Efficient Decoupling Capacitor Planning via Convex Programming Methods

Andrew B. Kahng, Bao Liu, Sheldon X.-D. Tan*

UC San Diego, *UC Riverside
Outline

- Background
- Problem Formulation
- Semi-Definite Program
- Linear Program
- Scalability Enhancement
- Experiments
- Conclusion
P/G Supply Voltage Integrity

- *Increasing Power/Ground supply voltage degradation in latest technologies* due to increasing
 - Interconnect resistance
 - Supply current density
 - Clock frequency

- Degraded power/ground supply voltages and relatively stable transistor threshold voltage leaves a decreased noise margin and *increased vulnerability to logic malfunction*

- *Degraded P/G supply voltages degrades transistor and circuit performance*
P/G Network Optimization

- Supply voltage degradation includes
 - DC IR drop
 - AC IR drop
 - L dl/dt drop

- P/G network optimization techniques include
 - Wire-sizing
 - Edge augmentation
 - Decoupling capacitor insertion
Decoupling Capacitors

- Are usually CMOS capacitors
- Form *charge reservoirs* → *provide short-cuts for supply currents* → reduce supply voltage degradation
- Form *low pass filters* → *remove high frequency components in supply currents and cancel inductance effect* → reduce supply voltage degradation
Decoupling Capacitor Insertion

* θ heuristic
 - Supply noise charge x a scaling factor

* Sensitivity analysis + greedy optimization
 - A mxn Jacobian matrix for m violation nodes and n decoupling capacitor nodes

* Adjoint sensitivity analysis + iterative quadratic optimization
 - Adjoint network for each supply current source’s contribution
 - Time domain integral of supply voltage drop
 - Remains a nonlinear optimization problem
Modified Nodal Analysis

- \((G+sC)V = Bu+J\)
- \(V = \text{free node} \) voltages
- \(u = \text{reference node} \) voltage
- \(B = \) conductance between free nodes and the reference node
- \(J = \) free node supply currents
- \(C = \) ground capacitance matrix
- \(G = \) conductance matrix
- \(G_{ij} = \) conductance between two free nodes \(i\) and \(j\)
- \(G_{ii} = S_{j\neq i} G_{ij} + B_i\)
Problem Formulation

- **Given**
 - an RLC P/G supply network G
 - free node supply currents J
 - maximum supply current duration time T
 - supply voltage degradation bound αV_{dd}

- **Find**
 - minimum decoupling capacitance $\Sigma_i C_{ii}$ such that $\Delta V_i(t) < \alpha V_{dd}$ for all i in G, $t < T$
Duality of Timing and Voltage Bounds

The diagram illustrates the relationship between time and voltage, showing the bounds of delay and voltage drop. The curves represent the low bounding delay and upper bounding voltage drop.
For timing optimization

Minimize \(t \)

Subject to \(t G - C \geq 0 \)

- \(M = t G - C \) is positive semi-definite \(\Rightarrow x^T M x \geq 0 \quad \forall x \)
- \(t \) needs to be larger than the eigenvalues of \(G^{-1}C \), e.g., RC time constants of the interconnect
Semi-Definite Program

- For supply voltage optimization

Minimize \[\sum_i C_{ii} \]
Subject to \[C - TG \geq 0 \]

- \(M = C - TG \) is positive semi-definite \(\rightarrow x^T M x \geq 0 \ \forall x \)
- \(T \) needs to be \textit{smaller} than the eigenvalues of \(G^{-1}C \), e.g., RC time constants of the interconnect
- Loose bound \(\rightarrow \) relaxation to a \textit{convex super}-space
Linear Program

- Provides tighter bounds by considering differences in:
 - Node voltage bounds
 - Supply currents
 - Poles for residues

- Upper bounds supply current waveforms by step functions

- Upper bounds 50% interconnect delay by Elmore delay
Moment Computation

\[V = (I - sG^{-1}C)^{-1}G^{-1}J \]

\[J = \frac{\hat{J}}{s} \]

\[V = M_{-1}S^{-1} + M_0 + M_1s + \ldots + M_is^i \]

\[M_{-1} = G^{-1}\hat{J} \]

\[M_0 = G^{-1}CG^{-1}\hat{J} \]

\[M_i = (G^{-1}C)^{i+1}G^{-1}\hat{J} \]

\[T^{Elm}_{\hat{e}} = \frac{M_0}{M_{-1}} = \frac{G^{-1}CG^{-1}J}{G^{-1}J} \]

\[U = M_{-1} = G_{-1}J \]

\[U(1 - e^{-\frac{t}{kT^{Elm}_{\hat{e}}}}) \leq V(t) \leq U(1 - e^{-\frac{t}{kT^{Elm}_{\hat{e}}}}) \]
Linear Program Decap Insertion

- Minimize
 \[\sum_i C_{ii} \]

- Subject to
 \[\frac{G^{-1}CG^{-1}J}{G^{-1}J} \geq -\frac{kT}{\lg(1 - \frac{\alpha V_{dd}}{G^{-1}J})} \]

- \[k = 1 \]
 \[\frac{1}{\lg 2} \]

- For a node which DC voltage is within the bound, e.g., \[G^{-1}\hat{J} \leq \alpha V_{dd} \], gives 0 right-hand side

- Physical constraints

- Inductance effect
Numerical Example

- **Semi-definite Program**

\[
G = \begin{bmatrix}
4 & 2 \\
-2 & 2
\end{bmatrix}
\]

\[
G^{-1} = \begin{bmatrix}
0.5 & 0.5 \\
0.5 & 1
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
6 & 0 \\
0 & 4
\end{bmatrix}
\]

\[
C - TG = \begin{bmatrix}
2 & 2 \\
2 & 2
\end{bmatrix}
\]

\[
G^{-1}C = \begin{bmatrix}
3 & 2 \\
3 & 4
\end{bmatrix}
\]

which eigenvalues \([1,6]\) larger than 1(ns)
Numerical Example

• Linear Program

• Given

\[
G^{-1} \hat{J} = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix}
\]

• Minimize

\[c_2 + c_3\]

• Subject to

\[
0.5c_2 + c_3 > 0
\]

\[
0.25c_2 + c_3 > \frac{1}{\lg 2}
\]

→ optimum \(c_3 = 1/\lg 2\)
Numerical Example

- θ heuristic is optimistic
- SDP is pessimistic
- LP gives accurate solution

<table>
<thead>
<tr>
<th>method</th>
<th>Supply currents (A)</th>
<th>Decaps (pF)</th>
<th>Delay (ns)</th>
<th>Vdrop (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>0 1 0</td>
<td>1.443</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SDP</td>
<td>0 1 0</td>
<td>4</td>
<td>3</td>
<td>3.65</td>
</tr>
<tr>
<td>θ</td>
<td>0 1 0</td>
<td>1</td>
<td>0</td>
<td>0.703</td>
</tr>
<tr>
<td>LP</td>
<td>0.67 0 0.67</td>
<td>0.962</td>
<td>0.962</td>
<td>1</td>
</tr>
<tr>
<td>SDP</td>
<td>0.67 0 0.67</td>
<td>4</td>
<td>3</td>
<td>1.908</td>
</tr>
<tr>
<td>θ</td>
<td>0.67 0 0.67</td>
<td>1.333</td>
<td>0</td>
<td>0.703</td>
</tr>
</tbody>
</table>
Scalability Enhancement

- Reduce a P/G network to include only possible decoupling capacitor insertion nodes
- In the original P/G network
 \[V = G^{-1} J \]
- In the reduced P/G network
 \[\tilde{V} = \tilde{G}^{-1} \tilde{J} \]
- Apply unit supply current and compute node voltages
- Solve a linear equation system and find equivalent supply currents for the decap insertion nodes
Scalable Decap Insertion Linear Program

Input: RLC P/G network G, supply currents J
during time T, voltage bound αV_{dd}

Output: inserted decoupling capacitors

1. Select n decap insertion candidate nodes
2. Reduce G to include only the n decap insertion nodes
3. Apply linear program
4. Insert decoupling capacitors
Outline

- Background
- Problem Formulation
- Semi-definite Program
- Linear Program
- Scalability Enhancement
- Experiments
- Conclusion
Experiments

- 90nm industry design of 34K instances
- Cadence Fire&Ice extracts a power network of 65K resistors and 35K capacitors
- VerilogXL outputs supply currents of 5.613A in total
- $T = 1\text{ns}$, $\alpha = 0.2$
- 16 decap insertion candidate nodes
- 16 SPICE DC simulation, each takes 1.15 seconds

<table>
<thead>
<tr>
<th></th>
<th>Total decap (nF)</th>
<th>Min delay (ns)</th>
<th>Max Vdrop (V)</th>
<th>CPU runtime (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>30.002</td>
<td>1.008</td>
<td>0.199</td>
<td>0.001</td>
</tr>
<tr>
<td>SDP</td>
<td>55.892</td>
<td>2.644</td>
<td>0.101</td>
<td>0.034</td>
</tr>
<tr>
<td>θ</td>
<td>4.196</td>
<td>0.352</td>
<td>0.275</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Summary

- We propose *a compact modified nodal analysis formula* for a P/G network.
- We apply timing optimization techniques for supply voltage bound.
- We propose *a semi-definite program*, which guarantees supply voltage bound for all supply currents.
- We propose *a linear program*, which accurately bounds supply voltage for given supply currents.
- We propose *a P/G network reduction scheme* for scalability enhancement.
Thank you!