Going with the Flow:

Bridging the Gap between Theory and Practice in Physical Design

Patrick Groeneveld,
Chief Technologist, Magma Design Automation
ISPD 2010 San Francisco
Overview: Physical Design Flows

• The Nature of the PD problem
 • Objectives
 • Algorithms

• How to build a flow
 • ABC

• Tough problems:
 • Crosstalk-induced delay

• Proof of efficacy
Physical Design Flow: from logic to physical
Synthesis is from Mars, Analysis is from Venus

- Implementation tools:
 - RTL synthesis,
 - Placement,
 - Routing,
 - Optimization,
 - Humans

- Poor accuracy
- Lean, mean
- Tough
- Is the ‘hacker’

- Sign-off tools:
 - Verification,
 - Extraction,
 - STA,
 - spice, DRC, LVS

- Highly accurate
- Big and slow
- Parallelizable
- Is the ‘whiner’

Need to make this work
Making this work in a Physical Synthesis Flow

Iterate:

- **Avoid loops:**
 - Gradual, Stepwise refinement
 - ABC flows
- **Speed up loops:**
 - Reducing analysis accuracy
 - Tricks: incremental analysis
 - Running tasks in parallel
 - Tight tool integration
Physical Design:
Trade-offs between conflicting objectives
The nature of the Physical Design ‘beast’

Pushing *all* objectives simultaneously costs:
• Human design effort,
• Run time
Building a Physical Design Flow

Observation 1: Need gradual refinement flow using many algorithms

Observation 2: Synthesis algorithms need highly simplified models of reality

Observation 3: Synthesis algorithms cannot deliver good multi-objective trade-offs

Observation 4: Optimizing a single objective often makes other objectives worse.

Optimal is not Optimal!
The ABC of a Physical Design Flow

A: Avoid
Use pessimism to make problem unlikely, ‘Correct by Construction’

B: Build
Synthesize using an algorithm

C: Correct
Fix each objective by incremental modifications (ECOs).

More avoidance = worse results...

Synthesis is from Mars...

Analyze Synthesize
Example ABC: Combating crosstalk delay

Avoid: using ‘pessimism’:
- Size up all drivers: Costs cell area and power
- Force double spacing NDR on many nets: Costs congestion = area

Build:
- Some routing tricks to spread & jog wires

Correct using ECO:
- gate re-sizing, buffering
- Re-routing

Wire cap: \(50 \text{fF} \), of which 30-80% is to neighbors

Gate input cap: \(4 \text{fF} \)
Avoidance vs. Correction: masks

- **Avoid:**
 - DRC deck with hard rules

- **Build:**
 - Dijkstra grid expansion + hacks

- **Correct:**
 - Analyze using DRC, CAA, LPC
 - Fix incrementally using R&R

How many failures are acceptable?

- < 100 violations: Manual fixes are feasible
- 1000-10000 violations: Automatic ECO-style fixes, rip-up and reroute
- > 10,000 violations ????????
Controlling the amount of Correction

- Relax the objective
- More Avoidance (pessimism)
 - Which might deteriorate other objectives
Local Optima in a Physical Design Flow

- Floorplanning
- Logic Synthesis
- Placement
- Global routing
- Optimization
- Routing

Cost
Solution

March 15, 2010 – Patrick Groeneveld - ISPD 2010 - 13
The Physical Design Flow as a Pachinko Machine

- **Run flow:**
 - End up an one of the local optima.

- **Re-run:**
 - Typically get same results
 - (Multi-processing alert!!)

- **Re-run with small change**
 - Could be significant difference

- **Changes:**
 - Irrelevant order changes
 - Additional steps/algorithms
 - Changing constraints, tuning, etc.

- **Good/bad results depend on:**
 - ‘ease’ of the design
 - Flow set-up/tuning
 - Design structure (e.g. data paths)
 - Coincidence
How to tune the flow?

- **Tuning of the TCL script**
- **First time:**
 - Poor local optimum, bugs, mistakes
- **Tune flow+data**
 - Better local optimum.

But:
- Loop is slow
- Tool talks gibberish
- Result depend on experience of engineer.
- Hacks are design-specific
PD Flow tuning for best out-of-the-box results

• **Goal:**
 • Improving the chance of ending up in a good local optimum. (that is: move the mean for better QOR)

• **That requires:**
 • Good understanding of cause, actions, side-effects
 • Statistical **evidence of efficacy**

• **Issue:**
 • Effects and side-effects are hard to predict
 • How to distinguish design-specific noise from real improvements?

Not easy!
Medical tools vs. Physical design tools

- **New drug**
 - Biological model of cause, actions and side-effects

- **Develop it**
- **Test tube test**
- **Test on animals**
 - Efficacy, side effects

- **Clinical trials**
 - Large double-blind placebo-controlled tests

- **FDA-approval**

- **New flow component**
 - Based on electrical/physical plausibility

- **Program it (C++/TCL)**
- **Unit test**
- **Test on small testcases**
 - Debug program
 - Efficacy, side effects

- **Beta test**
 - Hope that customers use it

- **Deployment**
 - Go for it!

“Engineers: think it, build it, demo it, declare victory”
Lack of evidence = quackery

Physical Design is not exempt:

- Structured placement
- Thermal-driven placement
- Plug 'n play tool interoperability
- Running PD tools in parallel on a GPU.
- Gridless routing
- X-Architecture
Apply skeptical wisdom

• “Humans are amazingly good at self-deception”
 • This looks soooo good, therefore this must work

• “If it has no side effects, it probably has no effects either”
 • Example: improving temperature gradients will cost timing you! Are you really willing to pay based on the evidence?

• “Do not confuse association with causation”
 • “I took this airborne pill, and I did not get sick”
 • “I used this DFM optimizer, and the chip yields!”

• “The plural of ‘anecdote’ is ‘anecdotes’, not data”
 • Result could be a random effect, or another side effect
 • No substitute for unbiased placebo-controlled tests
 • Only large data sets are statistically relevant
Coarse-grain partitioning to speed up

Partition/budget

Assemble

Build each block in parallel

place
Summary: it’s the flow, not the algorithm!

- Need to deal with conflicting objectives
- Careful tuning of:
 - Clever Avoidance (as little as surgical as needed)
 - Incremental Correction.

- Need to focus on the dominant issues:
 - Timing: very poor delay predictability
 - Design scale: keeping up with Moore’s law

- Be skeptical and honest!
 - Negative results are as important and positive!