Automated Placement for Custom Digital Designs

Tung-Chieh Chen
Physical Design Group, SpringSoft Inc.
Mar 29 2011 (ISPD-2011)
Outline

Why Custom Digital

Placement Issues

Summary
Outline

Why Custom Digital

Placement Issues

Summary
Why Custom Digital

- Allow precise custom design of digital blocks often used in mixed-signal environment

- Meet the critical performance requirements that often cannot be achieved by standard digital design flow
Properties for Custom Digital Designs

- Tight Utilization
- Limited Metal Layers
- Various Placement Constraints

Need unique automation techniques to solve issues in custom digital placement
Placement Issues

- Area
- Constraints
- Routability
Outline

Why Custom Digital

Placement Issues

Summary
Placement Issues

- Area
- Constraints
- Routability
Area Minimization

How to minimize placement area?

- Reduce whitespace by increasing cell utilization
- Overlap cells

Cell overlapping by oxide diffusion sharing

- A common technique used in transistor-level placement but not in cell-level placement
- Cells with common power/ground portion can be overlapped to reduce area
Cell Overlapping Example

Abutting

Overlapping

Overlapped Region
Cell Overlapping Problem

Input

- A cell placement
- A list of allowable cell overlap combinations
 - For example, INV-Right and INV-Right means an INV (R0) can be overlapped with an INV (MirrorY)

Decide the new orientation of each cell so that the number of cell overlaps for adjacent cells can be maximized
Cell Overlapping Study

1p3m

Area reduction is around 6% to 13%

<table>
<thead>
<tr>
<th>Case</th>
<th>Cell #</th>
<th>CellArea / RowArea</th>
<th>Reduced Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Without overlapping</td>
<td>With Overlapping</td>
</tr>
<tr>
<td>Case1</td>
<td>85</td>
<td>99.9%</td>
<td>106.7%</td>
</tr>
<tr>
<td>Case2</td>
<td>87</td>
<td>95.1%</td>
<td>106.3%</td>
</tr>
<tr>
<td>Case3</td>
<td>113</td>
<td>98.1%</td>
<td>110.8%</td>
</tr>
<tr>
<td>Case4</td>
<td>362</td>
<td>99.6%</td>
<td>106.1%</td>
</tr>
</tbody>
</table>
Problem of Squeezing Cells...

- Routability
 - Need a better routing plan (topology) to utilize the routing resources

- Electrostatic discharge (ESD) path
 - Prevent a direct power-to-ground current path with small resistance
Electrostatic Discharge (ESD) Path

- Direct connection of power-to-ground rails without tie cells can be used to compact size in a high utilization design.
- A larger spacing rule is used to avoid direct power ground path due to small resistance.
Solving ESD Spacing Rule

- Need larger spacing to increase resistance from power to ground
- Increase cell spacing to prevent the violation
- Flip the cell to reduce cell spacing while keeping the same ESD space rule
ESD-Violation-Fixing Problem

Input

• A cell placement
• ESD spacing rule
• Direct tie-high/low pins

Decide new cell *positions and orientations* so that all ESD spacing violations are resolved and the change of cell positions and orientations are minimized.
Placement Issues

Area

Constraints

Routability
Improving Routability

Spine Routing Topology

- More predictable for resource usage, wire length, source-to-sink path, etc.
Floorplan for Spine Routing

Channel Floorplan

Channels are pre-defined before cell placement

Pro:
* Channel sizes can be different

Pseudo-Channel Floorplan

Channels are automatically created during placement

Pro:
* No need to define channels before placement
* Cell positions are more flexible
Need an Accurate Net Model for Spine Nets

A pin is usually modeled by using a point → NOT accurate for a large pin (spine)

Using an inaccurate net model for a spine net may cause cells collapsed to a point

The desired cell moving directions
Complex Spine Topology

Placement becomes harder when spine topology becomes complicated

[Diagram showing Main Spine and Secondary Spine]
Pseudo-Channel Placement

How to create “useful routing tracks”?

“useless routing tracks”

“useful routing tracks”
Routing track may not be reduced when minimizing wire length.

Net3
Net2
Net1

Wirelength = 8
Track = 3

Wirelength = 8
Track = 2
Placement Issues

- Area
- Constraints
- Routability
Placement Constraints

- Symmetry constraints
- Relative placement constraints
- Hierarchy constraint

All constraints should be followed at any stage of automatic placement
Symmetry Constraint

Symmetric placement for device/net matching

Symmetry placement about x-axis
Relative Placement Constraint

- Also known as structure/matrix placement
- Good for data-path designs
- Constraints can be defined in a matrix style (col/row)

![Relative Placement Constraint Diagram]
Hierarchy Constraint

- Placement while keeping cells in the same hierarchy block
- No overlap between cells in different hierarchy blocks (cellviews)
Issues in automated custom digital placement

Area
- Cell overlapping
- ESD rule spacing

Routability
- Spine routing topology
- Pseudo-channel floorplan
- Track number vs. wire length

Constraints
- Symmetry
- Relative placement
- Hierarchy
Thank You for Your Attention!

Any Question?