On Pioneering Nanometer-Era Routing Problems

An Appreciation
of Professor CL Liu’s visionary approach to Physical Design

Tong Gao and Prashant Saxena
Synopsys, Inc.

ISPD 2012
Introduction

• A true anecdote…
 – At an early 90s conference, a presenter told the story of searching under a lamppost
 – Joke about theoretician stereotypes
 – Prof. Liu stood up to defend theoreticians
• Motto: search for interesting problems and solutions, pique interest and fellowship
• Numerous contributions by Prof. Liu
 – Transforming EDA from ad hoc heuristics to algorithmic research
 – Pioneered works in logic synthesis, floorplanning, placement, routing, …
 – Predicting future EDA challenges, and stimulating innovative research
 – Illustrated in this presentation with examples in modern routing area
Importance of Predicting the Future

- Complex EDA problems take years to converge
 - Industry moves to a new node quickly
 - Solutions are needed shortly after difficulties first encountered
 - Example: mad scramble for 20nm DPT
 - Fill the gap between academia and industry
 - Industry is pre-occupied with tactical revenue driven issues
 - Academia and research institutes are best suited to research into future difficult problems

The Free Dictionary
Challenges and Rewards of Researching into the Future

• Challenges
 – Requires strong vision and intuition to predict the future
 – Takes instinct, and years of experience and observation
 – With Prof. Liu, it is a consistent trait
 – For example, his real time scheduling work
 – Requires strong leadership and drive to initiate research into new areas
 – Requires keen sense of judgment along the way and flexibility to adjust
 – Flexibility to adjust: my first topic (optical switch routing) dropped in half a year
 – Continued focus when on the right track: years of research into Channel Routing

• Rewards
 – Accredited as pioneers of new areas
 – Exert leadership and gain fellowships
 – Easier to publish papers – great news for students😊
 – Not the easy way out though – others need to agree with the topics’ relevance
 – …
Prof. Liu’s Early Works in Routing

• Early works focused on Channel routing problems
 – Influential early work done by Prof. Kuh’s group
 – “Efficient algorithms for channel routing”, TCAD’82, T Yoshimura and ES Kuh
 – Prof. Liu’s group was one of the most active research groups in early 80s
 – “A new channel routing problem”, DAC’83, HW Leong and CL Liu
 – “Permutation channel routing”, ICCD’85, HW Leong and CL Liu
 – “Simulated annealing channel routing”, ICCAD’85, HW Leong, DF Wong, and CL Liu
 – “Compact channel routing with via placement restriction”, VLSI’86, DF Wong and CL Liu
 – …
 – Extended to multi-layer channel and over the cell routing
 – “A new approach to three- or four-layer channel routing”, TCAD’88, J Cong, DF Wong, and CL Liu
 – “Over the cell channel routing”, ICCAD’88, J Cong and CL Liu
 – …
 – Extended to FPGA architecture
 – “A channel router for single layer customization technology”, ICCAD’91, Y Sun, SK Dong, S Sato, and CL Liu
 – “Two channel routing algorithms for quickly customized logic”, EDAC’93, SK Dong, Y Sun, S Sato, and CL Liu
 – …
Routing Problems in 80s and early 90s

• Router’s role: maximize route completion with minimal wirelength
 – Little attention to performance
 – Delay dominated by cells – little attention to wire RC
 – Homogenous metal stacks with few routing layers – little need for timing-driven layer assignment
 – Feature sizes much larger than litho wave length
 – Few, simple design rules
 – Most routing related research was in topology generation

• Routing was mostly an industry chip-finishing step
 – Relatively few research activities
Routing Technology Industry Trend

Timing aspect

- Semi industry: new process node every 2 years
 - Devices become faster, while interconnect wires become thinner with closer proximity
 - Circuit performance: more dominated by interconnect Rs and Cs
 - Significant crosstalk impact on circuit performance
 - Layer stacks become very heterogeneous
 - RC varies as much as 50x between layers,
 - Significant timing variation due to layer assignment
- Design sizes explode with emphasis on low power
 - Wires travel over longer distances
 - Weaker drivers
- *Interconnect optimization is becoming the center-stage of physical design*

Bohr, “Intel's 65 nm Logic Technology”, Aug. 2004
Routing Technology Industry Trend

Process aspect

- Semi industry: new process node every two years
 - Litho technology cannot keep up with shrinking feature sizes
 - Major jump in complicated design rules
 - Need for other innovations such as redundant via insertion and double/triple patterning (DPT/TPT)
Predicting the Future

• Vision is always 20/20 in retrospective
 – Difficult to see today’s routing trends in 80s & 90s
 – It would be too late to start on today’s problems now

• Crucial to start EDA research before a process is ready

• Prof. Liu’s crystal ball…
 – Asked me to work on crosstalk driven routing in 1992
 – “Minimum crosstalk channel routing”, T Gao and CL Liu, 1993
 – Today
 – Over the next decade, spurred much academic research with many publications
 – One of the most emphasized areas in timing optimization in industry today
Crosstalk Driven Detailed Routing

• Crosstalk driven routing: an unique marriage between an important future problem with an algorithmic approach
 – Channel routing is a track assignment problem with vertical constraints
 – Crosstalk can be roughly modeled with parallel wires on adjacent tracks
 – Mixed integer linear programming solver advanced significantly in 90s
 – Crosstalk driven channel/switchbox routing problems was formulated as mixed integer linear programming problem
 – Optimize track/layer permutation to optimize for crosstalk and wire length

• Impact on EDA industry
 – The exact formulation is not used now as industry moved to area routing
 – Set an algorithmic direction to solve crosstalk problem during routing
 – Brought great awareness of crosstalk and spurred much research
 – Many papers published.
 – Laid foundation to today’s crosstalk driven routing solutions
 – Industry routers today still control wire spacing and layers for crosstalk control
Predicting the Future (cont.)

• Prof. Liu’s crystal ball...
 – Advised Prashant to work on timing-driven layer assignment in 1997
 – Today
 – Layer stacks can be very heterogeneous, with many routing layers and RC variations among layers as much as 50x
 – Layer assignment can dominate wire delay
 – Timing-driven layer assignment is crucial to design closure

Bohr, “Intel's 65 nm Logic Technology”, Aug. 2004
Performance Driven Layer Assignment

• The challenge was to balance routability against net criticality during layer assignment
 – Addressed timing-driven layer assignment in the context of congestion-related tradeoffs inside a router
 – Introduced a dynamically adjusted “quota” for each net to ameliorate net ordering problem
 – Prevents early-routed nets from monopolizing the “good” layers
 – Used congestion-aware “lookahead key” to evaluate delay impact of moving to next layer

• Impact on EDA industry
 – The notion of “historical congestion” of a gcell implicit in dynamic quotas is the basis of “negotiated” routing in modern routers
 – Layer assignment has increasing effects on timing convergence in increasing number of designs
 – Router needs to be layer RC aware
 – Physical synthesis needs to model the layer assignment
Routing Technology Industry Trend

Process aspect

- Semi industry: new process node every two years
 - Litho technology cannot keep up with shrinking feature sizes
 - Major jump in complicated design rules
 - Need for other innovations such as redundant via insertion and double/triple patterning (DPT/TPT)
The DNA Lives On

Continuing Prof. Liu’s Tradition…

• Antenna effect
 – Seminal work on routing with diode insertion

• Redundant Via Insertion
The DNA Lives On
Continuing Prof. Liu’s Tradition...

• OPC routing
 – P. Yu and D. Z. Pan, "TIP-OPC: A New topological invariant paradigm for pixel based optical proximity correction”. ICCAD, 2007
 – P. Yu and D. Z. Pan, "A Novel Intensity Based OPC Algorithm with Speedup in Lithography Simulation”. ICCAD, 2007

• CMP routing
The DNA Lives On
Continuing Prof. Liu’s Tradition…

• Double patterning
 – K. Yuan and D. Z. Pan, "WISDOM: Wire Spreading Enhanced Decomposition of Masks in Double Patterning Lithography", ICCAD, 2010

• Triple patterning
The DNA Lives On
Continuing Prof. Liu’s Tradition…

• E-beam
 – K. Yuan and D. Z. Pan, “E-beam lithography stencil planning and optimization with overlapped characters”, *ISPD, 2011* (Best Paper Award)
 – S.-Y. Fang and Y.-W. Chang, "Graph-based subfield scheduling for electron-beam photomask fabrication," *ISPD, 2012*

• EUV
Current and Upcoming Challenges

• Process challenges – mismatch between feature sizes and litho technology continues
 – Growing complex design rules hurt run time and QoR
 – Is there a more scalable approach?
 – Design-rule compilers?
 – Restrictive patterns?
 – What is next after LELE DPT and possible solutions?

• Timing challenges – interconnect delay impact needs to be modeled and optimized throughout physical synthesis
 – Pre-route optimization
 – How to better model routing interconnect?
 – How to ensure correlation without over-constraining routing?
 – Post-route optimization
 – Needs stronger better integrated ECO flow between routing and optimization

• …
Thank You Prof. Liu!!!

• For help in transforming EDA from ad hoc heuristics to algorithmic research
• For foreseeing future challenges, and pioneering and leading researches into them
• For being the best advisor possible