Design Planning
Trends And Challenges

Neeraj Kaul
Group Director, R&D
Synopsys Inc.
nkaul@synopsys.com
Agenda

- Design Planning: What and Why
- Design Trends
- Design Planning Challenges
- New Trends
- Discussion
Assess routing, timing, power feasibility. Create input for implementation. Drive architectural decisions.

- # TOP.sdc
- set_input_delay
- set_output_delay
- set_false_path

- # TOP.V
- module top (...)
- ...
- endmodule

- #PIN Constraints
- #BLK1.sdc
- set_input_delay
- set_output_delay
- set_false_path

- Design Planning
- SDC
- Netlist
- Ref Libs
- Constraints
- Floorplan
Key Aspects Of Design Planning
For Flat And Hierarchical Methodologies

• Prototyping
 – Exploration of implementation strategies
 – Identify and address gross implementation issues
 – Feedback to RTL designs/synthesis
 – Architectural exploration

• Detailed Planning
 – Prepare best input/constraints for detailed implementation
 – Maximize QoR and Minimize runtimes for implementation
Hierarchical Design Methodologies

Top Down

RTL

Design Planning

...

Block-Level

Block-Level

Top Level Assembly

...

GDS-II

Bottom Up

RTL

Block-Level

Design Planning/Implementation

Top Level Planning & Assembly

GDS-II
Traditional Floorplanning Problem

Objective

• Produce overlap free block placement

• Minimize
 • Area, Wirelength
 • White space

• Other considerations
 • Chip Area, Aspect ratio
 • IO PADs
 • Buss Driven

T-C Chen et. al., TCAD 2006
S.N. Adya et. al., ICCD 2001
H. Xiang et. al., ICCAD 2003
Full Chip Virtual Flat Floorplanning

- Full netlist available
- Quick flat placement
 - Wirelength minimization
 - Congestion, timing
- Block placement, shapes
 - Cover standard cell, Macro areas
<table>
<thead>
<tr>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Planning: What and Why</td>
</tr>
<tr>
<td>Design Trends</td>
</tr>
<tr>
<td>Design Planning Complexities</td>
</tr>
<tr>
<td>New Trends</td>
</tr>
<tr>
<td>Discussion</td>
</tr>
</tbody>
</table>
Design Complexity Trends

Smaller Process Nodes Leading To Increased Design Size

![Graph showing Design Size (in million instances) over time from 90 nm in 2005 to 22 nm in 2012. The graph compares Typical and Max design sizes.]
Chip Size Trends

- DRAM: '70-'94: +15%/yr, '95 →: +0.5%/yr
- Flash: '88-'94: +16%/yr, '95 →: +1.5%/yr
- Intel PC MPU: '70-'94: +14%/yr, '95 →: +2%/yr
- Intel Server MPU: '00 →: +10%/yr
Roadmap For Die Area Partitioning
1999 To 2017

Semiconductor Intellectual Property: Continuing On The Path Toward Growth, 2008, SEMICO Research Corp

*Forecast
Power Trends
Agenda

- Design Planning: What and Why
- Design Trends
- Design Planning Challenges
- New Trends
- Discussion
Design Planning Challenges

- Design sizes
- Evolving netlist and constraints
- Complex IO structures
- Large number of embedded macros
- Fast and accurate predictability
- Abutted and semi-abutted partitions
- Repeated blocks
- Low power challenges
- Clock planning
Increasing Design Sizes

- Full-chip design planning
- Large netlists: 20-40M instances
 - Load essential data
 - Levels of abstraction
 - Partial netlist planning
- Large die sizes
Evolving Netlists And Constraints

- Parallel RTL and physical design
- Constant netlist changes
- Incomplete netlist, libraries
- Inconsistent and mismatched data/netlist
- Incomplete constraints
- Missing clocks
Complex IO Structures

- Multi-ring IO PADs
- Multi-height IO PADs
- Mixed Macros and PADs
- Mixed IOs and pins
- Multi-VDD PADs
- Rectilinear boundaries
Large Number Of Embedded Macros

Considerations

• Large percentage of die area
• Varying sizes/shapes/rectilinear
• Place and route blockages
• Relative constraints
• Macro orientations
• Fragmented SC areas
• Channels
Large Number Of Embedded Macros

Objectives

- Produce legal placement
 - Non overlapping macros
- Minimize
 - Wirelength, timing, congestion
 - Displacement from initial placement
- Maximize
 - Contiguous routing areas

TCG Based

MP-Tree based

H-C, Chen et. al., ICCAD 2008
T-C Chen et. al., TCAD 20008
T. Gao, DAC 1992
Large Number Of Embedded Macros

Sub-problems

- Channel sizing
 - Routing estimation
 - Power for std. cells

- Blockage creation
 - Avoid edge and corner congestion

H-C, Chen et. al., ICCCAD 2008
T-C Chen et. al., TCAD 2008
T. Gao, DAC 1992
Fast and Accurate Predictability

- Quick assessment of floorplan feasibility
- Routability
 - Fast congestion estimation
 - Dirty floorplans
- Channel and block congestion
Fast and Accurate Predictability

- **Timing predictability**
 - Virtual timing estimation
 - Quick buffering
 - Estimated timing models
 - Dirty constraints

- **Area assessment**
 - Estimated buffer count and cell area
 - Die area
 - Block area
Hierarchical Designs
Channeled, Abutted, and Near Abutted

- **Channeled (most common)**
 - Top level logic and channels
 - Relatively simple to plan and to close top level

- **Abutted (high end)**
 - No top level logic and channels
 - Better die area
 - Needs robust interblock planning
 - Complex clock design

- **Near abutted (gaining popularity)**
 - No top level logic
 - Narrow channels for buffers, clocks
 - Good tradeoff between channeled and abutted
Repeated Blocks

- Functionally identical blocks layed out identically

- Bottom up design
 - Simple, sub-optimal

- Top down in-context design
 - Automatic identical shapes, pins, constraints
 - Rotations, mirroring
Low Power Planning

• Power domains/voltage areas
 – Physical locations/shapes
 – Congestion/timing

• Shutdown regions
 – Switch cell planning
 • Area/Power/performance tradeoff
 – Turn-on sequence

• Buffer islands in voltage areas

H-S Won et. al., ISLPED 2003
C-Y Yeh et. al., SOCC 2007
Clock Planning

Top Level Clock Tree

uncertain register locations

block level clock latency estimation

estimated resources

clock pin locations

PLL
Clock Mesh Planning

- Plan mesh
 - Skew constraint
 - Minimize Mesh size + stub/twig routes
 - Layers
- Mesh drivers
 - Number, size, location
- Mesh Analysis
 - Multi-driver analysis

A. Rajaram et. al., DAC 2008.
3D Visualization of Clock Mesh Simulation

- Register Sinks
- Pre-Mesh Drivers
- Pre-Mesh Tree

Microns

ns
Agenda

<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Planning: What and Why</td>
</tr>
<tr>
<td>Design Trends</td>
</tr>
<tr>
<td>Design Planning Challenges</td>
</tr>
<tr>
<td>New Trends</td>
</tr>
<tr>
<td>Discussion</td>
</tr>
</tbody>
</table>
New Trends

- 3D chip planning

- Multi-level hierarchical planning
 - For increasing design sizes

- Design Planning and Logic Synthesis
3D Chip Design Planning

Objectives

• Overlap-free placement of the design blocks

• Minimize wirelength (performance)
 – 3D within and between blocks

• Minimize power
 – Reduce IOs or use weaker ones
 – Minimize wirelength
 – Design each layer in its optimal technology node

• Minimize area
3D Chip Design Planning

Sub-problems

- Multi-die partitioning and floorplanning
 - Timing, power density
 - Through-silicon via planning
 - Optimal through silicon via assignments
 - Through-Si VIA and pin assignment
 - 3D visualization

Xu He, et. al., SLIP 2009.
Multi-Level Hierarchical Design

- Design Exploration
- Top Design Planning
- MegaBlock Implementation
 - MegaBlock Planning
 - SubBlock...
 - SubBlock
- MegaBlock Assembly
- Top-level Assembly

Chip Level MegaBlocks SubBlocks
Design Planning and Logic Synthesis

- Floorplanning and logic synthesis impact each other
- Solving timing/congestion problems need synthesis and floorplanning solutions
- Enabling architectural decisions
- There is a need to bring logic synthesis and design planning closer
Design Planning and Logic Synthesis

Identify Congestion

Modify Floorplan

Congestion Fixed
Discussion

• Bringing design planning earlier into design flows is key to productivity and convergence
 – RTL design and synthesis with design planning
 – Handling evolving designs, constraints

• Traditional design planning to deal with emerging complexities in low power, design size, 3D chips.
Acknowledgements

• Jamil Kawa, Group Director R&D, Synopsys Inc.
• Dwight Hill, Principal Engineer, Synopsys Inc.
• Steve Kister, TMM, Synopsys Inc.