Clock Tree Design
for
Robust Low power design

ISPD 2006

Arjun Rajagopal
Dallas DSP Design

Texas Instruments
Outline

• Clock Tree Design Goals
• Definition of Balanced clock tree
• Control of clock Insertion Delay and Skew
• Low Power with Clock gating and Clustering
• Clock Analysis and Process Tracking
• Summary
Clock Tree Design Goals

- Balanced Clock Tree across all PVT: Maximize yield
- Low Clock insertion delay: Maximize performance
- Low Clock skew: Minimize area, power
Clock skew significant part of cycle time for high speed designs

Uncertainties in clock network delays can reduce performance, yield and may cause functional failure

Several scaling effects contribute to uncertainty in clock distribution network

- Process variation (N/P mistrack, Vt, Tox)
- Metal mistrack
- Power Grid noise [delay/skew]
- Coupling Noise [Delay/Skew]
- Misalignment [via resistance]
- Random Dopant Fluctuation [V_t]
- NBTI [V_T/Delay]
- Poly CD control [Delay/Skew]
- Model, spice, extraction, tool limitations
- CMP [Thickness/delay/skew]
- Metal density and fill [Delay/skew]
- PLL (jitter, duty cycle)
- Non Linear resistance [Delay/Skew]
-

Balanced clock structure enables clock distribution to track variations across the design

Key challenge at 90nm and below is variability
Defining Balanced Clock Tree Structure

- Structure: Balanced clocktree has equal levels to all clock loads
 - Needed to balance interconnect and gate delay
 - Depth mismatch: Large buffer driving long interconnect and series of smaller buffers with shorter interconnect
 - Will scale differently with FEOL (front end of line: transistor) and BEOL (back end of line: Interconnect/metal) variations
 - Enables clock tree to track across process corners (PVTI)
 - Replicate gates to match gate delay on different clock branches
 - Add dummy muxes
 - Use clock buffers with matching clockgate delays for non-clockgated branches
 - Clock route has matched RC by restricting to metal layers with similar RC
 - Minimize sensitivity to process variation
 - Correlation is more likely to be maintained if route is constrained to layers with identical cross-sections and processing steps
 - Common part of clocktree (global) uses upper level metals to reduce insertion delay and maintain matching interconnect delay
Balanced Clock Tree Levels

- Design Goals
- Balanced Structure
- Low Power
- Analysis

Balanced Structure

- **Specify Number of Clock Levels to Macro**
- **Specify Insertion Delay to Macro Clock Pin**
- **Pre-Built Clock Tree in Macro**

Clock Root

- Equal Clock Levels = 5
- From Clock Root to All Loads

Dummy CLK MUX

MUX = Clock Level

ClockGate = Clock Level

NAND_CTB

TXAS INSTRUMENTS
Clock Distribution techniques for Low Skew

- **Clock-Grid DEC Alpha 21064**
 - Low local skew, Regular routing,
 - Simpler to implement and early in design
 - Routing resource and power,
 - Global shorted grid
 - Local grid multi-clock domains

- **H-Tree: PowerPC**
 - Lower power, less routing resource
 - Can enable multiple domains
 - Uneven load distribution can affect skew
 - Buffered tree

Ref: JSSCC 1998 600 Mhz clock distribution, Bailey et. al

Ref: CICC 1998, PowerPC clock distribution methodology
Clock Distribution techniques for Low Skew

- Local Grid and Global Tree: IBM Power4
 - Low local skew tolerant large global variations
 - Routing resource and power
 - Single clock domain for simple grid
 - Local grid is shorted to average skew

- Global-H-tree and Regional Grids: Intel IA-64 (Itanium)
 - Lower power, less routing resource
 - Complex De-Skewing to reduce skew
 - Regional grid is shorted to reduce skew

- Balanced tree:
 - Low Power
 - Allows Fine grained multi level Clock gating
 - Skew Control using Symmetry and structured placement
 - Less Route resources used

Ref: ISSCC 2001 IBM power4 clock distribution
Ref: ISSCC 2002 First Generation IA-64 clock distribution
Clock Tree Specification

- **Cells for clock tree**
 - Designed for reduced process variation
 - Transistor sizing, uniform orientation, matching
 - Cell type specific to clock tree level
 - Cell type at each level matched

- **Route layers by clock tree level for RC matching**
 - Common part of clock tree on upper layers MET5/MET6
 - Local clock tree only on MET3/MET4
 - Care taken to ensure layer matching and route topology control even for leaf level routes below clockgates

- **Width and spacing of clock routes**
 - Routed at non-minimum width and space
 - To reduce RC, Noise, coupling, RC variation
 - Reduce noise and crosstalk effect on clock delays
 - Double Vias for clock routes
Control of Clock Skew and Insertion Delay

- **Minimize Skew**
 - Tight clustering of flops
 - Reduce insertion delay, skew and power
 - Local skew within blocks 50ps or below
 - Skew tuning

- **Reduced insertion delay in clock tree**
 - Implemented using
 - Floor planning of clock pins
 - Custom top level balanced clock tree
 - Pushing the common point in the clock tree closer to the blocks
 - Cloning clock structures with large fanout (module level clock gates)
 - Leads to reduced on chip variation (OCV)
 - Clock Tree jitter directly proportional to clock insertion delay
Controlling Systematic Skew

- Structured placement traditionally reserved for datapath
- Use Structured placement in clock tree to further reduce systematic skew by matching delay components within each clock structure
- Unbalanced clock trees with different gates and wires
 - Delay matching can be used in such trees reduce skew
 - Random changes with different corners due to gate and interconnect mismatch
- Skew Minimization based on symmetry
 - Balanced same number of devices, identical layout and size
 - All parts in structure are matched
 - Match gate and wire delay and wire geometry
 - Chip floorplan with large macros can increase systematic skew due to non-uniform clock loading or load mismatch in clock tree
Control of Clock Skew and Insertion Delay

- Good Clustering can result in
 - Reduced skew
 - Better timing
 - Lower Power and capacitance
 - Reduced area
 - Reduced process variation with predictable routing, fewer vias, similar context
- Examples of upto 20% area reduction in example
Clock Skew and Area

- Skew can impact area
 - Clock Network area
 - Area for hold time fixes
 - Area increase by 20%+ when skew increased from 50ps to 125ps
Structured placement by Clustering

- Clustering of registers around clockgate for regular clock structure
 - Clockgate is in center of flop cluster
 - Cluster configuration depends on clockgate fanout
 - Reduced overlaps and better skews
 - Resizing of flops is supported within the cluster
 - Non-clockgated flops clustered around matching buffer
Tight Control of Clock Skew

- Custom clustering of clock loads enables
 - Regular and controlled routing from clock header to clock loads
 - Predictable route with vias and route jogs minimized
 - Reduces insertion delay, skew, power and process variation
 - Predictable loads for clockgate sizing
 - Area reduction
 - Context of cells is defined and predictable
 - Route resource utilization is minimized to reduce congestion
Impact of Structured placement based Clustering on Clock Tree

Comparing configurations of flop clustering
- Upto 3x reduction in skew
- Upto 40% reduction in insertion delay
- Upto 30% reduction in wire cap

<table>
<thead>
<tr>
<th>Config</th>
<th>Skew</th>
<th>Max Delay</th>
<th>Min Delay</th>
<th># Levels</th>
<th>Total Power</th>
<th>Wire Cap in examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2col.</td>
<td>49</td>
<td>284</td>
<td>235</td>
<td>4</td>
<td>1.78</td>
<td>43.06</td>
</tr>
<tr>
<td>4 col.</td>
<td>67</td>
<td>308</td>
<td>241</td>
<td>4</td>
<td>1.85</td>
<td>43.67</td>
</tr>
<tr>
<td>No Cluster</td>
<td>145</td>
<td>386</td>
<td>240</td>
<td>4</td>
<td>1.86</td>
<td>55.69</td>
</tr>
</tbody>
</table>

No clustering

4 column

2 column
Clockgating Methodology

- Methodology to meet target skew power and insertion delay targets
- Clockgates explicitly coded in RTL or inserted in synthesis
- Integrated latch based clockgate
- Three levels of clockgating within a Block
 - Block level/Sub-Block/Leaf Level
- Large max fanout on clockgates
 - Power reduction: Fewer clockgates [depending on activity]
 - More load mismatch and unbalanced clock structure
- Restricted max fanout
 - Balanced structure with better and predictable timing for “enable”
 - Replicate “always enabled” clockgates on non-clockgated branches for load/delay matching
 - Structured placement helps enable timing and power below clockgates
Clockgating and NBTI

- Negative Bias Temp Instability (NBTI) causes a V_T shift and degrades PMOS performance
- Degradation is state dependent
- Clockgating can result in differential ageing in clock tree
 - Clockgated portions see less than the activity on clock trees
Clock Analysis

- **Analysis Corners**: Combination of
 - Process
 - Voltage
 - Temperature
 - Interconnect (via and metal)

- **Skew Analysis at all corners to check**
 - Mismatch in interconnect
 - Mismatch in gate and structure
 - Voltage introduced skew
 - Sensitivity to via variation

- **Cross corner Analysis**
 - Skew sensitivity to Fast-P, Slow-N, or vice-versa

- **Ratio of interconnect and gate delay**
 - Check ratio to validate balanced structure
Clock Analysis

- **Effect of Dynamic IR Drop on Clock Tree**
 - Insertion Delay
 - Skew and Jitter

- **Shielding**
 - Top level tree shielded: reduce inductance and capacitive coupling noise
 - Verification of clock shields by coupling/inductance analysis
 - Shields tapped at regular intervals to grid

- **Full chip ClockTree Noise analysis**
 - Each segment of clock tree is analyzed for coupling noise
Insertion Delay tracking across corners

- Insertion delay can vary by 4x across process corners
- Example of a Balanced clock tree tracking insertion delay and skews across process corners.
- Control of Transition time in clocktree
 - Rise/Fall time controlled across all process corners (< 100ps rail-rail)
 - Robustness to process variations and coupling effects
 - Matched rise and fall times preserves clock duty cycle
 - Reduced short circuit current and lower short circuit power
 - Increased noise immunity
Summary

- Clocktree Design needs to account for process variations
- Balanced clock structure enables clock distribution to track process variations
- Structured placement traditionally used in datapath implementation
- Using Structured placement in clock tree can further reduce systematic skew by matching delay components within each clock structure
- Custom clustering can be used in a balanced clock tree for low skew power reduction and controlling process variations
- Low power achieved
 - Using extensive fine grained clockgating
 - Reduced RC using clustering and structured placement
 - Control of skew across corners with balanced structure
- Detailed analysis of clock tree at multiple process corners is required
Acknowledgements

Raguram Damodaran
Anthony Hill
Anand Rajaram
Nagaraj NS