ROAD: Routability Analysis & Diagnosis Based on SAT Techniques

ISPD 2019

UCSD VLSI LAB

Dongwon Park, Ilgweon Kang, Yeseong Kim, Sicun Gao, Bill Lin, Chung-Kuan Cheng
PHYSICAL DESIGN GETTING HARDER

- Keep Scaling Technologies
- Design Rule Complexity Rising

- Tons of design rules from multi-patterning technology
- Limited Resource (# of Routing Track)

Detailed Routing is getting complex and bottleneck.
I. Routability Analysis
DESIGN RULE-CORRECT ROUTABILITY ANALYSIS

Gate Netlist

Placement

Given Pin-Layout

Power Rail

Routable?

ILP: Optimal but 1048s (~18min) !

SAT: Not Optimized but 2s !!!!!

SAT Method → Quick “go/no-go” Decision
Routability Analysis Framework

- ILP-based routability optimization
- SAT-based routability analysis

Logic Simplification
- ILP Patterns per ILP Formula
- Logic Minimizer Espresso [26]

Routability Analysis Flow

1. **Testcase (i.e., Switchbox) Generation**
 - Inputs
 - #Vertical and Horizontal Tracks
 - Pin Density
 - Switchboxes
 - 3D Routing Graph
 - Source-Sink Definition

2. **SAT-Friendly ILP Formulation**

3. **ILP-to-SAT Conversion**

4. **Solvers**
 - ILP Solver CPLEX [27]
 - SAT Solver Portfolio
 - Plingling / Glucose-syrup / many-Glucose

Results of Routability Analysis

- by ILP
- by SAT

- ILP Result: Routing Feasibility, Wirelength, Metal Cost, etc.
- SAT Result: Routing Feasibility, SAT Solution if Satisfiable

PROPOSED ILP/SAT FORMULATION DIAGRAM

- The Multi-commodity network flow formulation (F)
- Conditional Design Rule (D)
- Layout Structure Map (L)

Flow Formulation (F)

- Commodity Flow Conservation (CFC)
- Exclusiveness Use of Vertex (EUV)

Design-Rules Formulation (D)

- 1. End-of-Line Space Rule (EOL)
- 2. Minimum Area Rule (MAR)
- 3. Via Rule (VR)

Layout Structure Map (L)

- Edge Assignment (EA)
- Metal Segment (MS)
- Geometry Variable (GV)
SAT FORMULATION – FLOW FORMULATION (F)

- **Commodity Flow Conservation (CFC)**
 - **CASE I)** Vertex ≠ source, sink: 0 or 2 edges uses
 1) Only one incoming/outgoing pair is allowable for all commodities.
 2) This commodity don’t use this vertex.

- **CASE II)** Vertex = source, sink: **Exactly-One (EO) Commodity Flow Constraint.**

\[
F_{CFC2}(v,n,m) = \text{EO}\left(\left\{ f^m_{m}(v,p) \mid p \in a(v) \right\} \right),
\]
\section*{SAT Formulation – Flow Formulation (F)}

- **Exclusiveness Use of Vertex (EUV)**
 - **CASE I.** Vertex ≠ source, sink: \textbf{At-Most-One (AMO) Net Constraint}

 1) Only one net can use a certain edge
 2) No Flow

 \[
 F_{EUV_1}(v) = AMO\left(\bigvee_{p \in a(v)} e_{v,p}^n \mid n \in N\right), \quad \forall v \in V
 \]

- **CASE II.** Vertex = source, sink: \textbf{Exactly-One (EO) Edge Constraint}

 \[
 F_{EUV_2}(v) = EO\left(\left\{ e_{v,p}^n \mid p \in a(v), n \in N \right\}\right), \quad \forall v \in V
 \]
SAT FORMULATION – FLOW FORMULATION (F)

- **Edge Assignment (EA)**

 \[f_m^n(v,u) \rightarrow e_{v,u}^n \]

 \[F_{EA}(e_{v,u}, n, m) = e_{v,u}^n \lor \neg f_m^n(v,u), \quad \forall e_{v,u} \in E, \forall n \in N, \forall t_m^n \in T^n \]

 Logical Imply. : edge is used by n net if m commodity of n net use this edge
 \(\rightarrow \) It requires for multi-commodity flow

- **Metal Segment (and Exclusiveness Use of Edge) (MS)**
 - Commander Encoding Variable of EO constraint of edge indicators

 \[F_{MS}(e_{v,u}) = EO\left(\left\{ \neg m_{v,u} \right\} \cup \left\{ e_{v,u}^n \mid n \in N \right\} \right), \quad \forall e_{v,u} \in E \]
- **Geometric Variable (GV)**
 - End-of-Line indicator of each vertex for geometric conditional design rule.

\[
\begin{align*}
 g_{L,(1,v)} & = 1 \\
 g_{R,(2,v)} & = 1 \\
 g_{F,(v,1)} & = 1 \\
 g_{B,(v,2)} & = 1
\end{align*}
\]
SAT FORMULATION – DESIGN RULE FORMULATION (D)

- Minimum Area Rule (MAR)
 - A metal segment must cover at least three vertices (AMO Constraint)

\[
D_{MAR_LR}(\nu) = AMO(g_L,\nu, g_R,\nu, g_L,\nu_R, g_R,\nu_R), \\
\forall \nu \in V_2
\]

Violation

\[
\begin{align*}
g_R,\nu &= g_L,\nu_L = 1 \\
g_L,\nu &= g_R,\nu_R = 0
\end{align*}
\]

No Violation

\[
\begin{align*}
g_R,\nu &= 1 \\
g_L,\nu &= g_L,\nu_L = g_R,\nu_L = 0
\end{align*}
\]
SAT FORMULATION – DESIGN RULE FORMULATION (D)

- **End-of-Line (EOL) Space Rule**
 - The minimum distance between tips must be larger than 2 Manhattan distance (AMO Constraint)

\[
D_{EOL_R}(v) = \text{AMO}(g_R, v, g_L, v_{FR}) \land \text{AMO}(g_R, v, g_L, v_{BR}) \land \text{AMO}(g_R, v, g_L, v_{RR}),
\]

\[
\forall v \in V_2
\]

![Diagram showing various configurations with Violation and No Violation examples](image)
SAT Formulation – Design Rule Formulation (D)

- **Via Rule (VR)**
 - The distance between two vias should be larger $\sqrt{2}$ Euclidean Distance (AMO constraint)

$$D_{VR}(v) = \text{AMO}(m_{v, v_U}, m_{v_R, v_{UR}}, m_{v_B, v_{UB}}, m_{v_{BR}, v_{UBR}}) \land \text{AMO}(m_{v_D, v}, m_{v, v_U})$$

$\forall v \in V$
Design Rule-Correct Routability Analysis

- Flow Feasibility (F)
 - Conjunction of each subsets

\[
F = \bigwedge_{v \in V} \left(F_{EUV}(v) \land \bigwedge_{n \in N} \bigwedge_{t_m \in T^n} F_{CFC}(v, n, m) \right) \land \bigwedge_{e_{v,u} \in E} \left(F_{MS}(e_{v,u}) \land \bigwedge_{n \in N} \bigwedge_{t_m \in T^n} F_{EA}(e_{v,u}, n, m) \right)
\]

- Design Rule Formulation (D)

\[
D = D_{GV} \land D_{MAR} \land D_{EOL} \land \bigwedge_{v \in V} D_{VR}(v)
\]

- Design Rule-correct Routability (R)
 - L : Layout Structure Map → the geometry information of the switch box

\[
R = F \land D \land L
\]
II. Routability Diagnosis
NEXT STEP : ROUTABILITY DIAGNOSIS

- Conflict Diagnosis in Unroutable Case using SAT Technique
 - Exact Location of Conflict → Fast Trouble-shooting for Designer
 - Exact Conflict Relation → Guideline for Design Rule Manager

![Diagram of Power Rail with Unroutable Results]

- #V_Tacks = 9, #H_Tacks = 19
- PinDensity = 100%
- 21 Pins: 0-20
- 8 Outer Pins: 21-28
- 13 Nets: (9 13 17), (7 12 25), (0 6 28), (14 23), (16 19), (3 24), (2 22), (4 27), (8 18), (11 21), (15 20), (5 10), (1 26)
- Results: Unroutable
ROAD: OVERVIEW OF DIAGNOSIS

Routability Analysis Using SAT Formulation

Unroutable Layout

MUS Extraction
(Minimal Unsatisfiable Subset)

Clause Minimization

Initial Propagation
(Geometric Information of Switch-Box)

Conflict Region

Decision (DLS)
(Decision with Longest-Path Search)

Propagation (PTA/PFA)
(Propagation with True/False Assignment)

Conflict Information
(Conflict Geometry / Design Rule)

Conflict?

No

DAG : H(U,D)

BCP Iteration

MUS

PIG

Node : U (variable)

Edge : D (clause)

Unroutable Layout

Conflict Region

Clause Minimization

Initial Propagation

Decision (DLS)

Propagation (PTA/PFA)

MUS Extraction

Conflict Information
(1) **Minimal Unsatisfiable Subset (MUS)**

Claim: For every $\mathcal{F} \in \text{UNSAT}$, $\exists \mathcal{M} \subseteq \mathcal{F}$, such that $\mathcal{M} \in \text{MU}$.

Pf:
1. Let $\mathcal{M} = \mathcal{F}$.
2. If $\mathcal{M} \notin \text{MU}$, $\exists C \in \mathcal{M}$ such that $\mathcal{M} \setminus \{C\} \in \text{UNSAT}$.
3. Let $\mathcal{M} = \mathcal{M} \setminus \{C\}$, goto 2.

Def: \mathcal{M} is *minimally unsatisfiable subformula (MUS)* of \mathcal{F} if $\mathcal{M} \subseteq \mathcal{F}$ and $\mathcal{M} \in \text{MU}$.

Notation: $\text{MUS}(\mathcal{F})$ — the set of all MUSes of \mathcal{F}.

\[
\begin{align*}
C_1 &= (p) \\
C_2 &= (q) \\
C_3 &= (\neg p \lor \neg q) \\
C_4 &= (\neg p \lor r) \\
C_5 &= (p \lor q) \\
C_6 &= (\neg q \lor \neg r)
\end{align*}
\]

$\{C_1, C_2, C_3\}$ and $\{C_1, C_2, C_4, C_6\}$ are the (only) MUSes.
(2) **BCP (Boolean Constraint Propagation) & PIG**

- **PIG (Partial Implication Graph) in Our Framework**
 - Directed Acyclic Graph which Nodes are Variables, Edges are Clauses.
 - The implication relation between variable assignment from constraint clause

Clause set: \{ a \lor b , \neg a \lor c , \neg c \lor d , a \}

1st BCP, \(a = 1 \rightarrow \{c, \neg c \lor d\} \text{ remain} \)

2nd BCP, \(c = 1 \rightarrow \{d\} \text{ remain} \)

https://en.wikipedia.org/wiki/Unit_propagation
(3) **INITIAL PROPAGATION**

- Layout Structure Map (L) → Estimated Conflict Range

![Diagram with Power Rail and Estimated Conflict Region]

- **#V_Tracks** = 9
- **#H_Tracks** = 13
- PinDensity = 100%
- **14 Pins**: 0-13
- **8 Outer Pins**: 14-21
- **10 Nets**: {1 7 18}, {2 6 20}, {3 10}, {13 19}, {9 12}, {4 17}, {8 14}, {0 16}, {5, 15}, {11 21}

Estimated Conflict Region
(4) DLS (Decision with Longest-path Search)

- Longest-path search is most comprehensive explanation about failure
 - Via Position / Direction of Element are determined at DLS phase

- Conflict @ 2nd
- Conflict @ 1st
- Conflict @ 4th

Selected!
(5) PROPAGATION – PTA (WITH TRUE ASSIGNMENT)

- BCP propagation with True Assignment (U_s)

\[v_U \rightarrow M_1 \]
\[\text{VIA} (M_1 \rightarrow M_2) \]
\[M_2 \]

Pin_j (Supernode)
(5) PROPAGATION – PTA (WITH TRUE ASSIGNMENT)

▪ PTA Result of #1 VIA @ 9_13_100

- Blocked via (M₁ ↔ M₂)
- Blocked via (M₂ ↔ M₃)
- Assigned via (M₁ ↔ M₂)
(5) PROPAGATION – PFA (WITH FALSE ASSIGNMENT)

- BCP propagation with False Assignment (U_s)
 - Via-to-via spacing / Stacked – Via / Vias in same pin / element with direction against PTA

\[v_{M_i} + v_{M_{i+1}} + v_{M_{i+2}} \]

\[v_{FL} \quad v_F \quad v_{FR} \quad v_B \quad v_{BR} \quad v_{BB} \quad M_i \quad M_{i+1} \quad M_{i+2} \]

\[v_{FL} \quad v_{UL} \quad v_U \quad v_{UR} \quad M_1 \quad M_2 \]

Blocked via

Blocked in-layer element
(5) PROPAGATION – PFA (WITH FALSE ASSIGNMENT)

- PFA Result of #1 VIA @ 9_13_100

- Blocked via (M₁ ↔ M₂)
- Blocked via (M₂ ↔ M₃)
- Assigned via (M₁ ↔ M₂)
- Blocked in-layer element

Diagram showing the propagation process with PFA (Partial Functional Assignment) and false assignment.
(6) DIAGNOSIS RESULT REPORT : EX) 9_13_100

- 4th via @ PFA phase → Conflict encounter!

□ Blocked via (M₁ ↔ M₂)

- Geometry : (Pin0) ↔ (7,10,1)
- Design Rule : CFC ↔ VR Rule

CONFLICT Information
- Geometry : (Pin0) ↔ (7,10,1)
- Design Rule : CFC ↔ VR Rule

\[f_0^7(\text{pin0})(7,8,1) = 0 \]
\[f_0^7(\text{pin0})(7,9,1) = 0 \]
\[f_0^7(\text{pin0})(7,10,1) = 1 \]
\[f_0^7(\text{pin0})(7,10,1) = 0 \]
III. ROAD Experimental Result
The Root causes of routing failure

- **Conflict Pin-shape (CP): Pin-Accessibility Problem!**
 - Simple-CP: Intrinsic Pattern in given Pin-layout
 - Propagated-CP: Simple-CP appears after some propagations

- **Routing Congestion**
 - The lack of routing resources such as #Track and #Layer

Table 2: Unroutable layout examples. \#N=\#Nets, \#P=\#Pins.

<table>
<thead>
<tr>
<th>SwitchBox</th>
<th>Spec.</th>
<th>SAT Formulation</th>
<th>MUS</th>
<th>Conflict Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#N</td>
<td>#P</td>
<td>#Variable</td>
<td>#Clauses</td>
</tr>
<tr>
<td>11_7_80</td>
<td>6</td>
<td>12</td>
<td>16,776</td>
<td>378,551</td>
</tr>
<tr>
<td>9_19_100</td>
<td>13</td>
<td>29</td>
<td>101,943</td>
<td>5,368,125</td>
</tr>
<tr>
<td>9_13_100</td>
<td>10</td>
<td>22</td>
<td>54,884</td>
<td>2,280,223</td>
</tr>
<tr>
<td>12_13_70</td>
<td>10</td>
<td>23</td>
<td>79,471</td>
<td>3,478,371</td>
</tr>
<tr>
<td>11_7_90</td>
<td>7</td>
<td>14</td>
<td>21,014</td>
<td>580,925</td>
</tr>
<tr>
<td>7_7_100</td>
<td>4</td>
<td>9</td>
<td>7,972</td>
<td>110,389</td>
</tr>
<tr>
<td>7_13_100</td>
<td>7</td>
<td>15</td>
<td>24,236</td>
<td>595,898</td>
</tr>
<tr>
<td>15_7_90</td>
<td>9</td>
<td>20</td>
<td>45,782</td>
<td>1,725,676</td>
</tr>
<tr>
<td>19_13_70</td>
<td>15</td>
<td>33</td>
<td>171,092</td>
<td>11,287,222</td>
</tr>
</tbody>
</table>

- Simple-CP
- Propagated-CP
- Routing Congestion
UNROUTABLE LAYOUT CLASSIFICATION – SIMPLE-CP

- Simple-CP with 3-3-n-3-3 pattern

Simple Intrinsic CP Pattern

3 – 3 – n – 3 – 3
UNROUTABLE LAYOUT CLASSIFICATION – PROPAGATED-CP

- **Propagated-CP**: Main Concern of Pin-accessibility
 → Why designer don’t change Pin-shape?

Propagated CP Pattern

- #V_Tracks= 12, #H_Tracks= 13
- PinDensity= 70%
- 14 Pins: 0-13
- 9 Outer Pins: 14-22
- 10 Nets: {2 13 14}, {10 12 15}, {4 8 21}, {0 22}, {6 20}, {3 16}, {7 17}, {5 11}, {9 19}, {1 18}
Routing Congestion: Technology Limitation Identification!

- #V_Tracks= 15, #H_Tracks= 7, PinDensity= 90%
- 12 Pins: 0-11
- 8 Outer Pins: 12-19
- 9 Nets: \{2 11 14\}, \{5 8 13\}, \{3 15\}, \{6 12\}, \{9 16\}, \{1 4\}, \{7 19\}, \{0 17\}, \{10 18\}

All tracks are occupied / blocked!!
Routability Diagnosis Experimental Statistics

- Total Diagnosis Time
 - MUS Extraction Time + Decision & Propagation Time
 - Diagnosis Performance (Complexity and Execution Time) depends on the root causes of routing failure
 - CP pattern case is less than 30 seconds on average to get the result.
 - Routing Congestion Case is relatively longer than the CP pattern cases.

Table 3: Experiment statistics of routability diagnosis (94 pin layouts @ 90 grids). In the table, #N=#Nets, #P=#Pins.

<table>
<thead>
<tr>
<th>Conflict Type</th>
<th>#N (avg.)</th>
<th>#P (avg.)</th>
<th>#Variable (avg.)</th>
<th>#Clauses (avg.)</th>
<th>Diagnosis Time [s] (avg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Original</td>
<td>MUS</td>
</tr>
<tr>
<td>CP pattern (80 cases)</td>
<td>10.2</td>
<td>22.4</td>
<td>68,954.6</td>
<td>3,068,017.3</td>
<td>291.5</td>
</tr>
<tr>
<td>Routing Congestion (14 cases)</td>
<td>10.0</td>
<td>22.5</td>
<td>68,803.3</td>
<td>3,049,687.6</td>
<td>2,627.8</td>
</tr>
</tbody>
</table>
The same Grid Number with different number of pins row

- (a) 20_7_80
 - Simple-CP: 31%
 - X (unknown): 0%
 - Total: 69%

- (b) 11_13_80
 - Simple-CP: 80%
 - Propagated-CP: 12%
 - Routing Congestion: 8%

- (c) 8_19_80
 - Simple-CP: 80%
 - Propagated-CP: 20%
 - Routing Congestion: 0%
1. Ilgweon Kang, Dongwon Park, Changho Han, Chung-Kuan Cheng. “Fast and Precise Routability Analysis with Conditional Design Rules”. SLIP 2018
3. Journal Extension is now under preparation. (TCAD)
Appendix
TABLE I

NOTATIONS FOR SAT FORMULATION.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G(V,E))</td>
<td>Three-dimensional (3-D) routing graph</td>
</tr>
<tr>
<td>(V)</td>
<td>Set of vertices in the routing graph (G)</td>
</tr>
<tr>
<td>(V_d)</td>
<td>Set of vertices in (d)-th metal layer of the routing graph (G)</td>
</tr>
<tr>
<td>(v)</td>
<td>A vertex at the coordinate ((x_v,y_v,z_v))</td>
</tr>
<tr>
<td>(\nu_d)</td>
<td>0-1 indicator if (d)-directional adjacent vertex about (v)</td>
</tr>
<tr>
<td>(a(v))</td>
<td>Set of adjacent vertices of (v)</td>
</tr>
<tr>
<td>(E)</td>
<td>Set of edges in the routing graph (G)</td>
</tr>
<tr>
<td>(e_{vu})</td>
<td>An edge between (v) and (u, u \in a(v))</td>
</tr>
<tr>
<td>(N)</td>
<td>Set of multi-pin nets in the given routing box</td>
</tr>
<tr>
<td>(n)</td>
<td>(n)-th multi-pin net</td>
</tr>
<tr>
<td>(s_n)</td>
<td>A source of (n)</td>
</tr>
<tr>
<td>(t_n)</td>
<td>Set of sinks in (n)</td>
</tr>
<tr>
<td>(t_m)</td>
<td>(m)-th sink of (n)</td>
</tr>
<tr>
<td>(f_m)</td>
<td>(m)-th commodity flow of (n) heading to (t_m)</td>
</tr>
<tr>
<td>(e_{vu,m})</td>
<td>0-1 indicator if (e_{vu,m}) is used for (n)</td>
</tr>
<tr>
<td>(f_m(v))</td>
<td>Flow variable on (v) for commodity (f_m)</td>
</tr>
<tr>
<td>(e_{vu,m})</td>
<td>0-1 indicator if (e_{vu,m}) is used for commodity (f_m)</td>
</tr>
<tr>
<td>(m_{vu})</td>
<td>0-1 indicator if there is a metal segment on (e_{vu})</td>
</tr>
<tr>
<td>(g_{d,v})</td>
<td>0-1 indicator if (v) forms (d)-side EOL of a metal segment</td>
</tr>
</tbody>
</table>

PIN #1 ✠✠✠✠✠ **Power Rail** ✠✠✠✠✠ **H-Track**

| **V-Track** ✠✠✠✠✠ **Grid** ✠✠✠✠✠ **Outer-Pin Connection** | **PIN #1** ✠✠✠✠✠ **Power Rail** ✠✠✠✠✠ **H-Track** |

![Diagram of M₁ in G](image1)

![Diagram of M₂ in G](image2)

![Diagram of M₃ in G](image3)

![Diagram of M₄ in G](image4)
What is SAT (Boolean Satisfiability)?

- **SAT** (Boolean Satisfiability)
 - Find a variable assignment to make propositional logic formula evaluates to 1 (True) (Satisfiable), or prove that no such assignment exists (Unsatisfiable)

\[
A \cap (\neg B \cup C) \quad \rightarrow \quad A \rightarrow 1, B \rightarrow 1, C \rightarrow 1 \quad \text{(Satisfiable)}
\]

\[
A \cap B \cap (\neg B \cup \neg A) \quad \rightarrow \quad \text{Unsatisfiable}
\]

- Usually, Product of Sum (i.e. CNF) is normal representation for SAT formula

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>F(x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Truth Table

Product of Sum (CNF)

\[
(\neg X \cup Y) \cap (X \cup \neg Y)
\]

Sum of Product (DNF)

\[
(X \cap Y) \cup (\neg X \cap \neg Y)
\]

Clause

Equivalent Representations