Physical Design Challenges Beyond the 22nm Node

Kevin Nowka
IBM Research - Austin
IEEE International Symposium on Physical Design
15 April 2010
Outline

Background
- How have we gotten to where we are?
- What lies at 22nm and beyond

Challenges in achieving something better than the path we are on
- Image fidelity
- Defectivity
- Accounting for multi-scale phenomena
- Variability and “resilience” failures

Summary
Technology Resiliency -- Past

Defects were the major yield detractors for technology in the early days, yield and area were the major tradeoffs.

Defect driven groundrules
Relative cell independence => Composable design
Past: Rules for shorts and opens

- Extra conducting material
 - Photolithographic printing error
 - Conductive particle contamination
 - Incomplete etch
 - Incomplete metal polish
- Missing conducting material

- Electromigration
 - Fast electrons transfer momentum to metal atoms at grain boundaries, causing diffusive movement, thinning, open failure

Bridging short

EM fail
Technology Rules (History)

Resulting wire rules

Two rules suffice to define the design space!
Technology Resiliency – 22nm

- Serious lithography challenges
- Now in a régime where atomistic effects are significant – gate oxide variation, random dopant variation, line edge roughness…
- No silver bullets - difficult engineering problems
Technology Rule Explosion

- Impact of CMP, Dishing, Erosion as well as lithography...

- Four or more rules for the same situation in order to accommodate technology complexity!
Technology Complexity

Technology has become so complex that it is not well represented by “rules”.

Design / Technology interface information bandwidth needs are skyrocketing!

Expressing complex non-linear realities via rules is becoming difficult.
Basics of Optical Lithography

Three major components

- Illumination
- Diffraction
- Lens transmission

source: Liu, CASS 2010
Optical Lithography at 22nm
Get painting!

Using 193nm wavelength to image sub-20nm features ~=
Using a 1 inch brush to create 2mm strokes
Litho Progression

Resolution = \(k_1 \frac{\lambda}{NA} \)

<table>
<thead>
<tr>
<th>Node</th>
<th>90nm</th>
<th>65nm</th>
<th>45nm</th>
<th>32nm</th>
<th>22nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2003</td>
<td>2005</td>
<td>2007</td>
<td>2009</td>
<td>2011</td>
</tr>
<tr>
<td>Pitch</td>
<td>250nm</td>
<td>200nm</td>
<td>140nm</td>
<td>100nm</td>
<td>70nm</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>193nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>.75</td>
<td>.85</td>
<td>1.2</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>(k_1)</td>
<td>.5</td>
<td>.44</td>
<td>.44</td>
<td>.35</td>
<td>.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Litho</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layout (M1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

source: Liebmann, Semicon West '08
Zeiss Starlith® 1700i lens

source: zeiss.com
65nm M1 litho simulation
32nm M1 litho simulation – no assist
Improving Litho Variation with RETs

- Simple shapes aren’t so simple!

Source: Liu, CASS 2010
Improving Litho with Double Exposure

Double Exposure (DE) extends the use of current exposure technology to tighter pitch structures.

A pattern (interconnect metal level) is broken into two segments:
- Optimized exposure conditions are used for each segment, overcoming “corner effects” with single exposure.

1. Layout Design
2. Y-dipole Exposure
3. X-dipole Exposure
4. Single Developed Image in Resist
Improving Litho with Double Patterning

- Frequency doubling through assignment of shapes into two phases

Phase assignment problem can be exceptionally difficult

Liebmann, Semicon West ’08
What designers can do: Restrict Design

- The technology cannot guarantee the outcome of a free form layout. Thus more restrictions are imposed on the layout.
- Usually driven by the technology limitations
- Started from FEOL, gradually migrate to BEOL
- Typical examples:
 - Only allow uni-directional shapes (at least for critical portion which defines the gate)
 - Only allow discrete width and spacing
 - Use Dummy shapes
 - Avoid jogs
- Can’t come for free => AREA
What designers can do: Regularity

Restricted Design Rules shows \(\sim 3x \) improvement in variability.

\[
\begin{align*}
\text{combined} &= 11.61\text{nm } 3\sigma \\
\text{restricted} &= 3.68\text{nm } 3\sigma
\end{align*}
\]

Source: L. Liebman, SPIE 04
PD Challenges for 22nm and beyond

One: What can PD do to help balance the desire for density and the need for image fidelity?
Is this the right abstraction for PD tools?

At/beyond 22nm ... Only at significant cost

- Means to maintaining arbitrary composability are costly ... probably too costly
Is this the right abstraction?

No – PD shouldn’t need to go to PV band level
Why does abstraction matter?

Visibility into / effect on the library

- Poly/contact/M1 within cell influence performance, power, routability
- PD needs to be a partner in the tradeoffs made within cell
 - Placement clearly has effects within 22nm “range of litho influence” for performance critical Poly and yield critical M1
 - Low level routing can have same effect for yield-critical M1
Learning from SRAMs

Poly regularity is a done deal

M1 is the 22nm design/manufacturing battleground:
- If litho range of influence is avoided in placement/routing, we can envision preanalysis and library optimization for improved density, robustness…

Library avoidance of M1 - cost?

Future: Just reapply at each level up the stack?
PD Challenges for 22nm and beyond

Two: What can PD do to help balance the requirements of density and defectivity?
Critical Area Improvement

Improved robustness to particle contamination!

ISQED ’03, Dan Maynard, “Productivity Optimization Techniques for the Proactive Semiconductor Manufacturer”
Critical Area Improvement

Litho $&!*$

Net: Better or worse?
Improving Yield with Via Redundancy

- Less yield loss due to via redundancy
- M1 litho more difficult

- M1 litho much easier
- More yield loss due to via coverage

How do we manage this tradeoff?
What about performance?
Steps toward DfM for redundant vias

- Measuring via resistance distributions key.
 - Placement and redundancy systematically effect resistance
- We created a special structure to measure resistance of individual vias for various configurations.
Quantifying via resistance distributions

Use in area vs yield tradeoff analysis
Balancing density with defectivity

- Need better models of yield vs area/power/performance for library designer, placement, routing, buffer insertion, …
- Manufacturing / Design / Automation all affected
PD Challenges for 22nm and beyond

Three: How can PD affect multiscale phenomena?
Chemical-mechanical polishing (CMP) is used to planarize the wafer surface.

Routinely used in dual damascene copper interconnect definition steps.
CMP Dishing

- Different metal wire density can cause changes in the height of ILD and metal layers
 - Change of wire resistance and capacitance
- Can further affect the up metal layer shape due to the tight photolithography latitude
- CMP awareness showing up in tools flow
Long Range (mm-scale) Effects - RTA

- Rapid thermal anneal (RTA)
- Length scale: ~mm; layout pattern density dependent
- Approach: Joint TCAD-compact modeling efforts
- Can we do something better than fill?

Source: Y. Ye
PD Challenges for 22nm and beyond

Final: Variability and “resilience” failures
Confluence of variability effects -> SRAM “resilience” fail exposure

- On-die arrays
 - Need $\sim 5\sigma$ effective cell yield for Mb arrays
 - V_{min} issues
- Symmetry/regularity allow
 - Precharacterization / litho optimization
 - Higher array supplies/assist
 - Row/column redundancy
 - ECC
Confluence of variability effects: future of “resilience” fail exposure

- Latch, adder, mux, AOI, buffer, wire … resilience?
- Lack of symmetry/regularity
 - What topological, functional analogs do we have to:
 - Precharacterization/litho optimization
 - Higher array supplies/assist
 - Row/column redundancy
 - ECC
 - … and how would they be supported in our design flows?
Skills and expertise that surround silicon implementation at the technology, circuit, system and CAD levels all will play significant role in continued scaling at 22nm and beyond.

Isolation of skills, however, will be increasingly less possible.

- eg. Effective routing algorithms will need to leverage knowledge of how wires are created, and how router decisions will impact the resulting electrical parameters of the wire.

Simple technology abstractions that have worked for many generations like rectangular shapes, Boolean design rules, and constant parameters will not suffice to enable us to push designs to the ultimate levels of performance.

Physical design must become more technology aware to fully contribute to solving challenging scaling problems.