Load-Aware Redundant Via Insertion for Electromigration Avoidance

Steve Bigalke and Jens Lienig
Dresden University of Technology, Germany
steve.bigalke@tu-dresden.de
www.ifte.de
Outline

Load-Aware Redundant Via Insertion for Electromigration Avoidance

- Electromigration Avoidance
- Redundant Via Insertion
- Load-Awareness
- Implementation: Flow
- Results: Benchmark

Summary
Electromigration

- Dependencies:
 - Current density
 - Interconnect geometry
 - Temperature
 - Material
 - Manufacturing process

Electromigration: Outlook

- Future shrinking of IC structures [ITRS]

- Increase of resistance
 - Incomplete AC self healing

\[J = \frac{I}{A} \]
\[I/I_{\text{ref}} \]
\[A/A_{\text{ref}} \]

Electromigration (EM) and Stress Migration (SM)

- Atom migration due to EM and SM

- Divergence of total atom migration

Redundant Via Insertion: Principle

- Vias are prone to IC failure

- Inserting redundant vias

 - Reliability
 - Chip yield
 - Resources

Redundant Via Insertion: Process

Optimization algorithm for insertion solution ("as many as possible")
Redundant Via Insertion: Problem

- Layout example
 - One redundant via location
 - Qualifies for segment 1 and 2
 - Redundant via in segment 1 or 2?
- “EM-aware Redundant Via Insertion” [Pak, 2015]
 - $J \Rightarrow V_{\text{void}} \Rightarrow T_{\text{failure}}$
 - if $T_{\text{failure}} > T_{\text{lifetime}}$ then EM_{stable} else EM_{critical}

No consideration of:
- Current density*
- Segment length
- Time-dependent stress

*within EM_{critical} or EM_{stable}
Load-Awareness: Influence of j, l and $\sigma(t)$

- Current density ... j, stress ... $\sigma(t)$
 - $j \Rightarrow \text{EM}(j)$
 - $\sigma \Rightarrow \text{SM}(\sigma)$
 - $t_{\text{depletion}} \Rightarrow \sigma(t_i) = \sigma_{\text{crit}} \Rightarrow \text{void}$
 - $\sigma_{\text{max}} \geq \sigma_{\text{crit}} \Rightarrow \text{EM critical}$
 - $\sigma_{\text{max}} < \sigma_{\text{crit}} \Rightarrow \text{EM stable}$

- Segment length ... l
 - $jl \Rightarrow \sigma_{\text{max}}$

Load-Awareness: Example

- **Current density:**

 - EM stable
 - EM critical

- **Segment length:**

 \[j \ell_{\text{seg}_1} \ll j \ell_{\text{seg}_2} \]
Load-Awareness: Example

- Current density:

- Segment length:

 - EM critical

\[j l_{seg1} = = j l_{seg2} \]

\[t_{seg1} \ll t_{seg2} \]
Outline

Load-Aware Redundant Via Insertion for Electromigration Avoidance

- Electromigration Avoidance
- Redundant Via Insertion
- Load-Awareness
- Flow of Load-Aware Redundant Via Insertion for Electromigration Avoidance
- Results: Benchmark

Summary
Implementation: Flow

Read Technology and Design Information

Acquire Input Capacity and Output Current

Propagate Currents in Net Graph

Search for Redundant Via Locations

Build Conflict Graph w. Inner and Outer Edges

Calculate Weights in Conflict Graph

Redundant Via Insertion

Electromigration Avoidance

Load-Awareness

Flow

Results

Calculate Weights in Conflict Graph: Basics

- **Segment load**
 - j, l and $\sigma(t)$

- **Metric: load per via = vertex weight (w)**

\[
w_i = \frac{\text{seg. load}_{\text{max}}}{\#\text{via}^*} \Rightarrow w_i = \left(\frac{t_{\text{min}}}{t_i} + \frac{(JL)_i}{(JL)_{\text{max}}}\right) \frac{n_i}{\sigma_{\text{crit}}} \Rightarrow t_i = \begin{cases}
\infty & \text{if } \sigma_{\text{max}} < \sigma_{\text{crit}} \text{ (EM stable)} \\
t_{i, \text{crit}} & \text{if } \sigma_{\text{max}} > \sigma_{\text{crit}} \text{ (EM critical)}
\end{cases}
\]

*to connect two segments

Calculate Weights in Conflict Graph: Details

- Redundant vias:

 Weights consider:
 - Interconnect bending ($l\uparrow$)
 - Number of vias ($1/n$)
 - On/off track vias ($l\uparrow$)

Implementation: Flow

Read Technology and Design Information

Acquire Input Capacity and Output Current

Propagate Currents in Net Graph

Search for Redundant Via Locations

Build Conflict Graph w. Inner and Outer Edges

Calculate Weights in Conflict Graph

Set Up Constraints and Solve 0-1 ILP Problem

Load-Awareness

Electromigration Avoidance

Redundant Via Insertion

Flow

Results

Set Up Constraints and Solve 0-1 ILP Problem

Minimize:
\[z = \sum_{i \in V} \infty w_i v_i \quad v_i \in \{0,1\} \]

- Inner edges:
\[\sum_{j \in IE} \infty v_j = 1 \]

- Outer edges:
\[v_i + v_j \leq 1, \quad i, j \in OE \]

Speed-up technique: divide into small problems [Lee et al., 2008]

- Pre-selection of vertices with minimum weight and no outer edges

Electromigration Avoidance
Redundant Via Insertion
Load-Awareness
Flow
Results

Implementation: Flow

Read Technology and Design Information
Acquire Input Capacity and Output Current
Propagate Currents in Net Graph
Search for Redundant Via Locations

Build Conflict Graph w. Inner and Outer Edges
Calculate Weights in Conflict Graph
Set Up Constraints and Solve 0-1 ILP Problem

EM-Robust Via Configurations

Outline

Load-Aware Redundant Via Insertion for Electromigration Avoidance

- Electromigration Avoidance
- Redundant Via Insertion
- Load-Awareness
- Flow of Load-Aware Redundant Via Insertion for Electromigration Avoidance

- Results: Benchmark

Summary
Results

- **Reduction in:**
 - Total,
 - Average, and
 - Maximum via load,

 compared to results of via insertion by Chen [5].

- **Verification:**
 - Reduction in average and peak via stress

<table>
<thead>
<tr>
<th>Name</th>
<th>Design [5]</th>
<th>Our design</th>
<th>Total via load</th>
<th>Total</th>
<th>Average</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>mcc1</td>
<td>1147.1</td>
<td>1050.8</td>
<td>8.4</td>
<td>4.1</td>
<td>31.1</td>
<td></td>
</tr>
<tr>
<td>mcc2</td>
<td>6710.7</td>
<td>5978.7</td>
<td>10.9</td>
<td>5.2</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>primary1</td>
<td>44</td>
<td>128</td>
<td>8.1</td>
<td>5.3</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td>primary2</td>
<td>55</td>
<td>1168.1</td>
<td>5.5</td>
<td>11.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s5378</td>
<td>2383.7</td>
<td>2192.6</td>
<td>8.0</td>
<td>5.5</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>s9234</td>
<td>2958.7</td>
<td>2703.5</td>
<td>8.6</td>
<td>5.8</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>s13207</td>
<td>90</td>
<td>590.2</td>
<td>1.4</td>
<td>1.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>s15850</td>
<td>1271.1</td>
<td>1168.1</td>
<td>8.1</td>
<td>5.3</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td>s38417</td>
<td>2958.7</td>
<td>2703.5</td>
<td>8.6</td>
<td>5.8</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>s38584</td>
<td>90</td>
<td>590.2</td>
<td>1.4</td>
<td>1.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>struct</td>
<td>6710.7</td>
<td>5978.7</td>
<td>10.9</td>
<td>5.2</td>
<td>4.5</td>
<td></td>
</tr>
</tbody>
</table>

Summary

- **Electromigration Avoidance**: Required in future
- **Redundant Via Insertion**: Opportunity
- **Load-Awareness**: j, l and $\sigma(t)$

- Implementation: Flow
- Results: Reduction in total, average and maximum via load

Added intelligence into redundant via insertion to avoid EM

- Easy add-on with significant reliability increase