Multi-Scenario Buffer Insertion in Multi-Core Processor Designs

Yifang Liu, Jiang Hu and Weiping Shi
Department of ECE
Texas A&M University
Outline

► Buffering for multi-core processors
► Algorithm
► Experimental results
► Conclusion
Buffering for Multi-core Processor

- Identical cores => identical in-core buffering solutions
Buffering for Multi-core Processor

- External context varies from core to core, differences:
 - Source strength
 - Source arrival time
 - Sink capacitance
 - Sink RAT

- A single in-core solution handles different scenarios
Definitions

- A signal net appears for multiple cores – one **instance** for each core
- **Critical slack**: the minimum slack among all instances
Problem Formulation

- Maximize critical slack
- Minimize total cost while timing constraints of all instances are satisfied
- Obtain a tradeoff curve of critical slack and total cost
Naive Approach

► Run Ginneken-like algorithm for each instance separately

► Often, these instances ends with different solutions

► Pick a solution from one instance and apply it to all instances

► A solution good for one instance may be poor for another
Our Approach

► Use **net solution** composed by identical solutions for all instances

► More precisely, only in-core part should be identical

► Propagate net solutions like Ginneken-Lillis algorithm
 ▪ Insert the same buffer at the same node simultaneously for all instances
Net Solution Characterization

- If there are \(m \) cores, a net solution at node \(v_i \) is characterized by

\[
(c_{i,1}, c_{i,2}, \ldots c_{i,m}, q_{i,1}, q_{i,2}, \ldots q_{i,m}, w_i)
\]

- \(c \): load cap at node \(v_i \)
- \(q \): required arrival time at \(v_i \)
- \(w \): total cost for all instances

- \(2m + 1 \) dimension, hard to prune and slow!
Dimension Reduction

► First consider easier cases – only sinks may be different
► All instance solutions satisfy timing constraints =>
the worst of all instances satisfies its timing constraint
► Solution characterization

\[(c_{i,1}, c_{i,2}, \ldots, c_{i,m}, q_{i,\text{min}}, w_i)\]

\[q_{i,\text{min}} = \min (q_{i,1}, q_{i,2}, \ldots, q_{i,m})\]
► \(m + 2\) dimension now
Further Dimension Reduction

- If cap is identical for all instances – **iso-cap solution**: \((c_i, q_{i,\text{min}}, w_i)\)
- Now 3D! Propagate like Lillis’ algorithm
How to Make It Iso-cap?

- Quick and dirty
- Pre-insert identical buffers at boundary
- Too much buffer cost!
Once a buffer is inserted at a node, the solution at that node becomes iso-cap.

Due to slew constraint, solutions become iso-cap sooner or later.
Before Iso-cap

- **Critical component** \((c_{i,\text{max}}, q_{i,\text{min}}, w_i)\)
 \[c_{i,\text{max}} = \max (c_{i,1}, c_{i,2}, \ldots, c_{i,m}) \]

- Solution pruning is approximated using critical component
Detect Iso-cap

► Once all candidate solutions are iso-cap
 ▪ Cap of net solution == cap of instance solution
► Prefer to propagating unbuffered solutions first
 ▪ Iso-cap solutions can be reached earlier
► Detect iso-cap by linear time labeling
 ▪ Iso-cap labels are propagated ahead of solutions
On the Source Side

- Discussions so far depend on assumptions
 - Same driving strength at source of each instance
 - Same arrival time (AT) at source of each instance

- How to handle differences at the source side?
Align Arrival Time at Source

\[a_{0,1} \]

\[a'_{0,1} \leq 0 \]

\[q_{1,1} \leq q_{1,1} - a_{0,1} \]

\[q'_{1,1} \leq q_{1,1} - a_{0,1} \]

\[q'_{2,1} \leq q_{2,1} - a_{0,1} \]

\[a'_{0,2} \leq 0 \]

\[q_{1,2} \leq q_{1,2} - a_{0,2} \]

\[q'_{1,2} \leq q_{1,2} - a_{0,2} \]

\[q'_{2,2} \leq q_{2,2} - a_{0,2} \]

\[a'_{0,2} \leq 0 \]
Handling Different Driving Strength

If differences are large, pre-fix buffers at boundary
Otherwise, ignore the difference
Experiment Setup

► 200 nets, 4 cores – 800 instances

► Compare:
 - **Our heuristic**
 - **Instance based** method:
 - Run Lillis’ algorithm separately for each instance
 - Apply solution from a critical instance to all instances

► Two formulations:
 - **Max slack**: maximizing critical slack
 - **Min cost**: minimizing cost without negative slack
Max Slack Formulation

<table>
<thead>
<tr>
<th></th>
<th>Instance Based Baseline</th>
<th>Our Heuristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg slack improvement/net (ps)</td>
<td>0</td>
<td>102.08</td>
</tr>
<tr>
<td>Avg slack improvement/instance (ps)</td>
<td>0</td>
<td>77.69</td>
</tr>
<tr>
<td>Total buffer cap (fF)</td>
<td>2503.66</td>
<td>2514.65</td>
</tr>
<tr>
<td>Total CPU time (s)</td>
<td>6408</td>
<td>849</td>
</tr>
</tbody>
</table>
Slack Improvement: Max Slack

Ours vs. instance based in term of instances

Ours vs. instance based in term of nets
<table>
<thead>
<tr>
<th></th>
<th>Instance Based Baseline</th>
<th>Our Heuristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # of nets with timing violations (ps)</td>
<td>155 (77:50% of 200 nets)</td>
<td>0</td>
</tr>
<tr>
<td>Total # of instances with timing violations (ps)</td>
<td>282 (35:25% of 800 instances)</td>
<td>0</td>
</tr>
<tr>
<td>Total buffer cap (fF)</td>
<td>2312.12</td>
<td>2314.77</td>
</tr>
<tr>
<td>Total CPU time (s)</td>
<td>6412</td>
<td>851</td>
</tr>
</tbody>
</table>
Slack Histogram: Min Cost Solutions

Ours vs. instance based in term of instances

Ours vs. instance based in term of nets
Conclusion

A heuristic for multi-scenario buffering is proposed

Compared to naïve application of Lillis’ algorithm, our heuristic

- increases slack significantly
- avoids timing violations
- reduces computation runtime
- about the same buffer cost
Thank You!
Iso-Cap Detection – an example

Iso-cap spread example

- Iso-cap sibling nodes determined, spread to their parent node

[1]

Non-iso-cap spread example

- Non-iso-cap spread down from the parent

[3]

- Process the node, Non-iso-cap, spread to parent

[4]