Power Grid Reduction by Sparse Convex Optimization

Wei Ye1, Meng Li1, Kai Zhong2, Bei Yu3, David Z. Pan1

1ECE Department, University of Texas at Austin
2ICES, University of Texas at Austin
3CSE Department, Chinese University of Hong Kong
On-chip Power Delivery Network

- **Power grid**
 - Multi-layer mesh structure
 - Supply power for on-chip devices

- **Power grid verification**
 - Verify current density in metal wires (EM)
 - Verify *voltage drop* on the grids
 - More *expensive* due to increasing sizes of grids
 - e.g., 10M nodes, >3 days
Modeling Power Grid

♦ Circuit modeling
 › Resistors to represent metal wires/vias
 › Current sources to represent current drawn by underlying devices
 › Voltage sources to represent external power supply
 › Transient: capacitors are attached from each node to ground

♦ Port node: node attached current/voltage sources
♦ Non-port node: only has internal connection
Linear System of Power Grid

- Resistive grid model:
 \[Lv = i \]

 \(L \) is \(n \times n \) Laplacian matrix (symmetric and diagonally-dominant):
 \[
 L_{i,j} = \begin{cases}
 \sum_{k,k\neq i} g(i,k), & \text{if } i = j \\
 -g(i,j), & \text{if } i \neq j
 \end{cases}
 \]

- \(g_{i,j} \) denotes a physical conductance between two nodes \(i \) and \(j \)

- A power grid is safe, if \(\forall i: \)
 \[v_i \leq V_{th} \]

- Long runtime to solve \(Lv = i \) for large linear systems
Previous Work

♦ Power grid reduction
 › Reduce the size of power grid while preserving input-output behavior
 › Trade-off between accuracy and reduction size

♦ Topological methods
 › TICER [Sheehan+, ICCAD’99]
 › Multigrid [Su+, DAC’03]
 › Effective resistance [Yassine+, ICCAD’16]

♦ Numerical methods
 › PRIMA [Odabasioglu+, ICCAD’97]
 › Random sampling [Zhao+, ICCAD’14]
 › Convex optimization [Wang+, DAC’15]
Problem Definition

♦ Input:
 › Large power grid
 › Current source values

♦ Output: reduced power grid
 › Small
 › Sparse (as input grid)
 › Keep all the port nodes
 › Preserve the accuracy in terms of voltage drop error
Overall Flow

Node and edge set generation

Large graph partition

For each subgraph:

Node elimination by Schur complement

Edge sparsification by GCD

Store reduced nodes and edges
Node Elimination

- Linear system: $Lv = i$
- L can be represented as a 2×2 block-matrix:
 \[
 L = \begin{bmatrix}
 L_{11} & L_{12} \\
 L_{12}^T & L_{22}
 \end{bmatrix}
 \]
- v and i can be represented as follows:
 \[
 \begin{align*}
 v &= \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \quad \text{and} \quad i = \begin{bmatrix} i_1 \\ 0 \end{bmatrix}
 \end{align*}
 \]
- Applying **Schur complement** on the DC system:
 \[
 \hat{L} = L_{11} - L_{12} L_{22}^{-1} L_{12}^T
 \]
 which satisfies:
 \[
 \hat{L}v_1 = i_1
 \]
Output graph keeps all the nodes of interest
Output graph is **dense**
Edge sparsification: sparsify the reduced Laplacian without losing accuracy
Goal of edge sparsification

- **Accuracy**
- **Sparsity** reduce the nonzero elements off-the-diagonal in \(L \)

Formulation (1):

\[
\min_{X \in \mathbb{R}^{n \times n}} \frac{1}{2m} \sum_{k=1}^{m} \| (X - L)v_k \|_2^2 + \lambda \| X \|_0, \quad \text{s.t. } X \text{ is a Laplacian matrix}
\]

Formulation (2): [Wang+, DAC2014]

\[
\min_{X \in \mathbb{R}^{n \times n}} \frac{1}{2m} \sum_{k=1}^{m} \| (X - L)v_k \|_2^2 + \lambda \| X \|_1, \quad \text{s.t. } X \text{ is a Laplacian matrix}
\]

\[
\min_{X \in \mathbb{R}^{n \times n}} \frac{1}{2m} \sum_{k=1}^{m} \| (X - L)v_k \|_2^2 + \lambda \sum_{i=1}^{n} X_{i,i}, \quad \text{s.t. } X \text{ is a Laplacian matrix}
\]
Edge Sparsification

♦ Formulation (2): [DAC2014 Wang+]

\[
\min_{X \in \mathbb{R}^{n \times n}} \frac{1}{2m} \sum_{k=1}^{m} \|(X - L)v_k\|_2^2 + \lambda \sum_{i=1}^{n} X_{i,i}, \quad \text{s.t. } X \text{ is a Laplacian matrix}
\]

\[|\Delta i_0|^2 + |\Delta i_1|^2 + \cdots + |\Delta i_9|^2\]

\[i_0 \gg i_k, \forall i = 1, \cdots, 9\]

Problem: accuracy on the Vdd node does not guarantee accuracy on the current source nodes

♦ Formulation (3):

\[
\min_{X \in \mathbb{R}^{n \times n}} \frac{1}{2m} \sum_{k=1}^{m} \|(X - L)v_k \circ w\|_2^2 + \lambda \sum_{i=1}^{n} X_{i,i}, \quad \text{s.t. } X \text{ is a Laplacian matrix}
\]

› Weight vector: \(w_0 = 1/n, w_i = 1, \forall i = 1, \cdots, n\)

› Strongly convex and coordinate-wise Lipschitz smooth
Coordinate Descent (CD) Method

- **Update one coordinate** at each iteration

- Coordinate descent:

 Set $t = 1$ and $X^1 = 0$

 For a fixed number of iterations (or convergence is reached):

 Choose a coordinate (i,j)

 Compute the step size δ^* by minimizing
 $$\arg\min_\delta f(X + \delta e_{i,j})$$

 Update $X_{i,j}^{t+1} \leftarrow X_{i,j}^t + \delta^*$

- **How to decide the coordinate?**

 - Cyclic (CCD)

 - Random sampling (RCD)

 - **Greedy coordinate descent** (GCD)
CD vs Gradient Descent

- Gradient descent (GD) algorithm:
 \[X^{t+1} \leftarrow X^t - \alpha \nabla f(X) \]

- **GD/SGD** update \(O(n^2) \) elements in \(X \) and gradient matrix \(G \) at each iteration.

- **CD** updates \(O(1) \) elements in \(X \) (Laplacian property).

- **CD** proves to update \(O(n) \) elements in \(G \) for Formulation (2) and (3).
Greedy Coordinate Descent (GCD)

Input L

Max-heap

Output X
GCD vs CCD

- GCD produces sparser results
 - CCD (RCD) goes through all coordinates repeatedly
 - GCD selects the most significant coordinates to update

![Input graph](image)

- Iteration 1
- Iteration 2
- Iteration 3
- Iteration 4
- Iteration T

![Chart](image)
GCD Coordinate Selection

♦ General Gauss-Southwell Rule:

\[(i^*, j^*) = \arg \max_{(i, j) \in [n] \times [n]} |G_{i,j}|\]

♦ Observation: the objective function is quadratic w.r.t. the chosen coordinate

♦ GCD is stuck for some corner cases:

♦ A new coordinate selection rule:

\[(i^*, j^*) = \arg \max_{(i, j) \in [n] \times [n]} |G_{i,j}| \quad \text{s.t. } G_{i,j} > 0 \text{ or } y_{i,j} \neq 0\]
GCD Speedup

- Time complexity is $O(n^2)$ per iteration
 - traverse $O(n^2)$ elements to get the best index
 - As expensive as gradient descent
- **Observation**: each node has at most n neighbors \rightarrow heap

- Heap to store $O(n^2)$ elements in G:
 - Pick the largest gradient, $O(1)$
 - Update $O(n)$ elements, $O(n \log n)$
- **Lookup table**
 - $O(n^2)$ space; $O(1)$ for each update
- **Improved** time complexity $O(n \log n)$
Experimental Results

- Sparsity and accuracy trade-off
- Accuracy and runtime trade-off
Gradient Descent Comparison

Sparsity

Accuracy

Runtime
Experimental Results

<table>
<thead>
<tr>
<th>CKT</th>
<th>ibmpg2</th>
<th>ibmpg3</th>
<th>ibmpg4</th>
<th>ibmpg5</th>
<th>ibmpg6</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Port Nodes Before</td>
<td>19,173</td>
<td>100,988</td>
<td>133,622</td>
<td>270,577</td>
<td>380,991</td>
</tr>
<tr>
<td>After</td>
<td>19,173</td>
<td>100,988</td>
<td>133,622</td>
<td>270,577</td>
<td>380,991</td>
</tr>
<tr>
<td>#Non-port Nodes Before</td>
<td>46,265</td>
<td>340,088</td>
<td>345,122</td>
<td>311,072</td>
<td>481,675</td>
</tr>
<tr>
<td>After</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#Edges Before</td>
<td>106,607</td>
<td>724,184</td>
<td>779,946</td>
<td>871,182</td>
<td>1283,371</td>
</tr>
<tr>
<td>After</td>
<td>48,367</td>
<td>243,011</td>
<td>284,187</td>
<td>717,026</td>
<td>935,322</td>
</tr>
<tr>
<td>Error</td>
<td>1.2%</td>
<td>0.7%</td>
<td>4.8%</td>
<td>2.2%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Runtime</td>
<td>38s</td>
<td>106s</td>
<td>132s</td>
<td>123s</td>
<td>281s</td>
</tr>
</tbody>
</table>
Conclusion

♦ Main Contributions:
 › An iterative power grid reduction framework
 › Weighted convex optimization-based formulation
 › A GCD algorithm with optimality guarantee and runtime efficiency for edge sparsification

♦ Future Work:
 › Extension to RC grid reduction
Thanks