points
- Insert vertical line at median of x-coordinates
- Connect all points to median line
- Proceed recursively left and right

- Size $O(k \log k)$
- Contains shortest paths between terminals
Medians

Algorithm

- Take a set of points
- Insert vertical line at median of x-coordinates
- Connect all points to median line
- Proceed recursively left and right

- Size $O(k \log k)$
- Contains shortest paths between terminals
Medians

Algorithm

- Take a set of points
- Insert vertical line at median of x-coordinates
- Connect all points to median line
- Proceed recursively left and right

- Size $\mathcal{O}(k \log k)$
- Contains shortest paths between terminals
Medians

Algorithm

- Take a set of points
- Insert vertical line at median of x-coordinates
- Connect all points to median line
- Proceed recursively left and right

- Size $\mathcal{O}(k \log k)$
- Contains shortest paths between terminals
Medians for Reach-Aware Visibility Graph

- Insert **medians lines** recursively
- Connect endpoints on opposite sides by shortest path

If the bounding box of the two endpoints is empty, 3 cases can occur:

- **Case 1:** median unblocked
- **Case 2a:** blocked, can cross
- **Case 2b:** cannot cross
Medians for Reach-Aware Visibility Graph

- Insert medians lines recursively
- Connect endpoints on opposite sides by shortest path

If the bounding box of the two endpoints is empty, 3 cases can occur:

- **Case 1:** median unblocked
- **Case 2a:** blocked, can cross
- **Case 2b:** cannot cross
Medians for Reach-Aware Visibility Graph

- Insert medians lines recursively
- Connect endpoints on opposite sides by shortest path

If the bounding box of the two endpoints is empty, 3 cases can occur:

Case 1: median unblocked

Case 1
- Mirror points ensure that if unblocked for one point, then for both
- Add path as shown if reach-aware
- If ℓ_1-shortest reach-aware path exists, then this path is one
Medians for Reach-Aware Visibility Graph

- Insert medians lines recursively
- Connect endpoints on opposite sides by shortest path

If the bounding box of the two endpoints is empty, 3 cases can occur:

Case 2a: blocked, can cross

- If connection to median reach-aware, add pq and qr, if possible
- Connect points along obstacle boundaries

```plaintext
p
q
r
```
Medians for Reach-Aware Visibility Graph

- Insert *medians lines* recursively
- Connect endpoints on opposite sides by shortest path

If the bounding box of the two endpoints is empty, 3 cases can occur:

Case 2b

- Pairs of non-convex obstacle corners of the same obstacle
- Connect diagonally

There are few such connections in practice.
Example

Algorithm

- **Instance**
 - Collect endpoints and compute mirror points
 - Insert medians recursively
 - Connect points along obstacle boundaries
 - Extract Steiner tree
Example

Algorithm

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree
Example

Algorithm

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree
Example

Algorithm

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree
Example

Algorithm

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree
Example

Algorithm

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree
Example

Algorithm

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree
Example

Algorithm

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree
Example

Algorithm

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree
Example

Algorithm

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree
Example

Algorithm

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree
Example

Algorithm

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree
Example

Algorithm

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree
Let $k = |T| + |R|$ denote the size of the input, l the maximum number of corners of an obstacle.

- There are $O(k)$ endpoints in \mathcal{E}
- Each endpoint is connected to $O(\log k)$ medians
- Including diagonal edges, such a connection increases the graph size by $O(l)$

Theorem (Held and S. [2014])

A graph containing shortest reach-aware paths between all pairs of terminals of size $O(kl \log k)$ can be computed in $O(k \log k \cdot (l + \log k))$ time.
Let $k = |T| + |R|$ denote the size of the input, l the maximum number of corners of an obstacle.

- There are $O(k)$ endpoints in E
- Each endpoint is connected to $O(\log k)$ medians
- Including diagonal edges, such a connection increases the graph size by $O(l)$

Theorem (Held and S. [2014])

A graph containing shortest *reach-aware* paths between all pairs of terminals of size $O(kl \log k)$ can be computed in $O(k \log k \cdot (l + \log k))$ time.
Let \(k = |T| + |R| \) denote the size of the input, \(l \) the maximum number of corners of an obstacle.

- There are \(O(k) \) endpoints in \(\mathcal{E} \)
- Each endpoint is connected to \(O(\log k) \) medians
- Diagonal edges take time \(O(1) \), others need to check reach-awareness in \(O(\log k) \)

Theorem (Held and S. [2014])

A graph containing shortest reach-aware paths between all pairs of terminals of size \(O(kl \log k) \) can be computed in \(O(k \log k \cdot (l + \log k)) \) time.
Let $k = |T| + |R|$ denote the size of the input, l the maximum number of corners of an obstacle.

- The visibility graph contains reach-aware shortest paths between all terminals
- There are no Steiner points on obstacles
- Any Steiner tree in the visibility graph is reach-aware

Corollary (Held and S. [2014])

A 2-approximation for the minimum reach-aware Steiner tree problem can be computed in $O(kl \log k (\log l + \log k))$ time.

We used a Dijkstra-Kruskal approach of Liu et al. [2009] with running time $O(m \log m)$ for m edges.
Let $k = |T| + |R|$ denote the size of the input, l the maximum number of corners of an obstacle.

- The visibility graph contains reach-aware shortest paths between all terminals
- There are no Steiner points on obstacles
- Any Steiner tree in the visibility graph is reach-aware

Corollary (Held and S. [2014])

A 2-approximation for the minimum reach-aware Steiner tree problem can be computed in $O(kl \log k (\log l + \log k))$ time.

We used a Dijkstra-Kruskal approach of Liu et al. [2009] with running time $O(m \log m)$ for m edges.
Let \(k = |T| + |R| \) denote the size of the input, \(l \) the maximum number of corners of an obstacle.

- The visibility graph contains reach-aware shortest paths between all terminals
- There are no Steiner points on obstacles
- Any Steiner tree in the visibility graph is reach-aware

Corollary (Held and S. [2014])

A 2-approximation for the minimum reach-aware Steiner tree problem can be computed in \(O(k(\log k)^2) \) time, if \(l \) is constant.

We used a Dijkstra-Kruskal approach of Liu et al. [2009] with running time \(O(m \log m) \) for \(m \) edges.
Post-Optimization

Unblocked optimization

Rebuild subtrees whose bounding box is unblocked:

- Replace maximal subtrees by 1.5-approximation of RSMT
- Build subtrees for up to 9 terminals optimally using FLUTE

Local optimizations:

Flip L’s

Shift segments
Post-Optimization

Unblocked optimization

Rebuild subtrees whose bounding box is unblocked:
- Replace maximal subtrees by 1.5-approximation of RSMT
- Build subtrees for up to 9 terminals optimally using FLUTE

- Local optimizations:
 - Flip L’s
 - Shift segments
Standard Benchmarks

| Name | | | | | | **Best** | **Lengths** | **|** | **|** | **|** | **|** | **|** |
|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| **L = 0** | **1%** | **5%** | **10%** | **∞** |
| **RL01** | 5000 | 5000 | 481813 | 493372 | 486836 | 490658 | 491565 | 472780 |
| **RL02** | 9999 | 500 | 637753 | 638206 | 638151 | 638276 | 638612 | 634187 |
| **RL03** | 9999 | 100 | 640902 | 639495 | 639314 | 639195 | 638851 | 636566 |
| **RL04** | 10000 | 10 | 697125 | 694654 | 694654 | 691612 | 691612 | 691660 |
| **RL05** | 10000 | 0 | 728438 | 723102 | 723102 | 723102 | 723102 | 723102 |
| **RT01** | 10 | 500 | 2146 | 2283 | 2012 | 1817 | 1817 | 1817 |
| **RT02** | 50 | 500 | 45852 | 49500 | 46762 | 45772 | 45772 | 45747 |
| **RT03** | 100 | 500 | 7964 | 8380 | 8034 | 8092 | 8046 | 7697 |
| **RT04** | 100 | 1000 | 9693 | 10616 | 8160 | 7788 | 7788 | 7788 |
| **RT05** | 200 | 2000 | 51313 | 55507 | 45479 | 45581 | 46101 | 43099 |
| **IND1** | 10 | 32 | 604 | 629 | 629 | 609 | 609 | 609 |
| **IND2** | 10 | 43 | 9500 | 10600 | 10600 | 9100 | 9100 | 9100 |
| **IND3** | 10 | 50 | 600 | 678 | 678 | 600 | 587 | 587 |
| **IND4** | 25 | 79 | 1086 | 1160 | 1160 | 1137 | 1121 | 1092 |
| **IND5** | 33 | 71 | 1341 | infeas. | infeas. | 1364 | 1343 | 1312 |
| **Σ RT** | | | | 3.62 | 4.13 | 2.56 | 2.56 | 1.29 |

Best: best published for $L = 0$ with relaxed definition of obstacles; opt. on RT, IND
IND5 (Standard Benchmark Instance)

$L = 0$, infeasible

$L = 10$, length = 1364

$L = 50$, length = 1343

$L = \infty$, length = 1312
Results on Chips

LeonardTop

- **obstacle-avoiding**
 \[L = 0 \]

- **reach-aware**
 \[L = 1\text{mm} \]

- **obstacle-unaware**
 \[L = \infty \]
Results on Chips

<table>
<thead>
<tr>
<th>L</th>
<th>Length</th>
<th>#inf.</th>
<th>CPU</th>
<th>Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>562 032</td>
<td>0</td>
<td>11:23</td>
<td>5:45</td>
</tr>
<tr>
<td>0.5</td>
<td>535 453</td>
<td>0</td>
<td>21:47</td>
<td>7:21</td>
</tr>
<tr>
<td>1</td>
<td>469 175</td>
<td>0</td>
<td>15:22</td>
<td>6:21</td>
</tr>
<tr>
<td>2.5</td>
<td>440 680</td>
<td>0</td>
<td>10:17</td>
<td>5:54</td>
</tr>
<tr>
<td>∞</td>
<td>440 537</td>
<td>0</td>
<td>08:18</td>
<td>5:12</td>
</tr>
</tbody>
</table>

AndreTop, 3 899 379 nets

Choices of L and total net lengths reported in mm, running times in mm:ss using 8 threads. Lengths marked by * include infeasible nets with opens.
Results on Chips

AlexTop, 2,674,754 nets

<table>
<thead>
<tr>
<th>L</th>
<th>Length</th>
<th>#inf.</th>
<th>CPU</th>
<th>Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>580,318*</td>
<td>1,955</td>
<td>21:58</td>
<td>6:10</td>
</tr>
<tr>
<td>0.5</td>
<td>536,358*</td>
<td>1</td>
<td>24:52</td>
<td>6:29</td>
</tr>
<tr>
<td>1</td>
<td>532,307</td>
<td>0</td>
<td>21:46</td>
<td>6:06</td>
</tr>
<tr>
<td>2.5</td>
<td>530,284</td>
<td>0</td>
<td>17:58</td>
<td>5:55</td>
</tr>
<tr>
<td>∞</td>
<td>529,301</td>
<td>0</td>
<td>07:07</td>
<td>4:38</td>
</tr>
</tbody>
</table>

Choices of L and total net lengths reported in mm, running times in mm:ss using 8 threads. Lengths marked by * include infeasible nets with opens.
Results on Chips

LeonardTop, 525 498 nets

<table>
<thead>
<tr>
<th>(L)</th>
<th>Length</th>
<th>#inf.</th>
<th>CPU</th>
<th>Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>201 127*</td>
<td>6 669</td>
<td>13:33</td>
<td>2:42</td>
</tr>
<tr>
<td>0.5</td>
<td>249 067*</td>
<td>40</td>
<td>16:54</td>
<td>3:11</td>
</tr>
<tr>
<td>1</td>
<td>246 862</td>
<td>0</td>
<td>17:41</td>
<td>3:24</td>
</tr>
<tr>
<td>2.5</td>
<td>203 378</td>
<td>0</td>
<td>11:31</td>
<td>2:32</td>
</tr>
<tr>
<td>(\infty)</td>
<td>199 216</td>
<td>0</td>
<td>01:52</td>
<td>1:24</td>
</tr>
</tbody>
</table>

Choices of \(L \) and total net lengths reported in \textit{mm}, running times in \textit{mm:ss} using 8 threads. Lengths marked by * include infeasible nets with opens.
Some of our instances are part of the 11th DIMACS implementation challenge:
http://dimacs11.cs.princeton.edu/home.html
Organizers:
D. Johnson, T. Koch, R.F. Werneck, M. Zachariasen

| Instance | |T| | |O| | L* | Length | |RT| sec. |
|------------------|------|-------|-------|------|------|-------|-------|------|-------|
| Bonn_23292_54 | 23292 | 54 | 2400 | 364338 | 363004 | 361726 | 1 |
| Bonn_35574_158 | 35574 | 158 | 1500 | 746523 | 746495 | 735059 | 2 |
| Bonn_46269_127 | 46269 | 127 | 1500 | 1071883| 1071827| 1068448| 4 |
| Bonn_108500_141 | 108500| 141 | 4200 | 1973406| 1964154| 1957120| 10 |
| Bonn_129399_210 | 129399| 210 | 1500 | infeas.| 2608227| 2616871| 14 |
| Bonn_639639_382 | 639639| 382 | 4200 | 3060914| 3028456| 3013106| 99 |
| Bonn_783352_175 | 783352| 175 | 1200 | 1948056| 1944546| 1931964| 126 |

All lengths scaled by 10^{-3}.
Applications

Steiner trees constructed by our algorithm can be used as initial solutions:

Timing
- Cong et al. [1992]
- Khuller et al. [1995]
- Held et al. [2013]

Routing
- Incorporated in BonnTools (BonnRoute Global) to generate starting solutions quickly for majority of nets