Global routing

Bill Swartz

InternetCAD.com
Disclaimer

- Paper written in 5 days
- Please forgive any errors, typos, omissions, and possible legal transgressions
Background

- Concentrated on producing high quality results for small chips and block designs.
- Claim to fame: 486, Pentium series, Alpha, and Centrino
But...

- One company no longer uses the product and one no longer exists...
- Business is now predominantly DRAM.

- Wrote grouter (2D) and igrouter (3D).
- Helped write TimberWolfGR and SGGR.
Outline

- Introduction
- Applications
- Previous work / state-of-the-art
- Advanced objectives and requirements
- Alternative methodologies
- Itools global router
- Summary
Physical Design Stages

Diagram showing the stages of physical design:
- netlist
 - Partitioning
 - Floorplanning
 - Placement
 - Global Routing
 - Detailed Routing
 - Compaction/Spacing
 - Verification

Result: physical representation

Figure 1.4 Physical design stages.
Global routing definition

- Assign net segments to physical regions.
- Model regions as a graph.
- Nets are embedded into graph
- Minimize the total overflow on all global edges

From Pan M, Chu C.

InternetCAD.com, Inc. 2008
Cost function

$$\sum_{n \in N} W(n)$$

subject \(P_c = 0, 1 \leq b \leq B \)
Global routing difficulty

- Easiest of three primary subtasks
- Fast
- Detail router can ignore global routing to complete design
- Global routing is not necessary for sufficiently small designs
- Negotiated detail router (Pathfinder) + A* search performs poor man's global routing
Global and Detail Router Programs

- Combination of base, meta, and hierarchical algorithms.
- Base: how to route a single net or net segment
 - Maze, pattern, line search, gridded, etc.
- Meta: how to route a set of nets
 - Ripup and Reroute, Pathfinder, Graph-Based, Lagrange Relaxation, Linear Programming, Network Flows, etc.
- Hierarchical: how to route a set of regions
 - Multilevel, channel-based methods, wire ordering (Groeneveld)
Detail Routing Meta Algorithms

- Now appear in global routers
- Ripup and Reroute
- Graph-based Conflict Removal
- Congestion Negotiation (Pathfinder)
The problem

Shaded area keepouts; pins blue; fly-lines denote net connections
Single routing layer

From Tatsuo Ohtsuki, “Layout Design and Verification” 1986

InternetCAD.com, Inc. 2008
Net 1 is blocked

Route net 2 first
Net 2 is blocked

Ordering nets won’t solve problem
Ripup and Reroute

- Ripup and reroute net segments - not the entire net!
- Ripup of entire net does not work.
Ripup/Reroute: Net 2 is blocked

Initial state

Recursion depth 0
Ripup/Reroute: Route net 2

Route borrowing net 1’s segment

Recursion depth 1
Ripup/Reroute: Ripup net 1 segment

Remove net 1 segments

Recursion depth 0
Ripup/Reroute: Route net 2

But we fail to route 1

Recursion depth 0
Ripup/Reroute: Backtrack

Back at start

Recursion depth 0
Ripup/Reroute: Route net 2

Block previous failure and route borrowing from net 1

Recursion depth 1
Ripup/Reroute: Ripup net1 segment

Prepare to route net 2

Recursion depth 0
Ripup/Reroute: Ripup of segment of net 2 to route net 1

Routing succeeds for net 2

Recursion depth 0
Ripup/Reroute: Routing complete
Routing succeeds for net 1
Graph-based: Initial conflicts

Conflicts shown in orange
Graph-based: Alternative route for net 1
Graph-based: Alternative candidate for net 2
Each candidate route becomes a node in conflict graph
Conflicting route candidates form edges
Find set of nodes with no conflicting edges
Graph-based: Conflicts resolved
Pathfinder: Initial Conflicts
Pathfinder: Second Iteration
Pathfinder: Conflicts resolved

InternetCAD.com, Inc. 2008
Detail Routing Meta Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Relative Speed of Convergence</th>
<th>Weakness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ripup and Reroute</td>
<td>Easy Instance: Fast</td>
<td>Difficult Instance: Slow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recursion tree traversal order</td>
</tr>
<tr>
<td>Graph-based</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Missing candidates</td>
</tr>
<tr>
<td>Congestion Negotiation (Pathfinder)</td>
<td>Slow</td>
<td>Faster</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Penalty increment</td>
</tr>
</tbody>
</table>

InternetCAD.com, Inc. 2008
Negotiated Congestion Router without GR

- Advantages
 - No granularity problem
- Disadvantages
 - Doesn't scale well
 - Impractical for large problems
Age of global routing

- Today problems involve many millions of gates
 - Time to market and productivity important

The age of global routing
Global routing applications

- Full chip
- Subchip or block level
- Specialty
 - Analog
 - Symmetry
 - Length constraints
Design Methodologies

- Fixed die
- Variable die
- Constrained die
Fixed Die Methodology

- Dominates industry and academia
- Placement consists of two stages:
 - Coarse
 - Detail
- Global routing
 - Timing / Congestion Driven
- Detail routing
 - Multilevel to increase capacity and fix problems due to abstraction
Previous Work

- Multicommodity Flow Albrecht C (2001)
- Rich literature. Too many to mention
Bin Based

Each region becomes a node in the graph

Adjacent regions form edges in the graph

Graph may be 2D or 3D
Global Routing Issues

- Bin Model Granularity Errors
- Extending the Domain of Global Routing
 - Placement
 - Detail Routing
- Methodology issues
 - Variable Die
 - Constrained Die
Granularity Errors

- Bin model counts edge crossings
- Bin model fails to capture in-bin density
- Bin size 15-50 tracks typically
- ISPD benchmark contest 30-50 tracks
- Effect prominent in better placements
- Obvious during detail routing
- Wire widths not taken into account
Why bin boundary approximation?

- Pin locations are known
- Exact is easy enough with interval trees
- Non-uniform wire pitches (3D case)
- Use layer direction orthogonality
 - Layers either horizontal or vertical
- $O(\log N)$ time complexity
Global router should do placement

- Half-perimeter wire length is replaced with Steiner trees
 - Far more accurate wire length
- Accurate density calculations
 - Detail routing possible if $d_b \leq s_b + k$, $\forall b \in B$
- Why not detail placement?
Congestion: a poor metric

- Cost = wirelength + congestion + timing

\[C = \beta_w W + \beta_t P_t + \beta_c P_c \]

\[W = \sum_{n=1}^{N} W(n) \]

\[P_t = \sum_{p=1}^{N_p} D_p \]

\[D_p = f(R, C, l, t_g) \]

\[P_c = \sum_{b=1}^{B} P_c(b) \]

Fails dimension analysis

Reliance on benchmarks for tuning

InternetCAD.com, Inc. 2008
Timing Penalty Revisited

- Rewrite timing penalty in terms of net length

\[P_t = \begin{cases}
 \text{length}(p) - \text{upperBound}(p) & \text{if } \text{length}(p) > \text{upperBound}(p) \\
 \text{lowerBound}(p) - \text{length}(p) & \text{if } \text{length}(p) < \text{lowerBound}(p) \\
 0 & \text{otherwise}
\end{cases} \]

where

\[\text{length}(p) = \sum_{n \in p} W_n \]

Successfully used on many microprocessor designs
What about Congestion?

- Detour length replaces congestion term
- How far to travel to get to uncongested area
- Timing and congestion rewritten in terms of length
- All terms in cost function are length-based
 - Scales properly
 - Tradeoffs between terms straightforward
Calculating Detour Length

- But during global routing, we have all the information to directly compute it.
- Possible metrics
 - How far are we outside the bounding box of a net’s pins
 - Excess wire length above minimum Steiner tree bound
 - Net segment detour length
- Use traditional congestion metric as a tie breaker.
Global router should do detail routing

- Alignment of orthogonal resources within the bin or region
- Known as virtual pin resources or feedthru assignment
- Long range planning
- Minimize vertical constraint cycles
Minimizing Vertical Constraints

Forces new column
Minimizing Vertical Constraints

Most detail routing fails at the pins
Detail router appreciates help from the global router
Minimizing Vertical Constraint Cycles

- Ways to break cycle
 - Move virtual pin assignment
 - Swap equivalent pins of a gate (rewrite netlist)
 - Rotate a cell
 - Move a cell
Track assignment

- 1D routing
- Crosstalk
- Noise
- Early channel-based detail routers (Greedy, Mighty)
- Solve using linear assignment, partitioning, linear programming...
Simultaneous Routing

- Power, clock, signal routed simultaneously
 - Wide wire requires planning
Synthesis during global routing

- Buffer synthesis
- Gate resizing
- Scan chain synthesis
- Clock tree synthesis
Other design methodologies

- Variable die
- Constrained die
White space is manipulated to insure no overflow
Placement is not fixed.
Relative placement may change as well
Variable Die

- Applicable to block level
- Early stages of chip level
- Minimize area
- Trade off # of routing layers versus cost
- Guarantees completion
- Minimizes congestion (controversial)
- Original P&R algorithm using channels
Variable Die Algorithm

- Virtual pin assignment determines orthogonal (vertical) resources
- Partition into virtual regions to determine horizontal resources
- If all pins at center of standard cell
 - Perfect decomposition
 - Global router decouples virtual regions
 - Perfect parallelism – all core regions at once.
 - Blocks/macros complicate things
Macro Regions
Input to Global Router
Region Definition
Output of Global Router
Chip Design

- Chip design process uses iterative refinement not one-shot
- Design space exploration at beginning
 - What is possible?
- As knowledge is acquired, more and more aspects become fixed
 - Die size become fixed
 - I/Os become fixed
Constrained Die

- Designer cares only about interface of block or chip remain constant during iterations
 - Footprint important
 - Physical location of internals irrelevant

- Propose Constrained Die Methodology
Constrained die compaction graph in y direction. Dotted line shows constrained die fixed edge.
Compacting global router

- Global router compacts virtual regions such that block/chip constraints maintained.
- Maximize degrees of freedom
- Delay whitespace allocation as much as possible
- Guarantee solution
- Trade offs much easier
- ECO compatible
Variable Die Algorithm Problems

- Detail routing slow if not in parallel
 - Compaction is done by maze router because topology changes
- Global router errors
 - Estimate off by 1 track
 - Assignments to wrong region
- Solved by Multilevel but this negates parallelism
- Complicated
Itools Global Routing Algorithm

globe(void) {
 setup_routing_regions();
 create_prerouting();
 instantiate_power_ground_networks();
 process_scan_chains();
 process_clocktrees();
 steiner();
 initialize_gr_cost();
 switchable_segment_opt();
 area_minimization();
 freeway_assign();
 feedthru_assign();
 for(c = 1 ; c <= reassign_limitG ; c++){
 cell_swap_opt();
 detour_minimization();
 } /* end for(loop_cnt = 1... */
 switchable_segment_opt();
 area_minimization();
 congestion_minimization();
 vertical_constraint_min();
}
void area_minimization(GRAPHPTR region_graph, const int MLIMIT)
{
 for(count=1; count <= area_passes; count++){
 // Compact & find longest path but don't move cells.
 compact_fixed_area();
 // Determine set of regions where area opt is warranted.
 xpaths = find_M_longestPath(region_graph, ICCOMPACT_X, MLIMIT);
 xcritical = assign_critical_regions(xpaths, ICCOMPACT_X) ;
 ypaths = find_M_longestPath(region_graph, ICCOMPACT_Y, MLIMIT);
 ycritical = assign_critical_regions(ypaths, ICCOMPACT_Y) ;
 // Reroute paths on the critical path.
 for(p = 1 ; p <= xcritical.num ; p++){
 path_p = xcritical.paths[p];
 reroute_critical_nets(path_p, ICCOMPACT_X);
 }
 for(q = 1 ; q <= ycritical.num; q++){
 path_p = ycritical.paths[q];
 reroute_critical_nets(path_p, ICCOMPACT_Y);
 }
 } /* end for(count=1; count <= area_passes... */
 // Move the cells and rebuild the tile database and graph.
 compact_variable_area();
} /* end area_minimization */
Detour Minimization

virtual pins
void detour_minimization(void)
{
 obstacles = build_feed_obstacles() ;
 for(row = 1 ; row <= numRowsG ; row++){
 comb_a_row(row,obstacles) ;
 }
 free_feed_obstacles() ;
} /* end detour_minimization() */

void comb_a_row(int row,TILEPLANEPTR obstacles)
{
 // A detour is a C or inverted C.
 detours = find_set_of_detours(row) ;
 // Remove net segments containing the detour
 // making the virtual pin now unused.
 remove_detour_feeds(detours) ;
 // Determine the set of unused virtual pin locations.
 feeds = unused_feeds(row,obstacles) ;
 // Use linear assignment to assign detour
 // segment to virtual pins.
 new_cost = reassign_feeds(row,detours,feeds) ;
} /* end comb_a_row() */
Summary

- Global routers should do detail placement
- Global routers should aid detail routers
 - Minimize cycles in constraint graphs
 - Long range alignment vertical constraints
- Simultaneous routing of signals, power and clocks
- Variable die and constrained die methodologies to remove congestion
- Integral component to floorplanning