Physical Design Implementation for 3D IC – Methodology and Tools

Dave Noice
Vassilios Gerousis
Outline

- 3D IC Physical components
 - Modeling
- 3D IC Stack Configuration
- Physical Design With TSV
- Summary
3D IC Stack Interconnect Modeling
Multi-Chip Interconnect Technology

- **Regular Chip with Flip Chip Bumps**
- **Chip with TSV plus Backside Metal**
 - Micro-bump on the top/bottom
 - or flip-chip bump on top/bottom metal

- **Multi-Chip Interconnect Technology**
 - **Micro-bumps layer** for interconnect between chips
 - **TSV** with **backside metals** layer to allow interconnect stacking
 - **Flip Chip Bump** for interconnect to package

- Design methodology development is critical in physical design tool development to address the different styles of 3D IC.
Face-To-Face 2-Chip Stacked 3D IC

3D IC Interconnect Model

- **Micro-Bump:** Small
 - Placed anywhere.
 - Size and spacing rule
- **TSV:** two types
 - Fine TSV: small size
 - Super-TSV: very large size
 - Size and spacing rules
- **Backside metal layers:** RDL layers.
- **Flip-Chip Bump:** medium
- **Package bump:** Large
TSV Modeling = TSV is cell and a Via?

Super TSV

- Super TSV goes through substrate and metal stack.
 - Limited placement locations
- Modeled as a cell

Regular TSV

- Regular TSV (smaller geometry)
- TSV is modeled as a via.
- Can be placed anywhere inside chip with special constraints.
Micro-Bump: Ball and Pad

- Micro-bump interconnect contains two objects
 - The ball which is usually much smaller than flip chip bump
 - Micro-bump Pad: one pad on top (Tier2) and the other one on bottom (Tier1).

- The micro-bump ball and also the pad are modeled in the IC stack file
 - Used in analysis tools

- In the physical IC design space, only the micro-bump pad is used.
 - Micro-bump pad is modeled as a cell.
3D IC Stack Configuration
Stacking configuration is an essential modeling tool to drive both the physical design space and also the analysis space.

Package pins are usually hard constraints when optimizing the Z direction.

- Design flow can be bottom-up (package driven)
- Design flow can be top down (IC driven)
3D IC Stacked Die Configuration Examples

Back-to-front configuration

Front-to-front configuration

Ball

Package
Horizontal Stacking – Silicon Interposer

- Micro-Bump
- Die1 – 65 nm
- Upper Metal Layers
- Device Layer
- Substrate
- Flipped and Placed Here
- Micro-Bump

- Die2 – 45 nm
- Upper Metal Layers
- Device Layer
- Substrate
- Flipped and Placed Here
- Silicon
- Interposer
- (no active devices) can use mature silicon technology
- Metal layers
- Flip-Chip-Bump
- Back-Side Metal
- Package
- Package-Bump
- Substrate
3D IC Configuration

• Need a flexible configuration specification to allow the description of
 – Vertical stack
 – Horizontal stack
 – Mixed stack
• It allows the designer with an appropriate set of tools to evaluate each stacking configuration.
• Each configuration provides different aspects of design space
 – Thermal impact
 – Routing Congestion
 – TSV via density
 – Power supply impact
• Heterogeneous die in the stack (digital, analog, RF, package) requires the use of multiple design systems.
 – Package design, Digital IC Design, Analog IC and RF design
Physical Design With TSV
Design Implementation For 3D IC

• Design Description:
 – Stacking Configuration
 – Multi-chip Connectivity
 – Power Specification
• Work with existing Design Implementation Tools
 – 3D IC interconnect Model
 – 3D enabled placement and routing
• 3D Analysis tools
 – Interconnect Extraction ➔ timing & SI
 – Thermal analysis
 – Voltage drop analysis
• Integration with Package Co-Design (SIP)
• TSV cut size is about 5-10X the height of standard cell in 32 nm technology.
 – TSV placement disturbs standard cell row placements
• TSV cut size is about 15-30X M1 min-width.
 – Special routing rules for M1: Use of max width wire
• TSV thermo-mechanical stress has impact on mobility of nearby devices
 – Best handled with keep out area from diffusion area
 • Small distance to digital cells and bigger distance near analog cells.
TSV Placement Methodology

- **Periphery Based Placement**
 - Size and other physical constraints dictate special design methodology for TSV (and micro-bump) placement and routing. Some examples are:
 - Peripheral based: Normally connected to IO with ESD protection.
 - Area based: Can be connected to internal cells without ESD.
 - Mixed approach: some with ESD, some without ESD.

- **Area Based Placement**

- Floorplanning and placement must consider TSV and micro-bump locations.
Routing With TSV – Back to Face Example

- Routing on M1 and MB1 layer.
Summary

• 3D IC stack introduces new interconnect components
• We introduced physical modeling for 3D IC interconnect for placement and routing
 – Two sides for the chip, where metal layers can be used
 – Micro-bump and TSV are the two main components to connect multiple dies
• Physical sizes of TSVs and also their physical properties, dictates the need for special methodology for placement and routing
 – Stress dictates special distance from cells and macros.
 – Sizes restricts where TSV can be placed on the die
 • Floor planning, placement of cells and macros is constrained by TSV and micro-bump placement
• Design methodology is critical to 3D IC physical design