Pioneer Research on Mathematical Models and Methods for Physical Design

A tribute to Prof. T. C. Hu

Chris Chu
Iowa State University
Advance Program

1997 International Symposium on Physical Design
Embassy Suites at Napa Valley, Napa, California
April 14–16, 1997
http://www.cs.virginia.edu/~ispd97/

The International Symposium on Physical Design provides a new and high-quality forum for the exchange of ideas and results in critical areas related to the physical design of VLSI systems. The Symposium is an outgrowth of the ACM/SIGDA Physical Design Workshops held during the years 1987-1996. Its scope includes all aspects of physical design, from interactions with behavior and logic-level synthesis, to back-end performance analysis and verification.

This year's inaugural Symposium focuses on the challenges of high-performance deep-submicron design, as well as the necessary interactions between physical design and higher-level synthesis tasks. An outstanding slate of technical papers has been selected for oral and poster presentation. These developments are complemented by invited presentations that set forth the contexts and visions for key areas – process technology, system architecture, circuit design and design methodology – with an emphasis on their implications for relevant R&D in physical design. The Symposium concludes with a panel of leading experts who each present their unique perspectives as to the critical R&D needs of the field.

Monday, April 14

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>0830–0840</td>
<td>Chairs’ Welcome</td>
</tr>
<tr>
<td>0840–1010</td>
<td>Keynote Address</td>
</tr>
<tr>
<td></td>
<td>- Physical Design: Past and Future, T. C. Hu (UCSD), E. S. Kuh (UCB)</td>
</tr>
<tr>
<td>1010–1030</td>
<td>Break</td>
</tr>
<tr>
<td>1230–1430</td>
<td>Lunch (Speaker)</td>
</tr>
<tr>
<td></td>
<td>- The Quarter Micron Challenge: Integrating Physical and Logic Design, R. Camposano (Synopsys)</td>
</tr>
<tr>
<td>1430–1600</td>
<td>Session 2</td>
</tr>
<tr>
<td></td>
<td>Synthesis and Layout</td>
</tr>
<tr>
<td></td>
<td>Chairs: R. Camposano (Synopsys) / C. Sechen (Washington)</td>
</tr>
<tr>
<td>1600–1630</td>
<td>Break</td>
</tr>
<tr>
<td>1630–1830</td>
<td>Session 3 (Invited)</td>
</tr>
<tr>
<td></td>
<td>Contexts</td>
</tr>
<tr>
<td></td>
<td>- Design Technology Trends Based on NTRS Evolution, P. Verhofstadt, C. D’Angelo (SRC)</td>
</tr>
<tr>
<td></td>
<td>- Microprocessor Architecture, Circuit, and Physical Design Trends, R. Panwar (Sun)</td>
</tr>
<tr>
<td>1900–2100</td>
<td>Dinner (Speaker)</td>
</tr>
<tr>
<td></td>
<td>- Photography and Dimensional Trends for Future Processes – Implications for Physical Design, K. Vasudev (Sematech)</td>
</tr>
<tr>
<td></td>
<td>Break</td>
</tr>
</tbody>
</table>
Pioneer Research on Mathematical Models and Methods for Physical Design

A tribute to Prof. T. C. Hu

In mathematical programming terms, we have a multi-objective or several objective functions. One way to handle multiple objectives is to use a weighted objective function with the weighting factor proportional to the importance of the term (say, speed or area). During the optimization process, if the speed of the chip is fast enough, we can delete speed as an objective and maintain speed as a constraint.

Second, we usually do not have the time to design every cell in a tailor-made fashion; it is much cheaper and less error-prone if we build the design from a cell library. The situation is similar to building a house where windows have standard sizes. In other words, we restrict our variables to have only limited, fixed values. In the extreme case, we want the variables x_i to be zero or one. Or, we may want all solutions to be positive integers and not arbitrary real values. In terms of design, we need “modular” designs. In
M. Weisel (Intel)
- A Roadmap of CAD Tool Changes for Sub-Micron Interconnect Problems, L. Scheffer (Cadence)
- C5M - A Control Logic Layout Synthesis System for High-performance Microprocessors, J. Burns, J. Feldman (IBM)
- A VLSI Artwork Legalization Technique Based on a New Criterion of Minimum Layout Perturbation, F.-L. Heng, Z. Chen, G. E. Telles (IBM)

1500–1545 Session 7
Poster Presentations

Chairs: G. Robins (Virginia)
J. D. Cho (SungKyunKwan)

- Concurrent Transistor Sizing and Buffer Insertion by Considering Cost-Delay Tradeoffs, J. Kim, C. Bamji (Cadence); Y. Jiang, S. Sapatekar (Iowa State)
- Towards a New Benchmarking Paradigm in EDA, N. Kapur, D. Ghosh, F. Bruglez (NCSU)
- How Good are Slicing Floorplans?, F. Y. Young, D. F. Wong (UT-Austin)
- Slicibility of Rectangular Graphs and Floorplan Optimization, P. DasGupta, S. Sur-kolay (Indian Institute of Management)
- Power Optimization for FPGA Look-Up Tables, M. J. Alexander (Washington State)

- Preserving HDL Synthesis Hierarchy for Cell Placement, Y.-W. Tsay, W.-J. Fang, A. C.-H. Wu

1000–1030 Break

1030–1230 Session 10 (Invited)
Design Methodology Futures

- Chip Hierarchical Design System (CHDS): A Foundation for Timing-Driven Physical Design into the 21st Century, R. G. Bushroe (Sematech/HP), S. DasGupta (IBM) and R. Steele (Sematech/Intel)
- Physical Design 2010: Back to the Future?, A. R. Newton (UCB)

1230–1430 Lunch (Speaker)

- Physical Design Realities for Digital’s StrongARM and Alpha Microprocessors, W. J. Grundmann (DEC)

1430–1700 Session 11 (Invited)
Core Directions (or, Do The Right Thing)

- Physical Design Challenges of Performance, D. P. LaPotin (IBM Austin Research Lab)
- Panel: Physical Design R&D: What’s Missing?
 Moderator: G. Smith (Dataquest)
 W. W.-M. Dai (UCSC)
 E. Hsieh (Avant!)
 M. Hunt (Cadence)
 K. Keutzer (Synopsys)
 D. P. LaPotin (IBM Austin Research Lab)
 N. Sherwani (Intel Hillsboro)

1700 Symposium Closes
A Confession

• A Thermal Synthesis Approach to Thermal Placement
 – Unrealistic thermal model
 – Restrictive array-based layout style
 – Randomly generated thermal numbers
 –

• Closed Form Solution to Simultaneous Buffer Insertion/Sizing and Wire Sizing
 – Simplistic Elmore delay model
 – Continuous wire width and gate size assumption
 – Ignoring bounds on wire width and gate size
 –
Why were they accepted?

• A Thermal Synthesis Approach to Thermal Placement
 – 5 Theorems, 3 Lemmas

• Closed Form Solution to Simultaneous Buffer Insertion/Sizing and Wire Sizing
 – 3 Theorems, 10 Lemmas

“"We don’t prove very much these days.""
-- Andrew Kahng (3/26/2018)
Learn from Prof. Hu

PHYSICAL DESIGN: MATHEMATICAL MODELS AND METHODS
KEYNOTE ADDRESS

T. C. Hu
Department of Computer Science and Engineering
School of Engineering
University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093
hu@cs.ucsd.edu
Generalization of Max-Flow Min-Cut Theorem

Theorem 1. (Max Bi-Flows Min-Cut Theorem)

Two flows $F(1; 1')$ and $F(2; 2')$ are feasible if and only if (1), (2), (3) below are all satisfied:

1. $f(1; 1') \leq c(1; 1')$
2. $f(2; 2') \leq c(2; 2')$
3. $f(1; 1') + f(2; 2') \leq c(1, 2; 1', 2')$

The maximum sum of the two flows is equal to the minimum-cut capacity of all cuts separating the two pairs of nodes; i.e.,

$$\max[f(1; 1') + f(2; 2')] = \min[c(1 - 2; 1' - 2'), c(1 - 2'; 1' - 2)].$$
Theorem 1. (Max Bi-Flows Min-Cut Theorem)

Two flows $F(1; 1')$ and $F(2; 2')$ are feasible if and only if (1), (2), (3) below are all satisfied:

1. $f(1; 1') \leq c(1; 1')$
2. $f(2; 2') \leq c(2; 2')$
3. $f(1; 1') + f(2; 2') \leq c(1, 2; 1', 2')$

The maximum sum of the two flows is equal to the minimum-cut capacity of all cuts separating the two pairs of nodes; i.e., $\max[f(1; 1') + f(2; 2')] = \min[c(1 - 2; 1' - 2'), c(1 - 2'; 1' - 2)]$.
Theorem 1. (Max Bi-Flows Min-Cut Theorem)

Two flows $F(1; 1')$ and $F(2; 2')$ are feasible if and only if (1), (2), (3) below are all satisfied:

1. $f(1; 1') \leq c(1; 1')$
2. $f(2; 2') \leq c(2; 2')$
3. $f(1; 1') + f(2; 2') \leq c(1, 2; 1', 2')$

The maximum sum of the two flows is equal to the minimum-cut capacity of all cuts separating the two pairs of nodes; i.e., $\max[f(1; 1') + f(2; 2')] = \min[c(1 - 2; 1' - 2'), c(1 - 2'; 1' - 2)]$.

[Diagram of flow from node 1 to node 1']
Theorem 1. (Max Bi-Flows Min-Cut Theorem)

Two flows $F(1; 1')$ and $F(2; 2')$ are feasible if and only if (1), (2), (3) below are all satisfied:

1. $f(1; 1') \leq c(1; 1')$
2. $f(2; 2') \leq c(2; 2')$
3. $f(1; 1') + f(2; 2') \leq c(1, 2; 1', 2')$

The maximum sum of the two flows is equal to the minimum-cut capacity of all cuts separating the two pairs of nodes; i.e., $\max[f(1; 1') + f(2; 2')] = \min[c(1 - 2; 1' - 2'), c(1 - 2'; 1' - 2)]$.

![Diagram](attachment:image.png)
Theorem 1. (Max Bi-Flows Min-Cut Theorem)

Two flows $F(1; 1')$ and $F(2; 2')$ are feasible if and only if (1), (2), (3) below are all satisfied:

1. $f(1; 1') \leq c(1; 1')$
2. $f(2; 2') \leq c(2; 2')$
3. $f(1; 1') + f(2; 2') \leq c(1, 2; 1', 2')$

The maximum sum of the two flows is equal to the minimum-cut capacity of all cuts separating the two pairs of nodes; i.e., $\max[f(1; 1') + f(2; 2')] = \min[c(1 - 2; 1' - 2'), c(1 - 2'; 1' - 2)]$.
Theorem 1. (Max Bi-Flows Min-Cut Theorem)

Two flows $F(1; 1')$ and $F(2; 2')$ are feasible if and only if (1), (2), (3) below are all satisfied:

1. $f(1; 1') \leq c(1; 1')$
2. $f(2; 2') \leq c(2; 2')$
3. $f(1; 1') + f(2; 2') \leq c(1; 2; 1'; 2')$

The maximum sum of the two flows is equal to the minimum-cut capacity of all cuts separating the two pairs of nodes; i.e., $\max[f(1; 1') + f(2; 2')] = \min[c(1 - 2; 1' - 2'), c(1 - 2'; 1' - 2)].$
Theorem 1. (Max Bi-Flows Min-Cut Theorem)

Two flows $F(1; 1')$ and $F(2; 2')$ are feasible if and only if (1), (2), (3) below are all satisfied:

$$f(1; 1') \leq c(1; 1') \quad (1)$$

$$f(2; 2') \leq c(2; 2') \quad (2)$$

$$f(1; 1') + f(2; 2') \leq c(1, 2; 1', 2') \quad (3)$$

The maximum sum of the two flows is equal to the minimum-cut capacity of all cuts separating the two pairs of nodes; i.e., $\max[f(1; 1') + f(2; 2')] = \min[c(1 - 2; 1' - 2'), c(1 - 2'; 1' - 2)]$.

max min
Replication Cut

Min-cut

Min-cut with cell replication
Maximum Flow based Solution

- 1997 IEEE Circuit and System Society Best Paper Award
Take-Home Messages

• Paper reviewers:
 – *Don’t reject my papers just because they don’t consider all practical issues.*
 – Reject if they do not have insightful, inspiring ideas.

• Researchers:
 – Pursue long-lasting impact.
 – Both theoretical work and practical work are valuable.

• Students:
 – Look up to Prof. Hu.

• Prof. Hu:

 Congratulations and Thank you!