Physical Design For FPGAs

Rajeev Jayaraman
Physical Implementation Tools
Xilinx Inc.
Do you know FPGAs?

- FPGAs are used only in prototyping and emulation systems?
- Can you design anything real in FPGAs?
- FPGAs are too expensive even for moderate volumes right?
- FPGAs are a niche market right?
This isn’t your father’s FPGA

- FPGAs are being used in mainstream products
 - Networking
 - Telecom
 - DSP
 - Consumer electronics

- More FPGA design starts than ASIC design starts

- 2 FPGA companies in the top 10 chip suppliers
Agenda

- FPGAs
 - How are they used?
 - Why are they used?

- ASICs and FPGAs
 - What is different?
 - What implications are there for Physical Design

- FPGA Physical Design
 - FPGA architecture
 - Placement
 - Routing

- Conclusions
Agenda

- FPGAs
 - How are they used?
 - Why are they used?

- ASICs and FPGAs
 - What is different?
 - What implications are there for Physical Design

- FPGA Physical Design
 - FPGA architecture
 - Placement
 - Routing

- Conclusions
Use in Emulation systems

- Functionally debug complex systems
- Vendor supplied or home built systems
Use in Emulation Systems

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-to-market</td>
<td>Fairly high; Fast compile times</td>
</tr>
<tr>
<td>Performance</td>
<td>Not stringent</td>
</tr>
<tr>
<td>Volume</td>
<td>Very low per application</td>
</tr>
</tbody>
</table>

Emulation (3%)
Use in Prototyping Systems

- Prototype a system
- Maybe deployed in the field in small quantities

<table>
<thead>
<tr>
<th>Time-to-market</th>
<th>Fairly high; Fast compile times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>Not stringent</td>
</tr>
<tr>
<td>Volume</td>
<td>Low per application</td>
</tr>
</tbody>
</table>

Prototyping (30%)
Use in Pre-Production Systems

- FPGAs are central to the system
- Design may migrate to ASICs eventually
 - Most don’t because of reprogrammability

<table>
<thead>
<tr>
<th>Time-to-market</th>
<th>Fairly high; Fast compile times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>Very critical</td>
</tr>
<tr>
<td>Volume</td>
<td>Moderately high per application</td>
</tr>
</tbody>
</table>

Pre-production (30%)
Use in Production systems

- FPGAs are central to the system
- Will not move to ASICs
 - Reasons of volume or reprogrammability

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-to-market</td>
<td>Fairly high; Fast compile times</td>
</tr>
<tr>
<td>Performance</td>
<td>Very critical</td>
</tr>
<tr>
<td>Volume</td>
<td>High per application</td>
</tr>
</tbody>
</table>

Production (37%)
Use of FPGAs: Summary

- Emulation (3%)
- Prototyping (30%)
- Pre-production (30%)
- Production (37%)

Source: Gartner group

More than 2/3rds of FPGAs have stringent time-to-market requirements and critical performance requirements
Agenda

- FPGAs
 - How are they used?
 - Why are they used?
- ASICs and FPGAs
 - What is different?
 - What implications are there for Physical Design
- FPGA Physical Design
 - FPGA architecture
 - Placement
 - Routing
- Conclusions
New products are taking less time to go into volume. New products also stay in volume for shorter periods.
Time to market is critical

Time to market is a cost

[Diagram showing a triangle with axes labeled Revenue on the y-axis and Time on the x-axis, divided into sections for Market rise and Market fall.]
FPGA Unit Cost

For each technology advance, crossover volume moves higher.
5 Years ago FPGAs were only gates and routing~25000 gates

Today, there are several system-level features.~10,000,000 gates

FPGAs have exploded in size and features
FPGA software

- Wide variety of tools available
 - From EDA vendors: Synthesis and verification
 - From FPGA vendors: Physical design tools and bitstream generation

- Ease of use
 - HDL to Bits

- Fast compile times
 - Million gates in less than an hour
Primary Goals of FPGA Software

- Time to market
 - Extremely fast compile times (HDL to bits)
 - Ease of use (no time to learn non-intuitive flows)

- Design performance
 - Squeeze most performance out of FPGA
Agenda

- FPGAs
 - How are they used?
 - Why are they used?

- ASICs and FPGAs
 - What is different?
 - What implications are there for Physical Design

- FPGA Physical Design
 - FPGA architecture
 - Placement
 - Routing

- Conclusions
FPGA vs ASIC design cycle

ASIC Design Flow
- Design and Verification
- System Verification
- Production
- Iterations
- Re-engg.

FPGA Design Flow
- Design and Verification
- System Verification
- Production
- Iterations
The FPGA Design Cycle

- Evaluation → Design → Dead Time → Debug → Production

- Iterations are rare

- Iterations are frequent

- Turns-per-day metric

- Dead time is really important because designers would rather be doing logic design or debugging
Software Requirements: Evaluation

- Software must be very fast
- Software must provide reasonably good estimates
 - Final design performance
 - FPGA device size for implementation (Cost)
 - Implementation time
Software Requirements: Design/Debug

- Software must be fast
 - Fast implementation => Less dead time

- Must give reasonably good performance
 - Most compilations trade-off performance for faster runtimes
 - Final compilation is for best possible performance at the expense of runtime
Software Requirements: Production

- Late design changes and bugs are being fixed
 - Software must produce best possible performance
 - Cannot degrade performance or area
 - Runtime is not an issue
Deep Sub-Micron Effects

- FPGAs are process drivers
 - Latest process technology.
 - Process leaders

- Signal integrity
 - FPGAs designed with enough margin
 - Users don’t have to design around DSM effects
 - FPGA software does not have factor this in yet!
Deep Sub-Micron Effects

- Routing delay always dominates logic delay for FPGAs
 - Not process related
 - Routing delay = Several Programmable Switches (pass gates) + Several metal segments

- Address it with FPGA architecture
 - Key factor in determining architecture quality metrics
 - At least make it predictable
Software complexity

- ASIC designers are logic designers
 - Risk-averse and methodical
 - Spend lot of time verifying
 - Don’t want to spend time in physical design
 - Separate engineers for physical design

- FPGA designers
 - Would rather debug on the bench
 - Realize must spend time in physical design
 - Expect physical design to be “hands-off”

Software should be simple and require minimal support
FPGA device quantization

- FPGAs available only in certain sizes
 - 10 devices from 3,000 LUTs to 122,000 LUTs for Virtex-II

- Marginal cost of using an extra LUT or routing resource is zero
 - Marginal cost jumps if the design does not fit the device

- Area minimization may not always be a factor
 - Use to FPGA advantage
 - Logic replication may be free while it costs in ASICs
New architecture development

- FPGA Architectures primarily evaluated by CAD tools
- A feature that cannot be supported by CAD tool is very often not added to an architecture
- FPGA software is available at least 6 months before FPGA silicon
Agenda

- FPGAs
 - How are they used?
 - Why are they used?

- ASICs and FPGAs
 - What is different?
 - What implications are there for Physical Design

- FPGA Physical Design
 - FPGA architecture
 - Placement
 - Routing

- Conclusions
FPGA Design Implementation Flow

Synthesis:
Input: HDL, target FPGA arch.
Output: Logic elements (LUTs, FFs), I/O

Placement:
Input: Logic elements, FPGA device
Output: Placed logic elements

Routing:
Input: Placed logic elements
Output: Switch programming
Agenda

- FPGAs
 - How are they used?
 - Why are they used?
- ASICs and FPGAs
 - What is different?
 - What implications are there for Physical Design
- FPGA Physical Design
 - FPGA architecture
 - Placement
 - Routing
- Conclusions
Placement

- Placement problem is very similar to ASICs
 - Lot fewer movable objects
 - 10M FPGA ~ 300,000 movable elements

- Standard metrics and algorithms
 - Simpler metrics work best
 - Bounding box, cut numbers, simple congestion metrics

- Estimating delays during placement
 - Easier than ASICs
 - Finite set of routing resources
Delay Estimation In Placement

- **ASICs**
 - RC tree analysis for proposed route
 - Computationally expensive
 - Very little pre-computation

- **FPGAs**
 - Fixed set of most likely routes
 - Pre-computed delays for routes
 - Architecture makes delay predictable
Delay Estimation for FPGAs

Local resources
Semi-local resources
Global resources
Delay Estimation in FPGA Placement

- Architecture dictates routing connections for optimal results
- Critical signals must use architectural recipe
- Non-critical signals may use other routes
Agenda

- FPGAs
 - How are they used?
 - Why are they used?

- ASICs and FPGAs
 - What is different?
 - What implications are there for Physical Design

- FPGA Physical Design
 - FPGA architecture
 - Placement
 - Routing

- Conclusions
Routing Model for FPGAs

Architecture represented as a routing connectivity graph.

Conductor segments are nodes
Programmable point are arcs
Routing Model for FPGAs

Rectilinear grid-based graph routing algorithms must be modified
FPGA Routing Algorithms

- No distinct global and detailed routing phase
 - Regions cannot be separated and routed independently
 - Channel routing algorithms don’t work

- Global resource assignment phase
 - Use architectural insights

- Maze routing can be used
 - Side effect of contention is a serious problem
PathFinder algorithm

Routing is unsuccessful due to resource contention!
PathFinder Algorithm

Increase the weight of this resource

Routing is now successful!
PathFinder Algorithm

- Route all nets
- Identify contentions
- Increase cost monotonically
- Repeat until all nets are routed or too many iterations have been done.
PathFinder Algorithm

- The individual nets are routed using:
 - Some variation of maze
 - Table lookup

- Each individual net can be routed very fast
 - Absence of obstacles

- Accounts for resource contention better than standard maze routing
Other FPGA Routing Approaches

- Basic idea of embedding a routing on a connectivity graph
- Interesting approach to formulate problem as a Boolean Satisfiability Problem
- Solution to the SAT problem gives a feasible routing
Physical Synthesis for FPGAs

- Wire-load models are still the preferred method
 - Used to be very inaccurate
 - Architectural improvements have reduced error

- A recent approach to FPGA physical synthesis
 - Run through place/route once
 - Re-synthesize based on previous results
 - Good experimental results
 - Oscillations could be a problem
Conclusions and Future Work

- FPGAs are in the mainstream
- Physical design is similar in FPGAs and ASICs
 - Differences make for interesting twist to existing algorithms
- FPGA-based algorithms research
 - Currently, we just borrow from ASICs
 - Use architecture for different formulation
- Speed, Speed and more Speed